Display:

Results

Viewing 181 to 210 of 8657
Technical Paper
2014-04-01
Manchi Venkateswara Rao, Jos Frank, Mohit Kohli
Abstract Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle. Effects of addition of mass on various locations of suspension and stiffness change of suspension bushings are studied.
Technical Paper
2014-04-01
Gang Tang, Jinning Li, Chao Ding, Yunqing Zhang
Abstract This paper describes a simplified model to identify sprung mass using golden section method, the model treats the unsprung mass vertical acceleration as input and the sprung mass vertical acceleration as output, which can avoid the nonlinear influence of trye. Unsprung mass can be also calculated by axle load and the identified sprung mass. This study carries out road test on the vehicle ride comfort and takes a scheme that the group of 20 km/h is used to identify sprung mass and the group of 80 km/h is used to verify the identification result. The similarity of the results from the simulation and experiments performed are, for the sprung mass, 98.59%. A conclusion can be drawn that the simple method to measure the sprung mass in the suspension systems in used vehicles, such as the vehicle shown here, is useful, simple and has sufficient precision.
Technical Paper
2014-04-01
HakSon Han, ChulMin Park, JeongHoi Heo, Sang Kyu Kang
Abstract In order to achieve the proper automobile interior sound, the tailpipe noise of the exhaust system must be considered as a main contributor. This paper describes a study of the achievement of dynamic sound quality through exhaust system design. Firstly, we determined the vehicle's interior sound quality and established a target sound using a subjective assessment of 10 benchmark vehicles. The exhaust noise target is determined by means of transfer path analysis focusing on the noise source and how it's impacted by the muffler design. The exhaust system is commonly modeled as a combination of source strength and impedance. We obtained the source character by the wave decomposition method using two microphones and six loads ultimately leading to an optimized design of the inner muffler structure. Based on this study, we achieved dynamic interior sound and improved exhaust system performance.
Technical Paper
2014-04-01
Kambiz Jahani, Sajjad Beigmoradi, Mohsen Bayani Khaknejad
Abstract The main objective of this study is to investigate the effect of spot-weld modeling approaches on NVH virtual simulation problems. For this purpose, finite element method is considered for further simulations. The goal is to evaluate and compare results within the domain of 0 to 200 Hz by modeling spot-welds with three different element types: a rigid body constraint element (RBE), two rigid body elements with hexahedral solid element (RBE3-HEXA-RBE3) and CWELD constraint. In order to evaluate the effects, three main NVH analyses are chosen for this study. In the first place, a free-free modal analysis is performed for the BIW and trimmed body models of a D-segment saloon car in order to estimate natural frequencies and mode shapes. Afterwards, a frequency response analysis is performed to evaluate the dynamic stiffness of engine mount. Finally, a noise transfer function (NTF) simulation is carried out to calculate the sound pressure level at driver ear's location. The out coming results from each type of simulations are extracted and compared to investigate the effect of spot-weld modeling on the accuracy of FEM analyses results concerning NVH problems.
Technical Paper
2014-04-01
Kyoung-Jin Chang, Ki Woong Jeong, Dong Chul Park
Abstract This paper describes a systematic approach to the development of a luxurious driving sound. In the first step, the luxurious sound is conceptualized through jury test, factor analysis and regression analysis. From the results, the main factors and the correlation equation for the luxurious sound are extracted. Also, customer's preference for the luxurious sound is investigated from the customer clinic. In the second step, three core axes and the detailed indices for luxurious sound are defined and quantified. These core axes are a dynamic sound character, a sound balance and a sound harmony. These core axes are also composed of detailed indices and quantified by guide lines. In the third step, each contribution of the sub-systems for sound quality is identified and the target values and methods for implementing the luxurious sound are suggested. In this process, noise path analysis and the customer's preference in each region are considered. Finally, the sound is developed by intake, exhaust and ECU tuning which have dominant contributions for the sound quality and verified with respect to each sales region.
Technical Paper
2014-04-01
Jin-Seok Hong, Hyung-Seok Kook, Kang-Duck Ih, Hyoung-Gun Kim
Abstract Fluctuation in the sound pressure level of the interior noise of an on-road vehicle is always caused by unpredictable factors such as wind gusts, traffic, roadside obstacles, and changing drive-by-drive conditions, and is hence, not reproducible in nature. Since the human brain is known to be more sensitive to noise that is amplitude-modulated than noise at a steady level [1], it is important to evaluate and improve the NVH performance of a vehicle in terms of the fluctuating interior noise likely to be experienced by drivers or users. To this end, an evaluation system was developed as part of this study, the details of which are presented in this paper. The system is composed of hardware for database storage and replay of sounds, and software for synthesizing the noise signals. For given wind tunnel test results, the evaluation system yields a wind noise model that can synthesize wind noise signals for any wind scenario. Additionally, the road and engine noise components can be extracted from proving ground or real road tests.
Technical Paper
2014-04-01
Takahito Watanabe, Takuya Yoshimura
Abstract In performing noise control design for vehicles, there is a benefit to identifying important vibro-acoustic coupled mode. The purpose of this study is “identifying the coupled mode of a vehicle through FRF (frequency response function) measurement”. A speaker which measure the internal acoustic pressure was used as a new experimental method. An acoustic input is estimated by the fluctuation of the acoustic pressure inside the speaker box. Acoustic pressures are measured by using some microphones, the vibrations of the structure are measured by using some accelerometers. Main experiment was carried out for measure the vibro-acoustic mode. First acoustic mode was identified in about 66 Hz. And structure associated mode with this mode was identified. Hence, the vibro-acoustic mode identification was carried out.
Technical Paper
2014-04-01
Sung Young Shin, Sang Dong Lee, Bong Chul Go
Abstract In terms of the responsive quality of cars, reducing the vibration of car seats is very important, as this vibration is transmitted directly to the driver. Here, a sensitivity analysis method was used to reasonably reduce the vibration of car seats at minimal cost. A laboratory test was conducted under two excitation conditions: first, vibration in idle state; second, random vibration not exceeding 100 Hz. To determine the reliability of the laboratory test, the actual vibration in idle state was simulated in a multi-axial simulation table for the idle excitation environment of cars that are sensitive to even the smallest changes in the environment. The frequencies of interest were selected by adding the sums of frequency response functions measured at the 24 nodal points of interest under the two excitation conditions. Sensitivity factors were derived at the 24 nodal points of interest and a design modification plan with relatively large sensitivity factors was suggested to reinforce the overall rigidity of the part modules containing the points of interest.
Technical Paper
2014-04-01
John Morello
Abstract As automotive and commercial vehicle OEM's continue their quest to reduce cost, product selection, quality, and reliability must be maintained. On-engine and wheel located connection systems create the greatest challenges due to the extreme levels of vibration. In the past, devices were fewer, and there where less direct connects in high vibration locations (Engine/ wheel sensors, electronic controllers, fuel injectors). Instead, small wire harnesses (“pigtails”) were commonly used. These pigtails can dampen the effect of the environment which includes mild to severe vibration by keeping the environmental effect away from the electrical connection contact point. Electrically connecting directly to the device creates new challenges in the connection system with the increased threat of fretting corrosion. Suppliers supporting OEM's are attempting to meet these direct connect requirements with lubrication, precious metal plating, and high contact force contacts. Some are more effective than others, and all have their drawbacks.
Technical Paper
2014-04-01
Xingyu Liang, Kang Sun, Yuesen Wang, Gequn Shu, Lin Tang, Lei Ling, Xu Wang
Abstract Like outside scenery, the car interior noise and road condition will affect the driver's mental state when driving. In order to explore the influence of external visual and auditory factors on the driver's mood in the driving process based on research of traffic soundscape, this paper has selected four backbone roads of Tianjin city (China) to test and drive a gasoline passenger vehicle at different speeds. Near Acoustic Holographic was used to scan interior acoustic field distribution, while the tracking shot of the driver's location was recorded by a Sony camera. People with different characteristics were invited to watch the video and completed a self-designed survey questionnaire. The external factors affecting the driver's mood were explored by analyzing all these data. After the investigation, we found that the sound field distribution inside the car could be affected directly and significantly by the opening and closing the car window when driving; in the case of keeping the window closed, the acoustic characteristics of the car cabin was relatively stable; and the visual impact factor of the driver's mood is mainly related to the traffic congestion degree and the construction quality of road surface, whereas the road appearance and aesthetics, which people usually concern about have very little influence.
Technical Paper
2014-04-01
Ornella Chiavola, Giancarlo Chiatti, Erasmo Recco
Abstract Many studies have demonstrated that an efficient control of the combustion process is crucial in order to comply with increasingly emerging Diesel emission standards and demanding for reduced fuel consumption. Methodologies based on real-time techniques are imperative and even if newly sensors will be available in the near future for on-board installation inside the cylinder, non intrusive measurements are still considered very attractive. This paper presents an experimental activity devoted to analyze the noise emission from a small displacement two-cylinder Diesel engine equipped by HPCR (high pressure common rail) fuel injection system. The signals acquired during stationary operation of the engine are analyzed and processed in order to highlight the different sources contributing to the overall emission. Particular attention is devoted to the specific samples of the signal that are mainly caused by the combustion process in order to extract the combustion contribution. The relationship between such a noise contribution and the in-cylinder pressure development during the combustion process is analyzed with the final aim of developing an algorithm in which the engine acoustic emission is used to compute key parameters able to fully characterize the pattern of the pressure development during the combustion process.
Technical Paper
2014-04-01
Fred G. Mendonca, Terence Connelly, Satish Bonthu, Philip Shorter
Abstract The interior noise in a vehicle that is due to flow over the exterior of the vehicle is often referred to as ‘windnoise’. In order to predict interior windnoise it is necessary to characterize the fluctuating surface pressures on the exterior of the vehicle along with vibro-acoustic transmission to the vehicle interior. For example, for greenhouse sources, flow over the A-pillar and side-view mirror typically induces both turbulence and local aeroacoustic sources which then excite the glass, and window seals. These components then transmit noise and vibration to the vehicle interior. Previous studies by the authors have demonstrated validated CFD (Computational Fluid Dynamics) techniques which give insight into the flow-noise source mechanisms. The studies also made use of post-processing based on temporal and spatial Fourier analysis in order to quantify the amount of energy in the flow at convective and acoustic wavenumbers. In the present study, the previously validated transient CFD techniques are used to describe sources that are input to frequency-based vibro-acoustic methods in order to predict interior noise.
Technical Paper
2014-04-01
Hangsheng Hou
Abstract When a window opens to provide the occupant with fresh air flow while driving, wind throb problems may develop along with it. This work focuses on an analytical approach to address the wind throb issue for passenger vehicles when a front window or sunroof is open. The first case of this paper pertains to the front window throb issue for the current Ford Escape. Early in a program stage, CAA (Computational Aeroacoustics) analysis predicted that the wind throb level exceeded the program wind throb target. When a prototype vehicle became available, the wind tunnel test confirmed the much earlier analytical result. In an attempt to resolve this issue, the efforts focused on a design proposal to implement a wind spoiler on the side mirror sail, with the spoiler dimension only 6 millimeters in height. This work showed that the full vehicle CAA analysis could capture the impact of this tiny geometry variation on the wind throb level inside the vehicle cabin. The independent wind tunnel effort came to the same conclusion, and the difference between the analysis and testing is only about 1 dB.
Technical Paper
2014-04-01
L.A.Raghu Mutnuri, Sivapalan Senthooran, Robert Powell, Zen Sugiyama, David Freed
Abstract A computational approach to evaluate rear-view mirror performance on wind noise in cars is presented in this paper. As a comfort metric at high speeds, wind noise needs to be addressed, for it dominates interior noise at mid-high frequencies. The impetus on rear-view mirror design arises from its crucial role in the flow field and the resulting pressure fluctuations on the greenhouse panels. The motivation to adopt a computational approach arises from the need to evaluate mirror designs early in vehicle design process and thus in conjunction with different vehicle shapes. The current study uses a Lattice Boltzmann method (LBM) based computational fluid dynamics(CFD) solver to predict the transient flow field and a statistical energy analysis(SEA) solver to predict interior noise contribution from the greenhouse panels. The accuracy of this computational procedure has been validated and published in the past. Realistic car geometry is chosen and the transient flow field around the vehicle resulting from mounting two different rear-view mirror designs is analyzed.
Technical Paper
2014-04-01
Kenji Yoshida, Junichi Semura, Itsuhei Kohri, Yoshihiro Kato
Abstract This study investigates the reduction of the Blade Passing Frequency (BPF) noise radiated from an automotive engine cooling fans, especially in case of the fan with an eccentric shroud. In recent years, with the increase of HV and EV, noise reduction demand been increased. Therefore it is necessary to reduce engine cooling fan noise. In addition, as a vehicle trend, engine rooms have diminished due to expansion of passenger rooms. As a result, since the space for engine cooling fans need to be small. In this situation, shroud shapes have become complicated and non-axial symmetric (eccentric). Generally, the noise of fan with an eccentric shroud becomes worse especially for BPF noise. So it is necessary to reduce the fan BPF noise. The purposes of this paper is to find sound sources of the BPF noise by measuring sound intensity and to analyze the flow structure around the blade by Computational Fluid Dynamics (CFD). From the present results, suggest a design concept of the shroud shape to reduce the fan BPF noise is suggested.
Technical Paper
2014-04-01
Gihwan Kim, Chi-Hoon Choi, You Sung Moon, Yong Sun (Steven) Jin
Abstract The main contribution of this paper is to employ a sound and vibration theory in order to develop a light and cost effective plastic intercooler pipe. The intercooler pipe was composed of two rubber hoses and one aluminum pipe mounted between an ACV (Air Control Valve) and an intercooler outlet. The engineering design concept is to incorporate low-vibration type bellows and an impedance-mismatched center pipe, which replaces the rubber hoses and aluminum pipe respectively. The bellows were designed to adapt powertrain movement for high vibration transmission loss to the intercooler outlet. Also, the impedance-mismatched center pipe was implemented to increase reflected wave by using relatively higher modulus than bellows part and applying a SeCo (Sequential Coextrusion) processing method.
Technical Paper
2014-04-01
Kwang-Ho Oh, Won Hee Han, Jun-Ho Jang, Yong-Choo Tho, Hak Hyun Kim
Abstract Light weighting is a critical objective in the automotive industry to improve fuel efficiency. But when redesigning parts for light weight, by changing from metal to plastic, the resulting design gives NVH issues due to differences in part mass and material stiffness. Many parts were not converted from metal to plastic because of NVH issues that could not be solved. Many engine parts such as cylinder head cover, air intake manifold, oil pan and etc. previously made of metal have since long been replaced with plastic. But timing chain cover has not been replaced because of the aforementioned issue. Sealing performance due to the dynamic characteristics of the application is another challenging factor. In this paper, the key aspects of the plastic timing chain cover as well as its advantage are presented.
Technical Paper
2014-04-01
Shuming Chen, Dengzhi Peng, Dengfeng Wang
Abstract Automobile cabin acoustical comfort is one of the main features that may attract customers to purchase a new car. The acoustic cavity mode of the car has an effect on the acoustical comfort. To identify the factors affecting computing accuracy of the acoustic mode, three different element type and six different element size acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different element type models are meshed in three different ways, tetrahedral elements, hexahedral elements and node coupling tetrahedral and hexahedral elements (tetra-hexahedral elements). The six different element size models are meshed with hexahedral element varies from 50mm to 75mm. Modal analysis test of the passenger car is conducted using loudspeaker excitation to identify the compartment cavity modes. All the acoustic cavity models are coupled with the structure model respectively, the cavity modes are calculated with structural-acoustic coupling model.
Technical Paper
2014-04-01
V. Jadon, G. Agawane, A. Baghel, Venkatesham Balide, R. Banerjee, A. Getta, H. Viswanathan, A. Awasthi
Abstract With significant decrease in the background noise in present day automobiles, liquid slosh noise from an automotive fuel tank is considered as a major irritant during acceleration and deceleration. All major international OEMs and their suppliers try to reduce sloshing noise by various design modifications in the fuel tank. However, most major activities reported in open literature are primarily based on performing various CAE and experimental studies in isolation. However, noise generation and its propagation is a multiphysics phenomenon, where fluid mechanics due to liquid sloshing affects structural behaviour of the fuel tank and its mountings which in turn affects noise generation and propagation. In the present study a multiphysics approach to noise generation has been used to predict liquid sloshing noise from a rectangular tank. Computational Fluid dynamics (CFD), Finite Element Analysis (FEA) and Boundary Element Method (BEM) simulation studies have been performed in a semi-coupled manner to predict noise.
Technical Paper
2014-04-01
Prasad Kumbhar, Ning Li, Peijun Xu, James Yang
In vehicle driving environment, the driver is subjected to the vibrations in horizontal, vertical, and fore-aft directions. The human body is very much sensitive to whole body vibration and this vibration transmission to the body depends upon various factors including road irregularities, vehicle suspension, vehicle dynamics, tires, seat design and the human body's properties. The seat design plays a vital role in the vibration isolation as it is directly in contact with human body. Vibration isolation properties of a seat depend upon its dynamic parameters which include spring stiffness and damping of seat suspension and cushion. In this paper, an optimization-based method is used to determine the optimal seat dynamic parameters for seat suspension, and cushion based on minimizing occupant's body fatigue (occupant body absorbed power). A 14-degree of freedom (DOF) multibody biodynamic human model in 2D is selected from literature to assess three types of seat arrangements. The human model has total mass of 71.32 kg with 5 body segments.
Technical Paper
2014-04-01
Jong Ho Lee
Abstract Since vehicle NVH reduction technology has improved dramatically, buzz, squeak and rattle (hereafter referred to as “BSR”) noise quantification from interior and exterior of the vehicle becomes an important factor to measure the quality of the vehicle. (The cost rate of BSR noise claims take around 10-15%, moreover BSR noise negatively affects customers to purchase vehicles.) Therefore, a research of BSR evaluation comes to the fore to make a premium car. In this paper, we would like to introduce the development of a vehicle excitation test mode, the full-vehicle BSR test system, and a sound acoustic camera to detect BSR noise. The test profiles were correlated with various road severities such as the domestic field test sites including 5,000km cross-country off road, 19 test tracks for BSR in R&D test center, and quality test tracks in domestic factories. These test modes were classified into 4 levels (Low-Normal-High-Crazy) by judging degrees of GRMS values. The full-vehicle test system can reproduce various field road profiles of the BSR for chassis parts, interior, and exterior for temperatures of −40∼60°C.
Technical Paper
2014-04-01
Li Yan, Weikang Jiang, Jiangqi Zhou
Abstract Sound quality of vehicle interior noise affects passenger comfort. In order to improve the sound quality of a micro commercial vehicle, the vehicle interior noise under different conditions such as idle, constant speeds and accelerating is recorded by using artificial head with dual microphones. The sound quality of recorded noise is evaluated in both objective and subjective ways. Physical parameters of interior noise are calculated objectively, and annoyance score is analyzed subjectively using paired-comparison method. According to the regression analyzing of the annoyance score and the physical parameters, an objective evaluation parameter of the sound quality is employed. To analyze the vehicle body panel contribution to interior noise sound quality, the location and spectrum characteristics of major panel emission noise sources are identified based on partial singular valued decomposition (PSVD) method. By investigating the contribution of each noise sources to the sound quality evaluation formula, the dominant interior noise source is determined.
Technical Paper
2014-04-01
Eric Frank, Peter Jacobsen
Abstract As the demand for Sound Quality improvements in vehicles continues to grow, robust analysis methods must be established to clearly represent end-user perception. For vehicle sounds which are tonal by nature, such as transmission or axle whine, the common practice of many vehicle manufacturers and suppliers is to subjectively rate the performance of a given part for acceptance on a scale of one to ten. The polar opposite of this is to measure data and use the peak of the fundamental or harmonic orders as an objective assessment. Both of these quantifications are problematic in that the former is purely subjective and the latter does not account for the presence of masking noise which has a profound impact on a driver's assessment of such noises. This paper presents the methodology and results of a study in which tonal noises in the presence of various level of masking noise were presented to a group of jurors in a controlled environment. Their subjective ratings were collected and correlated to noise and vibration metrics.
Technical Paper
2014-04-01
Adarsh Venkata Padmanabhan, Hariram Ravichandran, Lokendra Pavan Kumar Pappala, Rangaraj Ramanan Durai
Abstract This paper will discuss information extraction from sound signals obtained using acoustic sensors which are strategically placed on the automotive body. The sound signal obtained contains useful information such as vehicle and road surface characteristics. The aforementioned information was spread out at different frequencies in the spectral distribution of the signal. Well defined filters for the corresponding frequency bands were used to isolate these characteristics and patterns pertaining to the identified useful information from the signal. The obtained information can be used as inputs for systems such as vehicle safety systems, power train systems and NVH (Noise, Vibration and Harshness) systems.
Technical Paper
2014-04-01
Julie Blumreiter, Chris Edwards
Abstract There is significant motivation to extend the operating range of naturally aspirated HCCI combustion to high load (8-12 bar IMEP) to attain a combustion strategy with the efficiency benefits of HCCI but without the lost power density of a lean or highly diluted charge. Currently, the high-load limit of HCCI combustion is imposed by a phenomenon commonly known as ringing. Ringing results when the kinetically-driven autoignited combustion process proceeds in such a way as to form strong pressure waves which reverberate in the engine. Inhomogeneities and gradients in mixture reactivity lead certain regions to react ahead of others, and as a result, coupling can occur between a pressure wave and the reaction front. This paper seeks first to sort several related but distinct issues that impose the high load limit: ringing, engine damage, peak in-cylinder pressure, peak rate of pressure rise, and engine noise. The fundamental gasdynamics underlying the upper load limit for premixed, autoignited engines are explored and elucidated with a quasi-1D reacting compressible flow model.
Technical Paper
2014-04-01
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Heeran Lee, Dong Gyun Kim, Cheol Pyo Hong
Abstract Vibration is both a source of discomfort and a possible risk to human health. There have been numerous studies and knowledge exists regarding the vibrational behavior of vehicle seats on adult human occupants. Children are more and more becoming regular passengers in the vehicle. However, very little knowledge available regarding the vibrational behavior of child safety seats for children. Therefore, the objective of this study was to measure the vibrations in three different baby car seats and to compare these to the vibrations at the interface between the driver and the automobile seat. The test was performed on the National road at the average speed of 70 km/h and acceleration levels were recorded for about 350 Sec (5.83 min). One male driver considered as an adult occupant and a dummy having a mass of 9 kg was representing one year old baby. Four accelerometers were used to measure the vibration. All measured accelerations were relative to the vertical direction. Vibration Analysis Toolset (VATS) was used for time domain analysis.
Collection
2014-04-01
This technical paper collection covers intake/exhaust/powertrain and chassis noise and vibration.
Collection
2014-04-01
This technical paper collection sets out to reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
Technical Paper
2014-04-01
Giovanni Morais Teixeira
Abstract Fatigue caused by forced vibration of a random nature is one of the major concerns in the automotive field. Random loading of components under actual driving conditions causes dynamic stress/strain responses which can be better described and handled in the frequency domain. Power Spectrum Density (PSD) is usually the most concise and straightforward way of representing a random process. Since frequency domain methodologies are gaining more respect and interest it is very important to be aware of their limitations and scope, particularly when compared to time domain algorithms. The present paper aims to discuss both approaches and establish some comparisons in terms of accuracy, range of application, computation time and user friendliness.
Technical Paper
2014-04-01
Marco Mammetti, Marina Roche Arroyos
Abstract Over recent years IDIADA has developed several prototype electric vehicles as well as testing a number of electric powertrain configurations. Generally the electric motor output shaft delivers the torque to the transmission under a considerable level of high-frequency load variation and with noticeable torque irregularities that must be smoothed out in order to fulfill general NVH targets. This paper deals with the development phase of a prototype vehicle in which a specific testing activity was carried out to improve the overall NVH behavior of the powertrain. For this purpose, the mechanism of energy transference from the current to the motor and from the motor to the downstream driveline components was deeply characterized. The activity was aimed at smoothing the abrupt change in torque delivery and limiting the transfer of torque irregularities from the motor to the transmission. The torque control software calibration and the driveline elements were developed in order to reduce the noise and vibration critical frequency ranges.
Viewing 181 to 210 of 8657

Filter

  • Article
    875
  • Book
    22
  • Collection
    16
  • Magazine
    252
  • Technical Paper
    6902
  • Standard
    590
  • Article
    590

Subtopics