Display:

Results

Viewing 181 to 210 of 9398
2016-04-05
Technical Paper
2016-01-1121
Fang Liao, Weimin Gao, Yan Gu, Fei Kang, Yinan Li, Cheng Wang
Abstract Noise signals of the driver’s right ear include those of engine, environment, chassis dynamometer, loaded gears and unloaded gears when they are recorded in full vehicle on chassis dynamometer in semi-anechoic room. Gear rattle noise signals of the driver’s right ear caused by unloaded gear pairs can’t be identified or quantified directly. To solve the problems, relative approaches are used to identify and quantify the gear rattle noise signals. Firstly, the rattle noise signals of the driver’s right ear are filtered by human ear characteristic functions and steady noise signals are extracted by regression and smoothing processes. The noise signals are regressed at 200ms interval in the hearing critical frequency bands and smoothed in the flanking frequencies. Then, the noise relative approaches are obtained by subtracting the steady noise signals from the filtered noise signals, which are the transient noise signals of the unloaded gear pairs inducing the rattle noise.
2016-04-05
Technical Paper
2016-01-1127
Enrico Galvagno, Guido Ricardo Guercioni, Alessandro Vigliani
Abstract This paper presents a methodology for the assessment of the NVH (noise vibration and harshness) performance of Dual Clutch Transmissions (DCTs) depending on some transmission design parameters, e.g. torsional backlash in the synchronizers or clutch disc moment of inertia, during low speed maneuvers. A 21-DOFs nonlinear dynamic model of a C-segment passenger car equipped with a DCT is used to simulate the torsional behavior of the driveline and to estimate the forces at the bearings. The impacts between the teeth of two engaging components, e.g. gears and synchronizers, generate impulses in the forces, thus loading the bearings with force time-history characterized by rich frequency content. A broadband excitation is therefore applied to the gearbox case, generating noise and vibration issues.
2016-04-05
Technical Paper
2016-01-1123
Ante Bozic
Abstract Among the various types of hydrostatic transmissions, those based on radial piston multi-stroke machines are well-known solutions for off-road mobile machines. The balance between compactness, efficiency, control, comfort and price is the main reason for this. For the same reason, several car companies have tried to introduce hydrostatic transmissions into on-road applications. All such efforts have failed, mainly due to the whine noise produced by the hydrostatic machines. In particular, well-known standard solutions that aim to address the noise of radial piston multi-stroke machines, such as optimized relief grooves known as ‘notches’, are oriented toward reduction of the noise level. Unfortunately, the remaining whine noise, even with well-optimized notches, is unacceptable for automotive NVH standards.
2016-04-05
Technical Paper
2016-01-1114
Jinsung Kim
Abstract A dry clutch induces judder phenomenon which is caused by variations in the vehicle load condition and frictional material properties. Such a problem may lead to the stick-slip limit cycle that results in undesired longitudinal vibrations of vehicles. To solve this problem, a vibration suppression control is proposed. The amplitude of vibrations is detected by the signal conditioning from the measurements with the transmission input shaft speed and the wheel speed sensors. Based upon this, a perturbation torque is applied additionally on the nominal launch controller to make the drive shaft oscillation vanish. It can be achieved by the control design without any extra hardware cost. Finally, experimental results confirm the effectiveness of the proposed mechanism.
2016-04-05
Technical Paper
2016-01-1128
Bo Peng, Tao Liu, Sifa Zheng, Xiaomin Lian
Abstract Neutral-idle strategy has been applied for years to improve the fuel consumption of automatic transmission cars. The updated demand is the use of expanded slipping control strategy for further improvement of the transmission efficiency and response speed. However, one major drawback of the continuous slipping clutches is the high tendency to produce shudder or low frequency variation. In this research, a special neutral-idle shudder phenomenon is presented. This special shudder is not only related to slipping clutches but also related to the vibration and structure of the powertrain system. Simulations and experiments are conducted to give an insight view of this phenomenon. The analysis reveals that this special shudder is caused by both torsional vibration of the driveline and rigid-body vibration of the powertrain system. A positive feedback loop between those two kinds of vibrations leads to this special neutral-idle shudder.
2016-04-05
Technical Paper
2016-01-1325
Masanori Watanabe, Yosuke Tanabe, Naoki Yoneya
Abstract We have developed an excitation source identification system that can distinguish excitation sources on a sub-assembly level (around 30mm) for vehicle components by combining a measurement and a timing analysis. Therefore, noise and vibration problems can be solved at an early stage of development and the development period can be shortened. This system is composed of measurement, control, modeling, and excitation source identification parts. The measurement and the excitation source identification parts are the main topics of this paper. In the measurement part, multiple physical quantities can be measured in multi-channel (noise and vibration: 48ch, general purpose: 64ch), and these time data can be analyzed by using a high-resolution signal analysis (Instantaneous Frequency Analysis (IFA)) that we developed.
2016-04-05
Technical Paper
2016-01-1355
Jeffrey R. Hodgkins, Walter Brophy, Thomas Gaydosh, Norimasa Kobayashi, Hiroo Yamaoka
Abstract Current vehicle acoustic performance prediction methods, CAE (computer aided engineering) or physical testing, have some difficulty predicting interior sound in the mid-frequency range (300 to 1000 Hz). It is in this frequency range where the overall acoustic performance becomes sensitive to not only the contributions of structure-borne sources, which can be studied using traditional finite element analysis (FEA) methods, but also the contribution of airborne noise sources which increase proportional to frequency. It is in this higher frequency range (>1000 Hz) that physical testing and statistical CAE methods are traditionally used for performance studies. This paper will discuss a study that was undertaken to test the capability of a finite element modeling method that can accurately simulate air-borne noise phenomena in the mid-frequency range.
2016-04-05
Technical Paper
2016-01-1057
Masaya Miyazawa, Kei Mochizuki, Kondo Takashi
Abstract To achieve lightweight, low friction and fuel efficient engine, the crankshaft is required to be designed lightweight, small-diameter shaft, long stroke. In this case, vibration of the crankshaft is increased by reduction of shaft stiffness. The conventional way of dealing with this increased vibration used to be to add an inertia mass ring or a double mass damper. Such an approach, however, increases weight, making the balance of weight reduction and vibration reduction less readily achieved. This paper therefore reports on how the main factors causing crankshaft vibration to increase in the shaft with reduced stiffness were clarified. Based on that clarification, efforts were made to reduce crankshaft vibration without increasing the weight of the crankshaft system. Measurement and analysis were used to analyze crankshaft vibration during operation.
2016-04-05
Technical Paper
2016-01-1312
Tom Wood
Abstract Light weighting vehicle acoustic components and improving the performance level of sound abatement treatments is becoming more important to automotive manufacturers due to increased fuel economy requirements established by the Corporate Average Fuel Economy - (CAFE) standards [1], and the consumer’s demand for ever improving sound quality inside the vehicle cabin. In tests conducted by Ricardo Inc. for the Aluminum Association Inc., a 2008 report estimates that for every 45 kg of mass removed from passenger vehicles and light weight commercial vehicles (LCV) up to a 1 percent increase in fuel mileage can be achieved [2]. Automotive OEM’s expect that sound abatement products, sound barriers, absorbers, and damping materials contribute to this reduction in vehicle weight.
2016-04-05
Technical Paper
2016-01-1308
Kristian Lee Lardner, Moustafa El-Gindy, Fredrik Oijer, Inge Johansson, David Philipps
Abstract The purpose of this study is to determine the effect of tire operating conditions, such as the tire inflation pressure, speed, and load on the change of the first mode of vibration. A wide base FEA tire (445/50R22.5) is virtually tested on a 2.5m diameter circular drum with a 10mm cleat using PAM-Crash code. The varying parameters are altered separately and are as follows: inflation pressure, varying from 50 psi to 165 psi, rotational speed, changing from 20 km/h to 100 km/h, and the applied load will fluctuate from 1,500 lbs. to 9000 lbs. Through a comparison of previous literature, the PAM-Crash FFT algorithmic results have been validated.
2016-04-05
Technical Paper
2016-01-1063
George Nerubenko
Abstract Up to 30% of engine noise is delivered by front end pulley combined with torsional vibration damper, and technically it is the main contributor to recorded engine noise level. So the novel solutions in terms of improving the design and performance of torsional vibration damper would help to reduce radically this component of engine noise. The results of dynamical study of patented torsional vibration damper combined with pulley are presented. Design and structure of torsional vibration damper is based on author’s US Patent 7,438,165 having the self-tuning control system for all frequencies in running engine in all operational regimes. Mathematical model has been used for the analysis of the emitting noise of engine having proposed torsional vibration damper. Attention is paid to mitigation of the sound power levels contributing by engine subsystem “end of crankshaft - torsional vibration damper - pulley”.
2016-04-05
Journal Article
2016-01-1395
Syed F. Haider, Zissimos Mourelatos
Abstract To improve fuel economy, there is a trend in automotive industry to use light weight, high strength materials. Automotive body structures are composed of several panels which must be downsized to reduce weight. Because this affects NVH (Noise, Vibration and Harshness) performance, engineers are challenged to recover the lost panel stiffness from down-gaging in order to improve the structure borne noise transmitted through the lightweight panels in the frequency range of 100-300 Hz where most of the booming and low medium frequency noise occurs. The loss in performance can be recovered by optimized panel geometry using beading or damping treatment. Topography optimization is a special class of shape optimization for changing sheet metal shapes by introducing beads. A large number of design variables can be handled and the process is easy to setup in commercial codes. However, optimization methods are computationally intensive because of repeated full-order analyses.
2016-04-05
Technical Paper
2016-01-1069
Masayoshi Otaka, Taro Kasahara, Kenichi Komaba
Abstract As a means of further improving combustion efficiency of gasoline engine, an increase in compression ratio, which enhances the risk of knocking, is thinkable. To optimize engine combustion parameters, a technology that can precisely detect knocking is desirable. Presently skillful experts have been evaluating knocking subjectively by listening to radiation noise so far. The authors developed a device that can precisely detect knocking by means of processing sound signals, which are captured by a high-performance microphone that is sensitive in the wide frequency range. Shock waves induced by knocking cause in-cylinder gas vibrations that emits metallic hit noises from the outer engine wall. We studied how to identify the feature values of frequency characteristics when knocking occurs, under the assumption that the engine radiation noise includes more than 2nd-order harmonic components with respect to the basic frequency of the in-cylinder gas vibration mode.
2016-04-05
Technical Paper
2016-01-1044
Toshiaki Kobayashi
Abstract This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
2016-04-05
Technical Paper
2016-01-1295
Atsushi Itoh, ZongGuang Wang, Toshikazu Nosaka, Keita Wada
Abstract Without engine noise, the cabin of an electric vehicle is quiet, but on the other hand, it becomes easy to perceive refrigerant-induced noise in the automotive air-conditioning (A/C) system. When determining the A/C system at the design stage, it is crucial to verify whether refrigerant-induced noise occurs in the system or not before the real A/C systems are made. If refrigerant-induced noise almost never occurs during the design stage, it is difficult to evaluate by vehicle testing at the development stage. This paper presents a 1D modeling methodology for the assessment of refrigerant-induced noise such as self-excitation noise generated by pressure pulsation through the thermal expansion valve (TXV). The GT-SUITE commercial code was used to develop a refrigerant cycle model consisting of a compressor, condenser, evaporator, TXV and the connecting pipe network.
2016-04-05
Technical Paper
2016-01-1306
Valentin Soloiu, Emerald Simons, Martin Muinos, Spencer Harp, Aliyah Knowles, Gustavo Molina
Abstract Diesel engines provide the necessary power for accomplishing heavy tasks across the industries, but are known to produce high levels of noise. Additionally, each type of fuel possesses unique combustion characteristics that lead to different sound and vibration signatures. Noise is an indication of vibration, and components under excessive vibration may wear prematurely, leading to repair costs and downtime. New fuels that are sought to reduce emissions, and promote sustainability and energy independence must be investigated for compatibility from a sound and vibrations point-of-view also. In this research, the sound and vibration levels were analyzed for an omnivorous, single cylinder, CI research engine with alternative fuels and an advanced combustion strategy, RCCI. The fuels used were ULSD#2 as baseline, natural gas derived synthetic kerosene, and a low reactivity fuel n-Butanol for the PFI in the RCCI process.
2016-04-05
Technical Paper
2016-01-1320
Sri Siva Sai Meduri, V. Sundaram, Sathish Kumar S
Abstract The Air Induction system (AIS) must provide sufficient and clean air to the engine for its desired combustion thus enhancing engine performance. The critical functions which effect the performance are pressure restriction and acoustic performance. The ideal design of AIS effectively reduces the engine noise heard at snorkel, which contributes to the cabin noise. Good acoustic expertise and several tests are required to optimize the design of AIS. Multiple resonators are commonly used in passenger cars to attenuate the noise. This paper emphasize on One Dimensional (1D) approach to optimize the resonators in the AIS to meet the functional requirements. In AIS, the flow happens from the snorkel to the engine air intake whereas the engine noise propagates in the opposite direction. The unsteady mass flow through the intake valves causes pressure fluctuations in the intake manifold and these propagate to intake orifice and are radiated as noise which is heard at snorkel.
2016-04-05
Technical Paper
2016-01-0055
Mark Steffka, Cyrous Rostamzadeh
Abstract Automotive systems can generate un-intentional radio frequency energy. The levels of these emissions must be below maximum values set by the Original Equipment Manufacturer (OEM) for customer satisfaction and/or in order to meet governmental requirements. Due to the complexity of electromagnetic coupling mechanisms that can occur on a vehicle, many times it is difficult to measure and identify the noise source(s) without the use of an electromagnetic interference (EMI) receiver or spectrum analyzer (SA). An efficient and effective diagnostic solution can be to use a low-cost portable, battery powered RF detector with wide dynamic range as an alternative for automotive electromagnetic compatibility (EMC) and design engineers to identify, locate, and resolve radio frequency (RF) noise problems. A practical circuit described here can be implemented easily with little RF design knowledge, or experience.
2016-04-05
Technical Paper
2016-01-0087
Fengrong Bi, Teng Ma, Jian Zhang
Abstract This paper reports an investigation of knock detection in spark ignition (SI) engines using EEMD-Hilbert transform based on the engine cylinder block vibration signals. Ensemble Empirical Mode Decomposition (EEMD) was used to de-compose the signal and detect knock characteristic. Hilbert transform was used to analysis the frequency information of knock characteristics. The result shows that for cylinder block vibration signals, the EEMD algorithm could extract the knock characteristic (include light knock), and the Hilbert transform result shows that the instantaneous of knock characteristics concentrate in 5000-10000Hz. At last, the knock window is then determined, based on which a new knock intensity evaluation factor K is proposed, and the results show that, the parameter K is reasonable and effective.
2016-04-05
Technical Paper
2016-01-0643
Jian Zhang, Changwen Liu, Fengrong Bi, Yiqiang Pei, Xiaobo Bi
Abstract Knock threshold detection is the key of closed loop control of ignition in gasoline engine, and it is also the difficult point in knock measurement. In this paper, an investigation of knock detection in turbocharged gasoline engine using bispectrum slice and ensemble empirical mode decomposition (EEMD) based on the engine cylinder head vibration signals is presented. By adding some finite amplitude Gaussian white noises to the signal, EEMD keeps the signal continuous in different time span, and therefore the mode mixing inhering in the classical empirical mode decomposition (EMD) method is alleviated. Power spectrum density (PSD) estimation is used to determine the band range of the resonance frequency generated by knock component. EEMD is used to decompose the original signals, the time-frequency characteristics of the Intrinsic Mode Functions (IMF) are analyzed using Continues Wavelet Transform (CWT) due to its excellent time-frequency resolution.
2016-04-05
Technical Paper
2016-01-0632
Domenico Crescenzo, Viktor Olsson, Javier Arco Sola, Hongwen Wu, Andreas Cronhjort, Eric Lycke, Oskar Leufven, Ola Stenlaas
Abstract Due to demanding legislation on exhaust emissions for internal combustion engines and increasing fuel prices, automotive manufacturers have focused their efforts on optimizing turbocharging systems. Turbocharger system control optimization is difficult: Unsteady flow conditions combined with not very accurate compressor maps make the real time turbocharger rotational speed one of the most important quantities in the optimization process. This work presents a methodology designed to obtain the turbocharger rotational speed via vibration analysis. Standard knock sensors have been employed in order to achieve a robust and accurate, yet still a low-cost solution capable of being mounted on-board. Results show that the developed method gives an estimation of the turbocharger rotational speed, with errors and accuracy acceptable for the proposed application. The method has been evaluated on a heavy duty diesel engine.
2016-04-05
Technical Paper
2016-01-0249
Balashunmuganathan Vasanth, Kumar Sathish, Murali Govindarajalu, Mohsin Khan
In recent years reducing the automobile HVAC (Heating Ventilation and automobile conditioning) noise inside the vehicle cabin is one of the main criterions for all OEMs to provide comfort level to the passengers. The primary function of the HVAC is to deliver more air to the cabin with less noise generation for various blower speeds. Designing the optimum HVAC with less noise is one of the major challenges for all automotive manufacturers and HVAC suppliers. During the design stage, physical parts are not available and hence the simulation technique helps to evaluate the noise level of HVAC. In this study, a computational 1D (one dimensional) analysis is carried out to compute the airflow noise originated from the HVAC unit and propagated to the passenger cabin. Modeling has been done using unigraphics and the analysis is carried out using the commercial 1D software GT suite.
2016-04-05
Technical Paper
2016-01-0273
Richard DeJong, Se Ge Jung, John Van Baren
Abstract Methods for conducting accelerated vibration fatigue testing of structures, such as MIL-STD-810G, allow for the non-linear scaling of the test time with the inverse of the rms vibration amplitude based on the slope of the material S-N curve obtained from cyclic fatigue tests. The Fatigue Damage Spectrum (FDS) is used as a method to allow for different level scalings at different frequencies in a broadband vibration environment using the relative responses of resonances in the structure. A recent development in industry has been to mix impulses with random excitations to increase the vibration peak levels (as measured by the kurtosis), thereby accelerating the fatigue even more than would occur with a Gaussian excitation. This paper presents results from a study to determine the conditions under which high kurtosis, impulsive excitations actually produce high kurtosis responses in structural resonances thus increasing the level of the FDS.
2016-04-05
Technical Paper
2016-01-0275
Frédéric Kihm, Andrew Halfpenny, Kurt Munson
Abstract Ground vehicle components are designed to withstand the real operational conditions they will experience during their service life. Vibration tests are performed to qualify their endurance. In order to replicate the same failure mechanism as in real conditions, the test specification must be representative of the service loads. The accelerated testing method, based on fatigue damage spectra (FDS), is a process for deriving a synthesized power spectral density (PSD) representing a random stationary Gaussian excitation and applied over a reduced duration. In real life, however, it is common that service loading includes non-Gaussian excitations. The consequences of not using a representative test signal during product validation testing are a higher field failure rate and added warranty costs. The objective of this paper is to describe a method for synthesizing a PSD test specification with a given kurtosis value, which represents a nonstationary non-Gaussian signal.
2016-04-05
Journal Article
2016-01-0277
Xingxing Feng, Kaimin Zhuo, Jinglai Wu, Vikas Godara, Yunqing Zhang
Abstract Interval inverse problems can be defined as problems to estimate input through given output, where the input and output are interval numbers. Many problems in engineering can be formulated as inverse problems like vehicle suspension design. Interval metrics, instead of deterministic metrics, are used for the suspension design of a vehicle vibration model with five degrees of freedom. The vibration properties of a vehicle vibration model are described by reasonable intervals and the suspension interval parameters are to be solved. A new interval inverse analysis method, which is a combination of Chebyshev inclusion function and optimization algorithm such as multi-island genetic algorithm, is presented and used for the suspension design of a vehicle vibration model with six conflicting objective functions. The interval design of suspension using such an interval inverse analysis method is shown and validated, and some useful conclusions are reached.
2016-04-05
Technical Paper
2016-01-0411
Yosuke Akita, Kenji Abe, Yoshihiro Osawa, Yoshitsugu Goto, Yuji Nagasawa, Noboru Sugiura, Satoshi Wakamatsu, Kyoko Kosaka
Abstract If a vehicle is left in a humid environment, the coefficient of friction between the brake pads and discs increases, generating a discomforting noise during braking called brake squeal. It is assumed that this increase in the coefficient of friction in a humid environment is the effect of moisture penetrating between the brake friction surfaces. Therefore, this paper analyzes the factors causing coefficient of friction variation with moisture between the friction surfaces by dynamic observation of these surfaces. The observation was achieved by changing the disc materials from cast iron to borosilicate glass. One side of the glass brake disc was pushed onto the brake pad and the sliding surface was observed from the opposite side by a charge coupled device (CCD) camera. First, a preliminary test was carried out in a dry state using two pad materials with different wear properties to select the appropriate pad for observing the friction surfaces.
2016-04-05
Technical Paper
2016-01-0448
Yuliang Yang, Yu Yang, Ying Sun, Zhihong Dong, Yunquan Zhang
Abstract To improve the vehicle NVH performance and reduce the vibration of the exhaust system, average driving DOF displacement (ADDOFD) and dynamic analysis are used to optimize hanger locations. Based on the finite element model and rigid-flexible coupling model, exhaust system analysis model was established. According to the finite element model of the exhaust system, the free-free modal analysis is carried out, and the position of the hanging point of the exhaust system is optimized by using the ADDOFD method. Furthermore, through the dynamics analysis, the force of each hanger to the body is calculated by the dynamic analysis, then verify the rationality of the hanging position. The combination of the two methods can effectively determine the better NVH performance of the exhaust system with hanger locations in the earlier vehicle development process.
2016-04-05
Technical Paper
2016-01-0439
Tianqi Lv, Peijun Xu, Yunqing Zhang
Abstract The powertrain mounting system (PMS) plays an important role in improving the NVH (Noise, Vibration, Harshness) quality of the vehicle. In all running conditions of a vehicle, the displacements of the powertrain C.G. should be controlled in a prescribed range to avoid interference with other components in the vehicle. The conventional model of PMS is based on vibration theory, considering the rotation angles are small, ignoring the sequence of the rotations. However, the motion of PMS is in 3D space with 3 translational degrees of freedom and 3 rotational degrees of freedom, when the rotation angles are not small, the conventional model of PMS will cause errors. The errors are likely to make powertrain interfering with other components. This paper proposes a rigid body mechanics model of the powertrain mounting system. When the powertrain undergoes a large rotational motion, the rigid body mechanics model can provide more accurate calculation results.
2016-04-05
Technical Paper
2016-01-0440
Li Jie, Wang Wenzhu, Gao Xiong, Zhang Zhenwei
Abstract The ride comfort of heavy trucks is related to many factors, which include vehicle operating scenarios and vehicle structure parameters. An investigation of the influence of different factors on the ride comfort of heavy trucks was conducted. Based on the elastic theory of a uniform Euler-Bernoulli beam with both ends free, a 6 degree of freedom (DOF) half rigid-elastic vibration model of the vertical dynamic response was developed. The rigid-elastic model is more suitable to describe the actual movement of heavy trucks. The DOFs include vertical displacements of the body and each of two axles, the pitch displacement of the body, and the first and second order bending displacements of the body. The root mean square (RMS) values of body accelerations, dynamic deflections and relative dynamic loads form the evaluation index. Based on the rigid-elastic model, the influence of different factors on the ride comfort of heavy trucks is analyzed in the frequency domain.
2016-04-05
Technical Paper
2016-01-0443
Han Zhang, Gang Li, Yu Wang, Yuchuan Gu, Xiang Wang, Xuexun Guo
Abstract A vehicular hydraulic electrical energy regenerative semi-active suspension(HEERSS) was presented, and its working principle and performance were analyzed. Firstly, configuration and working principle of the HEERSS were described; Secondly, kinetic equation of HEERSS was deduced, and a skyhook controller was designed for HEERSS. The traditional skyhook control strategy should be changed for the characteristic of HEERSS, because the damping force during extension stroke could be controlled, but not in compression stroke. Thirdly, the performance of HEERSS was compared with passive suspension(PS), traditional semi-active suspension(TSS). The simulation results indicated that the performance of HEERSS would be compromise between TSS and PS, but the HEERSS could harvest vibration energy which was advanced than TSS and PS.
Viewing 181 to 210 of 9398

Filter

Subtopics