Display:

Results

Viewing 211 to 240 of 8653
Technical Paper
2014-04-01
Marcus Becher, Stefan Becker
Abstract This paper focuses on the applicability of numerical prediction of sound radiation caused by an axial vehicle cooling fan. To investigate the applicability of numerical methods, a hybrid approach is chosen where first a CFD simulation is performed and the sound radiation is calculated in a second step. For the acoustic simulation an integral method described by Ffowcs-Williams-Hawkings is used to predict the sound propagation in the far-field. The simulation results are validated with experiments. The corresponding setup in experiments and simulation represents an overall system which includes the cooler, the cooling fan and a combustion engine dummy. To optimize the economical applicability in terms of simulation setup and run time, different approaches are investigated. This includes the simulation of only one blade using a periodic boundary condition as compared to the whole fan geometry. In the CFD simulation an SAS-turbulence-model is applied. The results show that this is a very useful approach considering the challenges in prediction of numerical sound.
Technical Paper
2014-04-01
Tomoya Ishii, Tomohiro Sudo, Masanori Morikawa, Daisuke Nagahata
Abstract General analysis methods which are known as Transfer Path Analysis and Air borne Source Quantification have been extended to estimate forces of an air conditioner's parts and also clarify the path from air conditioner system. These results show noise transfer path to be improved. Originally, the existing methods are known to require considerable amount of time for the cause of complicated measurement to get analysis results. In the work of this paper, required measurement is simplified, and time reduction of 50% is achieved without critical decrease in analysis accuracy.
Technical Paper
2014-04-01
Jin-Seok Hong, Hyung-Seok Kook, Kang-Duck Ih, Hyoung-Gun Kim
Abstract Fluctuation in the sound pressure level of the interior noise of an on-road vehicle is always caused by unpredictable factors such as wind gusts, traffic, roadside obstacles, and changing drive-by-drive conditions, and is hence, not reproducible in nature. Since the human brain is known to be more sensitive to noise that is amplitude-modulated than noise at a steady level [1], it is important to evaluate and improve the NVH performance of a vehicle in terms of the fluctuating interior noise likely to be experienced by drivers or users. To this end, an evaluation system was developed as part of this study, the details of which are presented in this paper. The system is composed of hardware for database storage and replay of sounds, and software for synthesizing the noise signals. For given wind tunnel test results, the evaluation system yields a wind noise model that can synthesize wind noise signals for any wind scenario. Additionally, the road and engine noise components can be extracted from proving ground or real road tests.
Technical Paper
2014-04-01
Youichi Kamiyama
Abstract Tire cavity noise has long been one of the main road noise issues. Various ideas for devices to reduce tire cavity noise have been patented or discussed in technical reports, but many issues remain for commercialization, and at present only some tires have appeared as products. Therefore, technology was developed for mounting Helmholtz resonators on the wheels, enabling reduction of tire cavity noise without placing restrictions on the tires. The advantage of this technology is that the cost and productivity targets needed for mass production can be satisfied without impairing the tire and wheel functions. The aim of this development was to construct low-cost device technology that is well-suited to mass production and enables reduction of tire cavity noise to an inaudible sound pressure without adversely affecting dynamic product marketability such as strength and durability performance and handling performance. In order to realize that aim, the device configuration employed a structure that assembles separate thin, lightweight plastic resonators in the wheel well.
Technical Paper
2014-04-01
Manchi Venkateswara Rao, Jos Frank, Prasath Raghavendran
Abstract The customer demand for all wheel drive (AWD) vehicles is increasing over the period of time which also requires NVH performance on par with front wheel drive vehicles. AWD vehicles are equipped with power transfer unit, propeller shaft and independent rear differential assembly to achieve their functional requirement. The additional drive train components in AWD vehicles may amplify torsional fluctuations in the drive line. Hence achieving the NVH performance of AWD vehicles on par with FWD vehicles without any major change in the existing design is a major challenge. In this work, an AWD vehicle with severe body vibration and booming noise is studied. The operational measurements are taken throughout the drive train on all sub-systems from engine to the rear part of the body in the problematic operating condition. An operational deflection shape analysis is conducted to visualize the vibration behavior of the drive train. The result of analysis shows that the dynamic torsional fluctuations of the drive shaft and rear drive module (RDM) vibration are the major contributors for the high levels of vibration and noise.
Technical Paper
2014-04-01
Wei Yang, Wenku Shi, Chunxue Chen
Aiming at the abnormal vibration of driver seat of a passenger car in idle condition, vibration acceleration of engine, frame and seat rail was tested to identify vibration sources. Order tracking and spectrogram analysis indicated that the second order self-excitation of engine was the main cause. To solve the problem, semi-active controlled hydraulic engine mount with air spring of which characteristics could shift between a high dynamic stiffness and a low one was applied. Then the structure and principle of the mount with variable characteristics was introduced and control mode was analyzed. Dynamic characteristics were obtained by bench test. With sample mount applied, vibration of seat rail was tested again in multiple vehicle and engine working conditions. Dates showed that abnormal vibration in idle condition was extremely reduced and the mount could also meet the requirement of engine to dynamic stiffness in driving conditions.
Technical Paper
2014-04-01
Masashi Terada, Takashi Kondo, Yukihiro Kunitake, Kunitomo Miyahara
Abstract In automobile development, steering vibrations caused by engine excitation force and suspension vibration input from the road surface are a problem. The conventional method of reducing vibrations and thereby securing marketability has been to dispose a dynamic damper inside the steering wheel. The resonance frequency of a steering system varies for each vehicle developed (as a result of the vehicle size, the arrangement of the stiff members of the vehicle body, and the like). As a result, the individual values of dynamic dampers that are used with vehicles must be adjusted for each developed vehicle type. To address this problem, we have developed a new structure in which, rather than using a conventional dynamic damper, we disposed a floating bush on the Supplemental Restraint System (SRS) module attachment section and used the SRS module itself as the weight for the dynamic damper. In this structure, the dynamic damper weight is approximately eight times greater than the conventional weight, the vibration reduction effect is enhanced, and the effective frequency range is widened.
Technical Paper
2014-04-01
Meng Huang
A 2 DOF nonlinear dynamic model of the automotive wiper system is established. Complex eigenvalues are calculated based on the complex modal theory, and the system stability as well as its dependence on wiping velocity is analyzed. Bifurcation characteristics of frictional self-excited vibration and stick-slip vibration relative to wiping velocity are studied through numerical analysis. Research of nonlinear vibration characteristics under various wiping velocities is conducted by means of phase trajectories, Poincaré map and frequency spectrum. The pervasive stick-slip vibration during wiping is confirmed, and its temporal and spatial distributions are analyzed by way of time history and contour map. Duty ratio of stick vibration and statistics of scraping residual are introduced as quantitative indexes for wiping effect evaluation. Results indicate that the negative slop of frictional-velocity characteristic is the root cause of system instability. As the wiping velocity decreases, the vibration state transforms from periodic to quasi-periodic and then to chaos in both high and low velocity ranges.
Technical Paper
2014-04-01
Cha-Sub Lim, Eunjun Han, Chahe Apelian, David Bogema
A new approach to achieve better customer perception of overall vehicle quietness is the sound balance improvement of vehicle interior sound during driving. Interior sound is classified into 3 primary sound source shares such as engine sound relative to revolution speed, tire road noise and wind noise relative to vehicle speed. Each interior sound shares are classified using the synchronous time-domain averaging method. The sound related to revolution order of engine and auxiliaries is considered as engine sound share, tire road noise and wind noise shares are extracted by multiple coherent output power analysis. Sound balance analysis focuses on improving the relative difference in interior sound share level between the 3 primary sound sources. Virtual sound simulator which is able to represent various driving conditions and able to adjust imaginary sound share is built for several vehicles in same compact segment. Objective sound evaluation targeting the North American customer is carried out using the virtual sound simulator tool in audio lab and it is verified that overall customer perception is improved by modification of sound balance between 3 primary sound shares.
Technical Paper
2014-04-01
Nicholas Oettle, David Sims-Williams, Robert Dominy
On-road, a vehicle experiences unsteady flow conditions due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. Separated flow structures in the sideglass region of a vehicle are particularly sensitive to unsteadiness in the onset flow. These regions are also areas where strong aeroacoustic effects can exist, in a region close to the passengers of a vehicle. The resulting aeroacoustic response to unsteadiness can lead to fluctuations and modulation at frequencies that a passenger is particularly sensitive towards. Results presented by this paper combine on-road measurement campaigns using instrumented vehicles in a range of different wind environments and aeroacoustic wind tunnel tests. A new cabin noise simulation technique was developed to predict the time-varying wind noise in a vehicle using the cabin noise measured in the steady environment of the wind tunnel, and a record of the unsteady onset conditions on the road, considering each third-octave band individually.
Technical Paper
2014-04-01
Shuming Chen, Yawei Huang, Dengfeng Wang, Dengzhi Peng, Xuewei Song
This paper proposes a new method of predicting the sound absorption performance of polymer wool using artificial neural networks (ANN) model. Some important parameters of the proposed model have been adjusted to best fit the non-linear relationship between the input data and output data. What's more, the commonly used multiple non-linear regression model is built to compare with ANN model in this study. Measurements of the sound absorption coefficient of polymer wool based on transfer function method are also performed to determine the sound absorption performance according to GB/T18696. 2-2002 and ISO10534- 2: 1998 (E) standards. It is founded that predictions of the new model are in good agreement with the experiment results.
Technical Paper
2014-04-01
Weiguo Zhang, Rakesh Khurana, Mark Likich, Mac Lynch
Taguchi method is a technology to prevent quality problems at early stages of product development and product design. Parameter design method is an important part in Taguchi method which selects the best control factor level combination for the optimization of the robustness of product function against noise factors. The air induction system (AIS) provides clean air to the engine for combustion. The noise radiated from the inlet of the AIS can be of significant importance in reducing vehicle interior noise and tuning the interior sound quality. The porous duct has been introduced into the AIS to reduce the snorkel noise. It helps with both the system layout and isolation by reducing transmitted vibration. A CAE simulation procedure has been developed and validated to predict the snorkel noise of the porous ducted AIS. In this paper, Taguchi's parameter design method was utilized to optimize a porous duct design in an AIS to achieve the best snorkel noise performance. The virtual experiments based on an orthogonal array in the parameter design method were conducted by the developed simulation procedure and the optimized design was recommended.
Technical Paper
2014-04-01
Mohamed Senousy, Paul Larsen, Peiran Ding
Electric motors and generators produce vibrations and noise associated with many physical mechanisms. In this study, we look at the vibrations and noise produced by the transient electromagnetic forces on the stator of a permanent magnet motor. In the first stage, electromagnetic simulation is carried out to calculate the forces per tooth segment of the stator. The harmonic orders of the electromagnetic forces are then calculated using Fourier analysis, and forces are mapped to the mechanical harmonic analysis of the second stage. As a third stage, the vibrations of the structure are used to drive the boundary of acoustic domain to predict the noise. Finally, optimization studies are made over the complete system to improve the motor design and reduce noise. A simulation environment (ANSYS Workbench) is used to integrate a seamless workflow.
Technical Paper
2014-04-01
Pragadish Nandakumar
The fuel prices are increasing every day and so are the pollution caused by vehicles using fossil fuels. Moreover, in a car with an internal combustion engine, we get on average 25% efficiency, the other 75% is wasted, mostly through friction and heat. One important loss is the dissipation of vibration energy by shock absorbers in the vehicle suspension under the excitation of road irregularity and vehicle acceleration or deceleration. In this paper we design, manufacture and test a regenerative coil-over strut that is compact, simple in design and more economical. Since our strut is a modification of an existing strut design, it would be much more feasible to implement. We tested our prototype strut using a TATA Indica car under city road conditions. The damping characteristics and output voltage of the strut were recorded and compared with a normal coil over strut. Based on the test data, it was found that the strut was able to recover about 8-10 watts of electricity at 20kmph.
Technical Paper
2014-04-01
Shuming Chen, Dengfeng Wang
In this paper, the relationship was investigated between objective psychoacoustic parameters, A-weighted sound pressure level (SPL) and the results of the subjective evaluation by using grey relational analysis (GRA). The sounds were recorded with eight different passenger cars at four different running conditions. The sound quality indices were calculated, including loudness, sharpness, roughness, fluctuation, and A-weighted SPL. Subjective evaluation was performed by thirty subjects using rating scale method. GRA was compared with traditional correlation analysis, and the comparison shows that some hidden information which could not be found in the traditional correlation analysis was revealed. In order to know the further relationship between fluctuation and subjective evaluation, another subjective evaluation was performed by the same 30 subjects. The result demonstrates that the relationship revealed from GRA is correct. Furthermore, some measures were presented to improve the sound quality of vehicle interior noise.
Technical Paper
2014-04-01
Kambiz Jahani, Sajjad Beigmoradi, Mohsen Bayani Khaknejad
Abstract The main objective of this study is to investigate the effect of spot-weld modeling approaches on NVH virtual simulation problems. For this purpose, finite element method is considered for further simulations. The goal is to evaluate and compare results within the domain of 0 to 200 Hz by modeling spot-welds with three different element types: a rigid body constraint element (RBE), two rigid body elements with hexahedral solid element (RBE3-HEXA-RBE3) and CWELD constraint. In order to evaluate the effects, three main NVH analyses are chosen for this study. In the first place, a free-free modal analysis is performed for the BIW and trimmed body models of a D-segment saloon car in order to estimate natural frequencies and mode shapes. Afterwards, a frequency response analysis is performed to evaluate the dynamic stiffness of engine mount. Finally, a noise transfer function (NTF) simulation is carried out to calculate the sound pressure level at driver ear's location. The out coming results from each type of simulations are extracted and compared to investigate the effect of spot-weld modeling on the accuracy of FEM analyses results concerning NVH problems.
Technical Paper
2014-04-01
Kun Diao, Lijun Zhang, Dejian Meng
Abstract Brake squeal shows a significant uncertainty characteristic. In this paper, a series of bench tests were carried out to study the uncertainty of brake squeal on a multi-function brake inertia dynamometer test bench. Then based on time-frequency analysis results, a creative squeal confirmation and determination method was presented, which can show the squeal variations in the domains of time, frequency and amplitude together. An uncertainty analysis method was also established, in which the statistical parameters of squeal frequency and sound pressure level (SPL), and probability density evaluation of frequency based on Quantile-Quantile Plot (QQ plot) were given. And a judgment method of the frequency doubling was devised based on numerical multiple and occurrence concurrence, as well as the uncertainty statistical analysis method considering frequency doubling. All the methods established were applied to the uncertainty analysis of brake squeal. It was found that, both the squeal frequency and SPL are dispersed, and each squeal has its own statistical results.
Technical Paper
2014-04-01
Takahito Watanabe, Takuya Yoshimura
Abstract In performing noise control design for vehicles, there is a benefit to identifying important vibro-acoustic coupled mode. The purpose of this study is “identifying the coupled mode of a vehicle through FRF (frequency response function) measurement”. A speaker which measure the internal acoustic pressure was used as a new experimental method. An acoustic input is estimated by the fluctuation of the acoustic pressure inside the speaker box. Acoustic pressures are measured by using some microphones, the vibrations of the structure are measured by using some accelerometers. Main experiment was carried out for measure the vibro-acoustic mode. First acoustic mode was identified in about 66 Hz. And structure associated mode with this mode was identified. Hence, the vibro-acoustic mode identification was carried out.
Technical Paper
2014-04-01
Sung Young Shin, Sang Dong Lee, Bong Chul Go
Abstract In terms of the responsive quality of cars, reducing the vibration of car seats is very important, as this vibration is transmitted directly to the driver. Here, a sensitivity analysis method was used to reasonably reduce the vibration of car seats at minimal cost. A laboratory test was conducted under two excitation conditions: first, vibration in idle state; second, random vibration not exceeding 100 Hz. To determine the reliability of the laboratory test, the actual vibration in idle state was simulated in a multi-axial simulation table for the idle excitation environment of cars that are sensitive to even the smallest changes in the environment. The frequencies of interest were selected by adding the sums of frequency response functions measured at the 24 nodal points of interest under the two excitation conditions. Sensitivity factors were derived at the 24 nodal points of interest and a design modification plan with relatively large sensitivity factors was suggested to reinforce the overall rigidity of the part modules containing the points of interest.
Technical Paper
2014-04-01
Kyoung-Jin Chang, Ki Woong Jeong, Dong Chul Park
Abstract This paper describes a systematic approach to the development of a luxurious driving sound. In the first step, the luxurious sound is conceptualized through jury test, factor analysis and regression analysis. From the results, the main factors and the correlation equation for the luxurious sound are extracted. Also, customer's preference for the luxurious sound is investigated from the customer clinic. In the second step, three core axes and the detailed indices for luxurious sound are defined and quantified. These core axes are a dynamic sound character, a sound balance and a sound harmony. These core axes are also composed of detailed indices and quantified by guide lines. In the third step, each contribution of the sub-systems for sound quality is identified and the target values and methods for implementing the luxurious sound are suggested. In this process, noise path analysis and the customer's preference in each region are considered. Finally, the sound is developed by intake, exhaust and ECU tuning which have dominant contributions for the sound quality and verified with respect to each sales region.
Technical Paper
2014-04-01
Tamer Elnady, Mats Abom, Yong Yang
Exhaust noise is a major contributor to the radiated noise level of a vehicle, especially at idle. The radiated noise level has to meet a certain criteria based on regulation and consumer demand. In many cases, the problem appears after the vehicle is manufactured and the tailpipe noise measurement is performed indicating a high noise level that needs to be reduced. This paper describes one of those cases where the radiated noise level of a certain passenger car at idle was required to be reduced by 6 dB(A). The exhaust system consists of one main muffler and one auxiliary muffler. A 1D two-port model of the exhaust system including the two mufflers was built using commercial software. This model was validated against the measurement of the two-port matrix of both mufflers. The model was then used together with tailpipe noise measurements to estimate the characteristics of the source strength and impedance. Using a 1D model of the complete system, it was possible to propose several modifications for the vehicle manufacturer to choose from.
Technical Paper
2014-04-01
Meng Huang
A disc-pad system is established to study impacts of surface topography on brake squeal from the perspective of statistical analysis. Firstly, surface topographies of brake disc and pad are precisely measured on the scale of micron and are statistically analyzed with a three-dimensional evaluation system. Secondly, the finite element model of brake disc and pad without surface topographies is created and verified through component free modal tests. Thereby the valid brake squeal model for complex modal analysis is built with ABAQUS. An effective method is developed to apply interface topographies to the smooth contact model, which consequently establishes sixty brake squeal models with topographies. Thirdly, impacts of surface topography on brake squeal are studied through comparison and statistical analysis of prediction results with and without topographies. The analysis manifest that topography amplitudes and evaluation index deviations of brake pad far exceed those of the disc, indicating the surface of brake pad is relatively much rougher.
Technical Paper
2014-04-01
Guangqiang Wu, Shuyi Jin
During a car launch, the driving torque from driveline acts on brake disk, and may lead the pad to slip against the disk. Especially with slow brake pedal release, there is still brake torque applies on the disk, which will retard the rotation of disk, and under certain conditions, the disk and pad may stick again, so the reciprocated stick and slip can induce the noise and vibration, which can be transmitted to a passenger by both tactile and aural paths, this phenomenon is defined as brake groan. In this paper, we propose a nonlinear dynamics model of brake for bidirectional, and with 7 Degrees of Freedom (DOFs), and phase locus and Lyapunov Second Method are utilized to study the mechanism of groan. Time-frequency analysis method then is adopted to analyze the simulation results, meanwhile a test car is operated under corresponding conditions, and the test signals are sampled and then processed to acquire the features. Finally, the results of the simulation and those of the test are compared, and the mechanism of groan and its contributory factors are revealed.
Technical Paper
2014-04-01
Devadatta Mukutmoni, Robert Powell, L.A.Raghu Mutnuri
Flow generated acoustic sources are of significant import for automotive applications since perception of noise is a critical customer satisfaction issue. High temperature acoustic sources known as thermo-acoustics such as those occurring inside an exhaust system of a vehicle, an important subset of acoustic sources, is the subject of the investigation. In this article, we study a Rijke tube configuration that consists of a vertical and hollow cylindrical tube open at both ends where sound is generated by buoyancy driven flow as a result of a heated wire gauze placed in the bottom half of the tube. This configuration captures the essence of the thermo-acoustic phenomena and was investigated both numerically and experimentally and good agreement was observed between the two.
Technical Paper
2014-04-01
Pablo Ballesteros, Xinyu Shu, Christian Bohn
In this paper, a control approach for the active reduction of engine-induced vibrations in automotive vehicles is presented. As a controller, a discrete-time multiple input multiple output (MIMO) disturbance-observer-based state-feedback controller is designed using linear parameter-varying (LPV) gain-scheduling techniques. The use of LPV control design techniques has the advantage that the stability of the overall system is guaranteed even when the gain-scheduling parameters are changing. The control approach is validated experimentally with an active vibration control system installed in a Golf VI Variant. Two inertia-mass actuators (shakers) and two accelerometers are attached to the engine mounts. Nine frequency components are targeted in the reduction and excellent results are achieved in vehicle driving tests for constant and time-varying engine speeds.
Technical Paper
2014-04-01
Jeremie Dernotte, John Dec, Chunsheng Ji
This article presents an investigation of the sources combustion-generated noise and its measurement in HCCI engines. Two cylinder-pressure derived parameters, the Combustion Noise Level (CNL) and the Ringing Intensity (RI), that are commonly used to establish limits of acceptable operation are compared along with spectral analyses of the pressure traces. This study focuses on explaining the differences between these two parameters and on investigating the sensitivity of the CNL to the ringing/knock phenomenon, to which the human ear is quite sensitive. Then, the effects of independently varying engine operating conditions such as fueling rate, boost pressure, and speed on both the CNL and RI are studied. Results show that the CNL is not significantly affected by the high-frequency components related to the ringing/knock phenomenon. In contrast, CNL is found to be sensitive to increasing energy in the 0.4 to 2.0 kHz frequency range generated by the combustion-induced uniform pressure rise.
Technical Paper
2014-04-01
L.A.Raghu Mutnuri, Sivapalan Senthooran, Robert Powell, Zen Sugiyama, David Freed
Abstract A computational approach to evaluate rear-view mirror performance on wind noise in cars is presented in this paper. As a comfort metric at high speeds, wind noise needs to be addressed, for it dominates interior noise at mid-high frequencies. The impetus on rear-view mirror design arises from its crucial role in the flow field and the resulting pressure fluctuations on the greenhouse panels. The motivation to adopt a computational approach arises from the need to evaluate mirror designs early in vehicle design process and thus in conjunction with different vehicle shapes. The current study uses a Lattice Boltzmann method (LBM) based computational fluid dynamics(CFD) solver to predict the transient flow field and a statistical energy analysis(SEA) solver to predict interior noise contribution from the greenhouse panels. The accuracy of this computational procedure has been validated and published in the past. Realistic car geometry is chosen and the transient flow field around the vehicle resulting from mounting two different rear-view mirror designs is analyzed.
Technical Paper
2014-04-01
Kenji Torii
A technique was created to separate the contributions of combustion noise and mechanical noise to engine noise in the time domain in order to achieve efficient measures for enhancing the sound quality of combustion noise. There is an existing technique based on 1/3 octave band analysis that is known as a method for separating the contributions to engine radiation noise, but this technique cannot provide time-domain data. Therefore, the author has proposed a technique that separates engine radiation noise into combustion noise and mechanical noise in the time domain by finding the combustion noise for each cylinder and calculating its structural response function by considering its real and imaginary components. Results of analysis of actual engine radiation noise with this technique confirmed that combustion noise, which is characterized by strong pulsation, and irregular mechanical noise can be separated in the time domain with good precision. Moreover, the structural response function, combustion noise, and mechanical noise characteristics showed a valid changing trend in response to changes in cylinder pressure and structural specifications.
Technical Paper
2014-04-01
Hiroki Yamaura, Masao Ishihama, Kazuhide Togai
Engine torque profile shaping strategies have been proposed to reduce noise & vibration for passenger cars. However, it has not been sufficiently studied that feasible torque profile for vibration suppression is dependent on engine speed and target torque shape. On the other hand, combustion pressure profile shaping strategies have been proposed to reduce noise. However, there is almost no research of the quantitative evaluation of contribution of combustion pressure profile. First, the torque profile shaping was studied. Pre-compensated torque and 2-step torque were selected as typical target torque profiles. An effectiveness of vibration suppression by two torque profiles was evaluated by both drivetrain vibration model and engine torque profile model which have been established well. As a result of studying the torque profile shaping, timing of torque rise by the 2-step torque generation is delayed or advanced. Torque profile by the pre-compensation is deformed in steep change part.
Technical Paper
2014-04-01
Joe Serrano, Geoff Routledge, Norman Lo, Mark Shost, Vijay Srinivasan, Biswa Ghosh
Cylinder deactivation is a technology seeing increased automotive deployment in light of more demanding fuel economy and emissions requirements. Examples of current production systems include GM's Active Fuel Management and Chrysler's Multi-Displacement System, both of which provide one fixed level of deactivation. Dynamic Skip Fire (DSF), in which the number of fired cylinders is continuously varied to match the torque demand, offers significantly increased fuel savings over a wider operating range than the current production systems. One of the biggest challenges in implementing cylinder deactivation is developing strategies to provide acceptable Noise, Vibration and Harshness (NVH); this paper discusses those challenges and the methodologies developed. This work covers theoretical root causes; proposed metrics to quantify the NVH level; algorithmic and physical mitigation methods; and both subjective and objective evaluation results.
Viewing 211 to 240 of 8653

Filter

  • Article
    874
  • Book
    21
  • Collection
    16
  • Magazine
    252
  • Technical Paper
    6902
  • Standard
    588
  • Article
    588

Subtopics