Display:

Results

Viewing 181 to 210 of 9351
2016-04-05
Technical Paper
2016-01-0411
Yosuke Akita, Kenji Abe, Yoshihiro Osawa, Yoshitsugu Goto, Yuji Nagasawa, Noboru Sugiura, Satoshi Wakamatsu, Kyoko Kosaka
Abstract If a vehicle is left in a humid environment, the coefficient of friction between the brake pads and discs increases, generating a discomforting noise during braking called brake squeal. It is assumed that this increase in the coefficient of friction in a humid environment is the effect of moisture penetrating between the brake friction surfaces. Therefore, this paper analyzes the factors causing coefficient of friction variation with moisture between the friction surfaces by dynamic observation of these surfaces. The observation was achieved by changing the disc materials from cast iron to borosilicate glass. One side of the glass brake disc was pushed onto the brake pad and the sliding surface was observed from the opposite side by a charge coupled device (CCD) camera. First, a preliminary test was carried out in a dry state using two pad materials with different wear properties to select the appropriate pad for observing the friction surfaces.
2016-04-05
Technical Paper
2016-01-0273
Richard DeJong, Se Ge Jung, John Van Baren
Abstract Methods for conducting accelerated vibration fatigue testing of structures, such as MIL-STD-810G, allow for the non-linear scaling of the test time with the inverse of the rms vibration amplitude based on the slope of the material S-N curve obtained from cyclic fatigue tests. The Fatigue Damage Spectrum (FDS) is used as a method to allow for different level scalings at different frequencies in a broadband vibration environment using the relative responses of resonances in the structure. A recent development in industry has been to mix impulses with random excitations to increase the vibration peak levels (as measured by the kurtosis), thereby accelerating the fatigue even more than would occur with a Gaussian excitation. This paper presents results from a study to determine the conditions under which high kurtosis, impulsive excitations actually produce high kurtosis responses in structural resonances thus increasing the level of the FDS.
2016-04-05
Technical Paper
2016-01-0275
Frédéric Kihm, Andrew Halfpenny, Kurt Munson
Abstract Ground vehicle components are designed to withstand the real operational conditions they will experience during their service life. Vibration tests are performed to qualify their endurance. In order to replicate the same failure mechanism as in real conditions, the test specification must be representative of the service loads. The accelerated testing method, based on fatigue damage spectra (FDS), is a process for deriving a synthesized power spectral density (PSD) representing a random stationary Gaussian excitation and applied over a reduced duration. In real life, however, it is common that service loading includes non-Gaussian excitations. The consequences of not using a representative test signal during product validation testing are a higher field failure rate and added warranty costs. The objective of this paper is to describe a method for synthesizing a PSD test specification with a given kurtosis value, which represents a nonstationary non-Gaussian signal.
2016-04-05
Journal Article
2016-01-1122
Hyungsouk Kang, TaeYoung Chung, Hyeongcheol Lee, Hyungbin Ihm
Abstract Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
2016-04-05
Technical Paper
2016-01-1124
Luca Castellazzi, Andrea Tonoli, Nicola Amati, Alessandro Piu, Enrico Galliera
Abstract The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
2016-04-05
Technical Paper
2016-01-1128
Bo Peng, Tao Liu, Sifa Zheng, Xiaomin Lian
Abstract Neutral-idle strategy has been applied for years to improve the fuel consumption of automatic transmission cars. The updated demand is the use of expanded slipping control strategy for further improvement of the transmission efficiency and response speed. However, one major drawback of the continuous slipping clutches is the high tendency to produce shudder or low frequency variation. In this research, a special neutral-idle shudder phenomenon is presented. This special shudder is not only related to slipping clutches but also related to the vibration and structure of the powertrain system. Simulations and experiments are conducted to give an insight view of this phenomenon. The analysis reveals that this special shudder is caused by both torsional vibration of the driveline and rigid-body vibration of the powertrain system. A positive feedback loop between those two kinds of vibrations leads to this special neutral-idle shudder.
2016-04-05
Journal Article
2016-01-0639
Brian C. Kaul, Benjamin Lawler, Akram Zahdeh
Abstract Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
2016-04-05
Journal Article
2016-01-0731
Gen Shibata, Daisuke Nakayama, Yuki Okamoto, Hideyuki Ogawa
Abstract Reductions in combustion noise are necessary in high load diesel engine operation and multiple fuel injections can achieve this with the resulting reductions in the maximum rate of pressure rise. In 2014, Dr. Fuyuto reported the phenomenon that the combustion noise produced in the first combustion can be reduced by the combustion noise of the second fuel injection, and this has been named “Noise Cancelling Spike Combustion (NCS combustion)”. To investigate more details of NCS combustion, the effects of timings and heating values of the first and second heat releases on the reduction of overall combustion noise are investigated in this paper. The engine employed in the research here is a supercharged, single cylinder DI diesel engine with a high pressure common rail fuel injection system.
2016-04-05
Journal Article
2016-01-0774
Martin Wissink, Rolf Reitz
Abstract Low-temperature combustion (LTC) strategies have been an active area of research due to their ability to achieve high thermal efficiency while avoiding the formation of NOx and particulate matter. One of the largest challenges with LTC is the relative lack of authority over the heat release rate profile, which, depending on the particular injection strategy, either limits the maximum attainable load, or creates a tradeoff between noise and efficiency at high load conditions. We have shown previously that control over heat release can be dramatically improved through a combination of reactivity stratification in the premixed charge and a diffusion-limited injection that occurs after the conclusion of the low-temperature heat release, in a strategy called direct dual fuel stratification (DDFS).
2016-04-05
Journal Article
2016-01-1120
Dong Guo, Quan Shi, Peng Yi
Abstract Gear drives are widely used in the transmission of many types of vehicles and various gear faults were reported to have different effects on the performance of transmission systems. The psychoacoustics metrics, which are used to represent the human hearing property, are objective indicators of product sound quality performance. Therefore, psychoacoustic analysis of gear noise with gear faults needs to be conducted. In this paper, different types of gear faults are summarized, and two of them, including wear and misalignment, are studied separately in the psychoacoustic analysis of the synthesized noise signal of an example gearbox. The gear noise spectra for the cases with different gear faults are synthesized based on the findings of previous publications, where it shows that the two gear faults can either increase the amplitude at the harmonics of the gear mesh frequency or cause the sideband responses.
2016-04-05
Journal Article
2016-01-1125
Hiromichi Tsuji, Kimihiko Nakano
Abstract This paper presents a study of experimental transfer path contribution with the estimation technique of the projected operational force under CVT clutch lockup operational condition. Since transfer path analysis is conducted with respect to the evaluation location, the forces applied onto the substructures are, therefore, also required to estimate the coherent operational forces. In order to estimate the forces, the coherent inertance matrix, which is the projection of the inertance matrix onto the subspace with respect to the evaluation location, is estimated without measuring it directly. The acceleration responses at the connections of the passive substructure are measured by the excitation at the evaluation location with reciprocity. The proposed technique decomposes the acceleration responses into the output and input element vectors on the subspace. With those vectors, the coherent full inertance matrix considering cross coupling effects is constructed.
2016-04-05
Journal Article
2016-01-1304
Tadayoshi Fukushima, Hitoshi Takagi, Toshio Enomoto, Hiroyuki Sawada, Tomoyuki Kaneda
Abstract Interior noise caused by exterior air flow, or wind noise, is one of the noise-and-vibration phenomena for which a systematic simulation method has been desired for enabling their prediction. One of the main difficulties in simulating wind noise is that, unlike most other noises from the engine or road input, wind noise has not one but two different types of sources, namely, convective and acoustic ones. Therefore, in order to synthesize the interior sound pressure level (SPL), the body sensitivities (interior SPL/outer source level) for both types of sources have to be considered. In particular, sensitivity to the convective input has not been well understood, and hence it has not been determined. Moreover, the high-frequency nature of wind noise (e.g., the main energy range extends up to 4000 Hz) has limited the effective application of CAE for determining body sensitivities, for example, from the side window glass to the occupants’ ears.
2016-04-05
Journal Article
2016-01-1307
Yuntao Cao, Dengfeng Wang, Tonghang Zhao, Xining Liu, Yulei He, Hangsheng Hou
Abstract A vehicle vibration issue emerged for a hybrid prototype during low speed driving in EV mode. This work is focused on the effort to identify the root cause and resolve the issue. The endeavor begins by performing a motor test in moderate acceleration with an imposed constant torque load. All relevant information is simultaneously recorded, including vehicle speed, vibration of motor structure and seat track, motor rpm, voltage and current signals, etc. Then analyses are carried out to strive for a better understanding of the vibration characteristics and identify its mechanism. It is found that the torque ripple from the driving motor is the root cause of the low speed vehicle vibration in EV mode, and the torque ripple is found to be induced by the current distortion resulted from the current sensor drift and electromagnetic interference due to high current signals.
2016-04-05
Journal Article
2016-01-1543
Donald F. Tandy, Scott Hanba, Robert Pascarella
Abstract One important part of the vehicle design process is suspension design and tuning. This is typically performed by design engineers, experienced expert evaluators, and assistance from vehicle dynamics engineers and their computer simulation tools. Automotive suspensions have two primary functions: passenger and cargo isolation and vehicle control. Suspension design, kinematics, compliance, and damping, play a key role in those primary functions and impact a vehicles ride, handling, steering, and braking dynamics. The development and tuning of a vehicle kinematics, compliance, and damping characteristic is done by expert evaluators who perform a variety of on road evaluations under different loading configurations and on a variety of road surfaces. This “tuning” is done with a focus on meeting certain target characteristics for ride, handling, and steering One part of this process is the development and tuning of the damping characteristics of the shock absorbers.
2016-04-05
Journal Article
2016-01-1595
Haibo Wu, Jiangbin Zhou, Qian Chen, Gongwen Liu, Chaoqun Qian
Abstract In this paper we present the work which was done at Shanghai-VW for using computational aero-acoustic (CAA) simulation in the vehicle development process to assess and improve the buffeting behavior of a vehicle when the rear side window is open. In the first step, a methodology was established and validated against wind tunnel tests using a Sedan. The methodology consists of a calibration of the CAA model to represent the properties of the cabin interior of the real car in terms of damping, wall compliance and leakage followed by CAA simulations of the full vehicle at different wind speeds to obtain the transient flow field around the exterior shape and inside the passenger compartment. The interior noise spectra are directly calculated from the transient pressure inside the cabin.
2016-04-05
Journal Article
2016-01-0476
Yongchang Du, Yingping Lv, Yujian Wang, Pu Gao
Abstract Brake squeal is a complex dynamics instability issue for automobile industry. Closed-loop coupling model deals with brake squeal from a perspective of structural instability. Friction characteristics between pads and disc rotor play important roles. In this paper, a closed-loop coupling model which incorporates negative friction-velocity slope is presented. Different from other existing models where the interface nodes are coupled through assumed springs, they are connected directly in the presented model. Negative friction slope is taken into account. Relationship between nodes’ frictional forces, relative speeds and brake pressure under equilibrant sliding and vibrating states is analysed. Then repeated nodal coordinate elimination and substructures’ modal coordinate space transformation of system dynamic equation are performed. It shows that the negative friction slope leads to negative damping items in dynamic equation of system.
2016-04-05
Technical Paper
2016-01-0218
Balashunmuganathan Vasanth, Kumar Sathish, Mayur Sah
In an automotive air conditioning, aero-acoustic noise originating from HVAC (Heating Ventilation and Air Conditioning) unit is one of the major concerns for the customer satisfaction. “Fan blower excessive noise” is one among the top issues for all automotive manufacturers. In this paper, a 3D computational analysis is carried out for a passenger car HVAC unit to predict the noise originated from the HVAC unit. HVAC modeling is done using uni graphics and ANSA and the analysis is carried out using the commercial CFD software STAR CCM+. The inputs for the analysis are the airflow at HVAC Inlet, blower speed and the pressure drop characteristics of evaporator, filter and heater core. The computational model is done by considering the blower region as MRF (Moving Reference Frame) and the air flow is considered incompressible. DES (Detached Eddy Simulation) model is used to resolve the eddies generated by the turbulent flow.
2016-04-05
Technical Paper
2016-01-1361
Abhijit Londhe, Vivek Yadav, SenthilKumar Kannaiyan, Krishnan Karthikeyan, Ganeshan Reddy
Abstract Reducing the vibrations in the drivetrain is one of the prime necessities in today’s automobiles from NVH and strength perspectives. The virtual drivetrain simulation methodology to predict the driveline induced excitations transmitted to vehicle is developed for three cylinder engine using Adams View. The obtained mount forces from Adams dynamic simulation is correlated with the measured test data at vehicle level and the good correlation is observed. Paper discusses on the methodology of virtual drivetrain using Adams view and the correlation of measured dynamic mount forces with simulation results. This correlation gives the confidence that the developed simulation methodology can be used to get the mount forces of different orders from drivetrain.
2016-04-05
Journal Article
2016-01-1310
Yitian Zhang, David W. Herrin, T. Wu, Xin Hua
Abstract Prior research on assessing multiple inlet and outlet mufflers is limited, and only recently have researchers begun to consider suitable metrics for multiple inlet and outlet mufflers. In this paper, transmission loss and insertion loss are defined for multiple inlet and outlet mufflers using a superposition method that can be extended to any m-inlet n-outlet muffler. Transmission loss is determined assuming that the sources and terminations are anechoic. On the other hand, insertion loss considers reflections. For both metrics, the amplitude and phase relationship between the sources should be known a priori. This paper explains both metrics, and measurement of transmission and insertion loss are demonstrated for a 2-inlet 2-outlet muffler with good agreement.
2016-04-01
WIP Standard
J1192
This standard established the requirements and test procedures for the operational life, corrosion resistence, and sound pressure level of motorcycle electric and electro pnuematic audible warning deveices. Test equipment, environment, and procedures are specified.
2016-03-31
Article
Ford's 6.7-L diesel V8 has yet to obtain certified power ratings, but it's expected to exceed 900 lbft of torque, necessitating an upgrade of the company's dyno sleds to enable SAE J2807 vehicle tow testing.
2016-03-27
Article
Self-driving car project CEO John Krafcik discussed Google's work underway toward fully autonomous vehicles, at a recent NY forum. First likely market: the elderly and impaired.
2016-03-25
WIP Standard
AIR5661A
This report provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
2016-03-25
WIP Standard
AS8017D
This SAE Aerospace Standard (AS) establishes minimum performance standards for new equipment anticollision light systems.
2016-03-24
Article
In this Q&A, Toyota Technical Center President Seiya Nakao discusses future mobility development, technical innovation, Toyota's recent reorganization, and the ever-changing automotive engineering profession.
2016-03-14
Article
As airlines strive to move more and more people faster and faster, the talk of a future supersonic aircraft for commercial purposes is getting louder and louder.
2016-03-14
Journal Article
2016-01-9108
Ji Xu, Guohua Sun, Tao Feng, Mingfeng Li, Teik Lim
Abstract Active noise control systems have been gaining popularity in the last couple of decades, due to the deficiencies in passive noise abatement techniques. In the future, a novel combination of passive and active noise control techniques may be applied more widely, to better control the interior sound quality of vehicles. In order to maximize the effectiveness of this combined approach, smarter algorithms will be needed for active noise control systems. These algorithms will have to be computationally efficient, with high stability and convergence rates. This will be necessary in order to accurately predict and control the interior noise response of a vehicle. In this study, a critical review of the filtered-x least mean square (FXLMS) algorithm and several other newly proposed algorithms for the active control of vehicle powertrain noise, is performed. The analysis examines the salient features of each algorithm, and compares their system performance.
2016-03-07
Article
The POSIWIRE sensor WS21 from ASM Sensors is designed for measuring ranges up to 20,000 mm.
2016-03-06
Article
Cambustion’s DPG, an automated particle filter testing system, can be used to load diesel particulate filters (DPFs) and now gasoline particulate filters (GPFs) with ash over a matter of hours, the company claims. This is a new application of the DPG for studying the effects of ash build-up in particulate filters.
2016-03-04
Article
A solution from Spirent Communications will help reduce the development time and cost of automotive Ethernet/BroadR-Reach systems.
Viewing 181 to 210 of 9351

Filter

Subtopics