Display:

Results

Viewing 151 to 180 of 9057
2015-06-15
Journal Article
2015-01-2199
Rui Cao, J Stuart Bolton
Abstract Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
2015-06-15
Journal Article
2015-01-2193
Masami Matsubara, Daiki Tajiri, Makoto Horiuchi, Shozo Kawamura
Abstract One of the elements of tire stiffness is sidewall stiffness. This stiffness, which influences tire vibration characteristics, is also an important design parameter for carrying the vehicle body. Tire is one of pressure vessels and inflation pressure is dominant in sidewall stiffness. Thus, tire sidewall stiffness is decided from the tension of inflation pressure and the structural dynamic, including the properties of the rubber material. To reveal the dynamic characteristics of tire sidewall stiffness, this study describes differences in stiffness due to inflation pressure. It can be expected that variation of inflation pressure is monitored from the axle vibration response during vehicle traveling in the future. That is because the relationship of the vibration characteristics and the inflation pressure of tire are derived by sidewall stiffness. First, we derive a formula for sidewall stiffness based on the structural dynamics of Akasaka's theory.
2015-06-15
Journal Article
2015-01-2220
Ji Xu, Guohua Sun, Tao Feng, Mingfeng Li, Teik Lim
Abstract This paper describes an active sound tuning (AST) system for vehicle powertrain response. Instead of simply aiming to attenuate cabin interior noise, AST system is capable of reshaping the powertrain response based on predetermined vehicle sound quality criteria. However, conventional AST systems cannot yield a balanced result over the broad frequency range when applied to powertrain noise. It is due to the fact that existing systems are typically configured with the filtered-x least mean square (FXLMS) algorithm or its modified versions, which has inherent frequency dependent convergence behavior due to large dynamic range of secondary path (the electro-acoustic path from the control speaker to the error microphone). Therefore, fast convergence can only be reached at the resonant frequencies.
2015-06-15
Journal Article
2015-01-2217
Guohua Sun, Tao Feng, JI Xu, Mingfeng Li, Teik Lim
Abstract Current powertrain active noise control (ANC) systems are not sufficient enough to track the fast engine speed variations, and yield consistent convergence speeds for individual engine order such that a balanced noise reduction performance can be achieved over a broad frequency range. This is because most of these ANC systems are configured with the standard filtered-x least mean squares (FxLMS) algorithm, which has an inherent limitation in the frequency-dependent convergence behavior due to the existence of secondary path model (electro-acoustic path from the input of control loudspeaker to the output of monitoring error microphone) in the reference signal path. In this paper, an overview is given first to compare several recently modified FxLMS algorithms to improve the convergence speed for harmonic responses such as eigenvalue equalization FxLMS (EE-FXLMS) and normalized reference LMS (NX-LMS) algorithms.
2015-06-15
Journal Article
2015-01-2218
Shuguang Zuo, Jun Zhang, Xudong Wu, Jiajie Hu, Guo Long
Abstract Blower is one of the main noise sources of fuel cell vehicle. In this paper, a narrowband active noise control (ANC) model is established based on adaptive notch filter (ANF) to control the high-frequency noise produced by the blower. Under transient conditions, in order to reduce the frequency mismatch (FM) of ANC for blower, a new Frequency Mismatch Filtered-Error Least Mean Square algorithm (FM-FELMS) is proposed to attenuate blower noise under transient conditions. According to the theoretical analysis and simulation, the proposed algorithm has an excellent noise reduction performance at relatively high blower speed. While for the low speed working condition, the Normalized Least Mean Square (NLMS) algorithm is applied to attenuate noise. The two algorithms could be jointly utilized to control the blower noise actively.
2015-06-15
Journal Article
2015-01-2252
Haixin Dai, Weikang Jiang, Yuanyi Huang
Abstract Engine mounts play important roles in interior noise of automobiles. Decoupling optimal design of mounts has been researched for long, but reducing vibration power into body transmitted from engine can be a more intuitive way to improve NVH performance. Some approaches for minimizing transfer power through engine mounts based on finite element model were reported, whose disadvantages are lack of data and inaccuracy at high frequency in some cases. To get an analytic formula of transmitted power, a model considering coupled vibration between the body and the engine is presented here. An admittance function matrix is used to describe the dynamic relationship between the mounting points on the body side. Based on this admittance matrix measured on the full vehicle, and excitation forces identified with acceleration data measured on all mounts, the vibration equation of the coupled model can be established by using Lagrange's methodology.
2015-06-15
Journal Article
2015-01-2222
Nikos Zafeiropoulos, Marco Ballatore, Andy Moorhouse, Andy Mackay
Abstract Axle forces from tire-road interaction can excite different structural resonances of the vehicle hence a high number of sensors is required for observing and separating all the vibrations dynamics that are coherent with the cabin noise. Feed-forward road noise control strategies adopted so far rely mainly on capturing these dynamics and thus the number of sensors constitutes one major limitation of this approach. Therefore there is a necessity for reducing the number of sensors without degrading the performance of an ANC system. In the past coherence function analysis has been found to be a useful tool for optimizing the sensor location. In this case coherence function mapping was performed between an array of vibration sensors and the headrest microphones in order to identify the locations on the structure that are highly correlated with road noise bands in the compartment.
2015-06-15
Journal Article
2015-01-2263
Saeed J. Siavoshani, Prasad Vesikar
The intent of this paper is to document comprehensive test-based approach to analyze the door-closing event and associated sound using structural and acoustic loads developed during the event. This study looks into the door-closing phenomenon from the structural interaction point of view between the door and the body of the vehicle. The study primarily focuses on distributing the door and body interaction as discrete multiple structural and acoustic phenomena. It also emphasizes on the structural and acoustic loads developed by the discretized interactions at the interfaces between the door and the body frame. These interfaces were treated to be the load paths from the door to the body. The equivalent structural and acoustic loads were calculated indirectly using the well-known Transfer Path Analysis (TPA) methodology for structural loads and the Acoustic Source Quantification (ASQ) methodology for acoustic loads.
2015-06-15
Journal Article
2015-01-2261
Joseph Plattenburg, Jason Dreyer, Rajendra Singh
Abstract Combined active and passive damping is a recent trend that can be an effective solution to challenging NVH problems, especially for lightweight vehicle components that demand advanced noise and vibration treatments. Compact patches are of particular interest due to their small size and cost, however, improved modeling techniques are needed at the design stage for such methods. This paper presents a refined modeling procedure for side-by-side active and passive damping patches applied to thin, plate-like, powertrain casing structures. As an example, a plate with fixed boundaries is modeled as this is representative of real-life transmission covers which often require damping treatments. The proposed model is then utilized to examine several cases of active and passive patch location, and vibration reduction is determined in terms of insertion loss for each case.
2015-06-15
Journal Article
2015-01-2255
Jun Kokaji, Masashi Komada, Masayuki Takei, Masaya Takeda
Abstract Although idling vibration is usually caused by 1st order of engine combustion force, other engine forces also occur at frequencies lower than the 1st order of combustion (called low frequency idling vibration in this paper). The drive-line of the Toyota Hybrid System II (THS II) has different torsional vibration characteristics compared to a conventional gasoline engine vehicle with an automatic transmission. Nonlinear characteristics caused by the state of backlash of pinions and splines influence changes in the torsional resonance frequency. The torsional resonance frequency of the drive-line can be controlled utilizing the hybrid system controls of the THS II.
2015-06-15
Journal Article
2015-01-2276
Zhengyu Liu, Donald Wozniak, Manfred Koberstein, Curtis Jones, Jan Xu, Suhas Venkatappa
Abstract Refrigerant flow-induced gurgling noise is perceived in automotive refrigerant systems. In this study, the condition of the gurgling generation is investigated at the vehicle level and the fundamental root cause is identified as the two-phase refrigerant flow entering the TXV for system equipped with variable displacement compressors. By conducting literature reviews, the acoustic characteristics of the flow patterns and the parameters affecting the flow regimes in horizontal and vertical tubes are summarized. Then the gurgling mechanism is explained as the intermittent flow is developed at the evaporator inlet. In the end, the improved and feasible design for avoiding the intermittent flow (slug, plug or churn flow) or minimizing its formation is proposed and verified in refrigerant subsystem (RSS) level. Finally, the guidelines for the attenuation and suppression of the gurgle are provided.
2015-06-15
Journal Article
2015-01-2285
Arne Nykänen, David Lennström, Roger Johnsson
Abstract Subjects who are well aware of what to judge commonly yield more consistent results in laboratory listening tests. This awareness may be raised by explicit instructions and training. However, too explicit instructions or use of only trained subjects may direct experiment results in an undesired way. An alternative is to give fairly open instructions to untrained subjects, but give the subjects a chance to get familiar with the product and context by, for example, riding a representative car under representative driving conditions before entering the laboratory. In this study, sound quality assessments of interior sounds of cars made by two groups were compared. In one group subjects were exposed to the same driving conditions that were later assessed in a laboratory listening test by taking them on a ride in one of the cars to be assessed, just before entering the laboratory. In the other group subjects made the laboratory assessments without prior car riding.
2015-06-15
Journal Article
2015-01-2270
Oliver Unruh, Christopher Blech, Hans Peter Monner
Abstract Global attenuation of structural velocities is one of the most effective approaches in order to reduce noise emitted by shell structures such as a car roof or aircraft fuselage panels. This global reduction can be achieved by the application of passive damping treatments like constraint layer damping on large fractions of the vibrating surface. The main disadvantage of this approach arises from the fact that it leads to increasing total cost and weight of the structure. To overcome this problem, acoustic black holes can be used to create locations with high vibration amplitudes and low bending waves velocity in order to dissipate the energy of structure borne sound by very limited application of damping treatments. Acoustic black holes are funnel shaped thickness reductions that attract sound radiating bending waves and allow a global vibration reduction by an acceptable use of additional damping.
2015-06-15
Journal Article
2015-01-2274
Paul R. Donavan, Bruce Rymer
Abstract A measurement program was completed to assess driver input versus exterior noise generation for four vehicle designs and two different rumble strip designs. The vehicles included a small compact car, an immediate size car, a full sport utility vehicle, and a medium duty dump truck. The first rumble strip was a conventional design providing shorter wavelength input to the tire. The second was designed to provide longer wavelength, more harmonic input to the tire. The measurements included exterior pass-by noise and on-board exterior noise and interior measurements of sound pressure level and vibration level at the seat track and steering column. In general, the results indicated that the longer wavelength strips produced less overall A-weighted pass-by noise with little or no reduction in interior noise and vibration.
2015-06-15
Journal Article
2015-01-2275
Manfred Koberstein, Zhengyu Liu, Curtis Jones, Suhas Venkatappa
Abstract In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle around 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
2015-06-15
Journal Article
2015-01-2320
Andreas Schuhmacher
Abstract Indoor vehicle pass-by noise applications deal with measuring the exterior noise from a vehicle fixed on a chassis dynamometer in a large hemi-anechoic room. During a standardised acceleration test, the noise is measured with an array of microphones placed in the far-field, and the overall noise level versus vehicle position can be simulated. The indoor facility allows controlled and repeatable measurements independent of weather. For engineering purposes, pass-by contribution analysis can be included in the test leading to information about the pass-by noise contribution from major noise sources. This work presents a novel application of blind source separation to vehicle measurements from an indoor pass-by measurement campaign. In contrast to the classical transfer path approach using point sources for modelling vehicle noise sources and combining an operational measurement with transfer functions, the blind approach does not consider a specific noise source model.
2015-06-15
Journal Article
2015-01-2321
Nicholas Oettle, Andrew Bissell, Sivapalan Senthooran, Mohammed Meskine
Abstract For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
2015-06-15
Journal Article
2015-01-2323
Abdelhakim Aissaoui, Ravindra S Tupake, Vilas Bijwe, Mohammed Meskine, Franck Perot, Alain Belanger, Rohit J Vaidya
For the automotive industry, acoustic comfort is of increasing importance. The market and customer expectation make the HVAC system noise quality a question to be addressed as early as possible in the vehicle development process. On one hand, the so-called traditional sources of annoyance such as engine, road-tires contact, exhaust systems and wind-noise have been significantly reduced for most traditional combustion engine vehicles. On the other hand, considered in the past as secondary noise sources, HVAC systems become the main sources for hybrid and electric and Stop-start vehicles. Previous studies have demonstrated the ability of a CFD/CAA approach based on the Lattice Boltzmann Method (LBM) to predict HVAC system noise including real and complex ducts, registers, mixing unit and blower geometries.
2015-06-15
Journal Article
2015-01-2325
P. Bremner, C. Todter, S. Clifton
Abstract The authors report on the design and application of a high resolution micro-electro-mechanical (MEMS) microphone array for automotive wind noise engineering. The array integrates both sensors and random access memory (RAM) chips on a flexible circuit board that eliminates high channel count wiring and allows the array to be deployed on automobile surfaces in a convenient “stick-on/peel-off” configuration. These arrays have potential application to the quantitative evaluation of interior wind noise from measurements on a clay model in the wind tunnel, when used in conjunction with a body vibro-acoustic model. The array also provides a high resolution turbulence measurement tool, suitable for validation of computation fluid dynamics (CFD) simulations for wind noise. The authors' report on the wavenumber-frequency structure of flow turbulence measured in different flow regions on a side glass and the corresponding contributions to interior wind noise.
2015-06-15
Journal Article
2015-01-2314
Adrien Mann, Min-Suk Kim, Barbara Neuhierl, Franck Perot, Robert Powell, Thomas Rose, Jan Krueger
Abstract Exhaust and muffler noise is a challenging problem in the transport industry. While the main purpose of the system is to reduce the intensity of the acoustic pulses originating from the engine exhaust valves, the back pressure induced by these systems must be kept to a minimum to guarantee maximum performance of the engine. Emitted noise levels have to ensure comfort of the passengers and must respect community noise regulations. In addition, the exhaust noise plays an important role in the brand image of vehicles, especially with sports car where it must be tuned to be “musical”. However, to achieve such performances, muffler and exhaust designs have become quite complex, often leading to the rise of undesired self-induced noise. Traditional purely acoustic solvers, like Boundary Element Methods (BEM), have been applied quite successfully to achieve the required acoustic tuning.
2015-06-15
Journal Article
2015-01-2315
Giulio Lenzi, Giovanni Ferrara, Andrea Fioravanti
Abstract The acoustic performance of mufflers with single-inlet and single-outlet are well described using Insertion Loss (IL) and Transmission Loss (TL). These parameters represent the acoustic damping on the engine emission and on the incident pressure wave respectively. However, for mufflers with multi-inlet these parameters depend also on the sources characteristics, as consequence their use is quite difficult. In the present work the acoustic performance of a double-inlet and single-outlet muffler are experimentally evaluated in terms of reflection and transmission coefficients of each port of the muffler itself. These coefficients are used to evaluate the Insertion Loss of the manifold muffler taking into account specific sources on the inlets. The characteristic coefficients are also used to predict the acoustic emission of the manifold muffler using a known engine source on the two inlets.
2015-06-15
Journal Article
2015-01-2335
Scott Amman, Francois Charette, Paul Nicastri, John Huber, Brigitte Richardson, Gint Puskorius, Yuksel Gur, Anthony Cooprider
Abstract Hands-free phone use is the most utilized use case for vehicles equipped with infotainment systems with external microphones that support connection to phones and implement speech recognition. Critically then, achieving hands-free phone call quality in a vehicle is problematic due to the extremely noisy nature of the vehicle environment. Noise generated by wind, mechanical and structural, tire to road, passengers, engine/exhaust, HVAC air pressure and flow are all significant contributors and sources of noise. Other factors influencing the quality of the phone call include microphone placement, cabin acoustics, seat position of the talker, noise reduction of the hands-free system, etc. This paper describes the work done to develop procedures and metrics to quantify the effects that influence the hands-free phone call quality.
2015-06-15
Journal Article
2015-01-2336
Anastasios Arvanitis, Jeff Orzechowski, Todd Tousignant, Kiran Govindswamy
Abstract Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
2015-06-15
Journal Article
2015-01-2337
Gordon Ebbitt, Todd Remtema
Abstract Speech communication from the front seat to the rear seat in a passenger vehicle can be difficult. This is particularly true in a vehicle with an acoustically absorptive interior. Speech Transmission Index (STI) measurements can quantify the speech intelligibility, but they require specialized signal processing. The STI calculations can be simplified if it is assumed that reverberation and echoes play an insignificant role in an automobile. A simplification of a STI measurement is described that uses a stationary reference speech signal from a talker mannequin in the driver's seat to create a signal at the rear passenger positions. On-road noise measurements are used for the noise level and the calculated signal to noise ratio is used to calculate a simplified STI value that tracks closely to a full implementation of the STI method for sedans.
2015-06-15
Journal Article
2015-01-2330
Christian Y. Glandier, Mark Eiselt, Oskar Prill, Eric Bauer
Abstract With the reduction of engine and road noise, wind has become an important source of interior noise when cruising at highway speed. The challenges of weight reduction, performance improvement and reduced development time call for stronger support of the development process by numerical methods. Computational Fluid Dynamics (CFD) and finite element (FE) vibroacoustic computations have reached a level of maturity that makes it possible and meaningful to combine these methods for wind noise prediction. This paper presents a method used for coupling time domain CFD computations with a finite element vibroacoustic model of a vehicle for the prediction of low-frequency wind noise below 500 Hz. The procedure is based on time segmentation of the excitation load and transformation into the frequency domain for the vibroacoustic computations. It requires simple signal processing and preserves the random character as well as the spatial correlation of the excitation signal.
2015-06-15
Journal Article
2015-01-2328
Barbara Neuhierl, Sivapalan Senthooran, Reinier Toppinga, Anke Jäger, Maarten Brink, Timo Lemke, Philippe Moron, Raghu Mutnuri
Abstract The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of German car manufacturers (Audi, Daimler, Porsche, Volkswagen). Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper. It is demonstrated that the simulation of the exterior flow is able to represent the transient hydrodynamic structures and at the same time both the generation of the acoustic sources and the propagation of the acoustic waves. Performing wave number filtering allows to identify the acoustic phenomena and separate them from the hydrodynamic effects. In a next step, the noise transferred to the interior of the cabin through the glass panel was calculated, using a Statistical Energy Analysis approach.
2015-06-15
Journal Article
2015-01-2331
Alexander Schell, Vincent Cotoni
Abstract Aero-vibro-acoustic prediction of interior noise associated with exterior flow requires accurate predictions of both fluctuating surface pressures across the exterior of a vehicle and efficient models of the vibro-acoustic transmission of these surface pressures to the interior of a vehicle. The simulation strategy used in this paper combines both CFD and vibro-acoustic methods. An accurate excitation field (which accounts for both hydrodynamic and acoustic pressure fluctuations) is calculated with a hybrid CAA approach based on an incompressible unsteady flow field with an additional acoustic wave equation. To obtain the interior noise level at the driver's ears a vibro-acoustic model is used to calculate the response of the structure and interior cavities. The aero-vibro-acoustic simulation strategy is demonstrated for a Mercedes-Benz S-class and the predictions are compared to experimental wind tunnel measurements.
2015-06-15
Journal Article
2015-01-2333
Brandon Sobecki, Patricia Davies, J Stuart Bolton, Frank Eberhardt
Abstract Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
2015-06-15
Journal Article
2015-01-2356
Huangxing Chen, David W. Herrin
Abstract The insertion loss of louvered terminations positioned at the end of a rectangular duct is determined using acoustic finite element analysis. Insertion loss was determined by taking the difference between the sound power with and without the louvers at the termination. Analyses were conducted in the plane wave regime and the acoustic source was anechoic eliminating any reflections from the source. The effect of different louver configurations on insertion loss was examined. Parameters investigated included louver length, angle, and spacing between louvers. Based on the analyses, equations were developed for the insertion loss of unlined louvers.
2015-06-15
Journal Article
2015-01-2357
Hiromichi Tsuji, Kimihiko Nakano
This paper presents a new technique to estimate the coherent operational forces, with respect to the evaluation location, at the connections of separated passive substructures with reciprocity. Since transfer path analysis is conducted with respect to the evaluation location, the forces applied onto the substructures are, therefore, also required to estimate the coherent operational forces. In order to estimate the forces, the coherent impedance matrix, which is the projection of the impedance matrix onto the subspace with respect to the evaluation location, is estimated without measuring it directly. The acceleration responses at the connections of the passive substructure are measured by the excitation at the evaluation location with reciprocity. The technique decomposes the acceleration responses into the output and input element vectors on the subspace. With those vectors, the coherent impedance matrix is constructed.
Viewing 151 to 180 of 9057

Filter

Subtopics