Display:

Results

Viewing 151 to 180 of 8642
Technical Paper
2014-04-01
Mehdi Safaei, Shahram Azadi, Arash Keshavarz, Meghdad Zahedi
Abstract The main end of this research is the optimization of engine sub-frame parameters in a passenger car to reduce the transmitted vibration to vehicle cabin through DOE method. First, the full vehicle model of passenger car including all its sub-systems such as engine, suspension and steering system is modeled in ADAMS/CAR and its accuracy is validated by exerting swept sine and step input. After that, the schematic geometry of sub-frame is modeled in CAD software and transferred to ADAMS/CAR. Hence, the efficiency of the sub-frame in terms of reducing the induced vibration to vehicle cabin is examined through the various road inputs e.g. swept sine, step and random road input type (B). The results will illustrate that the sub-frame has significant effect in reduction of transmitted vibration to occupants. In order to optimize the sub-frame parameters, the sensitivity analysis is performed to derive effective parameters of sub-frame using DOE method. In this regard, the parameters which have dominant effect on transmitted vibration (the stiffness of sub-frame bushing in vertical direction) are optimized via RSM (Response Surface Method) method.
Technical Paper
2014-04-01
Sandeep Mahadev Jadhav
Abstract Objective of this research is to reduce gear rattle and whine noise. Study includes measurement of noise, vibration on transmission for source identification in order to eliminate rattle, whine through optimization of gear design and clutch damper performance. In order to optimize, we measured transmission torsional vibration and analyzed for proper selection of clutch dampers to reduce engine vibration transfer function to transmission. Through Noise & Vibration FFT, order and color map analysis we identified noise sources and further scope for specific gears design improvement. Hence test methodology adopted for development of gears and clutch damper successfully eliminated noise.
Technical Paper
2014-04-01
S. Christopher Zugo, Craig D. Smith, Charles W. Braun, Joseph Kazour
Abstract The audible noise characteristics of direct injectors are important to OEM customers when selecting a high pressure gasoline fuel injector. The activation noise is an undesirable aspect that needs to be minimized through injector design, injector mounting, and acoustic treatments. Experimentally identifying the location and frequency of noise sources is beneficial to the improvement of injector designs. Acoustic holography is a useful tool in locating these noise sources by measuring a sound pressure field with multiple microphones and using this field to estimate the source location. For injector testing, the local boundary conditions of the noise source will affect the resultant sound field. Therefore, how the injector is mounted within the test fixture will change the resultant noise field measured. In this study, the process of qualifying an acoustic holography fixture using measurement system analysis for GDi fuel injector testing will be documented. The noise levels and source locations for different injector mounting conditions will be evaluated.
Technical Paper
2014-04-01
Chien- Hsing Li, Yong-Yuan Ku, Ko Wei Lin
Abstract Due to the energy safety and environment protection, increase the percentage of biodiesel blend has become one of world wide strategies. In the past research, using biodiesel would affect the engine performance and increase the exhaust emission. Fortunately, these problems can be solved through the rapidly development of engine control technologies and lightweight structure design. However, the consideration of light/downsizing engine design with the same power has brought out much combustion noise. According to the higher and higher proportion has been widely used over the world. There was less researches focus on the different blending biodiesel impact on combustion noise. The combustion noise correspond to different blending biodiesel (D100,B5,B8,B20,B40,B100) which made form waste cooking oil has been discussion in this study. The experimental by using engine which meet EURO-4 was designed to caught spectrum of the combustion noise via transient window which under the constant engine speed of 1500rpm, 2000rpm, 2500rpm, with different torque at 30%, 50% and 70% of each speed, respectively.
Technical Paper
2014-04-01
Shuming Chen, Dengzhi Peng, Dengfeng Wang
Abstract Automobile cabin acoustical comfort is one of the main features that may attract customers to purchase a new car. The acoustic cavity mode of the car has an effect on the acoustical comfort. To identify the factors affecting computing accuracy of the acoustic mode, three different element type and six different element size acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different element type models are meshed in three different ways, tetrahedral elements, hexahedral elements and node coupling tetrahedral and hexahedral elements (tetra-hexahedral elements). The six different element size models are meshed with hexahedral element varies from 50mm to 75mm. Modal analysis test of the passenger car is conducted using loudspeaker excitation to identify the compartment cavity modes. All the acoustic cavity models are coupled with the structure model respectively, the cavity modes are calculated with structural-acoustic coupling model.
Technical Paper
2014-04-01
Hiroyuki Tanaka, Hisashi Ihara, Akira Satomura, Yasuhiko Wada, Hideto Momii, Tatsuya Suma
Abstract In order to enhance product attraction, it is important to reduce the impact noise when a vehicle go over bumps such as bridge joints. Vehicle performance to transitional noise phenomena is not yet analyzed well. In this paper, a prediction method is established by vector composition and inverse Fourier transform with the combination of Multibody Dynamics (MBD) and FEM. Also, a root cause analysis method is established with the following three mechanism analysis methods; transfer path analysis, mode contribution analysis, and panel contribution analysis.
Technical Paper
2014-04-01
Adarsh Venkata Padmanabhan, Hariram Ravichandran, Lokendra Pavan Kumar Pappala, Rangaraj Ramanan Durai
Abstract This paper will discuss information extraction from sound signals obtained using acoustic sensors which are strategically placed on the automotive body. The sound signal obtained contains useful information such as vehicle and road surface characteristics. The aforementioned information was spread out at different frequencies in the spectral distribution of the signal. Well defined filters for the corresponding frequency bands were used to isolate these characteristics and patterns pertaining to the identified useful information from the signal. The obtained information can be used as inputs for systems such as vehicle safety systems, power train systems and NVH (Noise, Vibration and Harshness) systems.
Technical Paper
2014-04-01
V. Jadon, G. Agawane, A. Baghel, Venkatesham Balide, R. Banerjee, A. Getta, H. Viswanathan, A. Awasthi
Abstract With significant decrease in the background noise in present day automobiles, liquid slosh noise from an automotive fuel tank is considered as a major irritant during acceleration and deceleration. All major international OEMs and their suppliers try to reduce sloshing noise by various design modifications in the fuel tank. However, most major activities reported in open literature are primarily based on performing various CAE and experimental studies in isolation. However, noise generation and its propagation is a multiphysics phenomenon, where fluid mechanics due to liquid sloshing affects structural behaviour of the fuel tank and its mountings which in turn affects noise generation and propagation. In the present study a multiphysics approach to noise generation has been used to predict liquid sloshing noise from a rectangular tank. Computational Fluid dynamics (CFD), Finite Element Analysis (FEA) and Boundary Element Method (BEM) simulation studies have been performed in a semi-coupled manner to predict noise.
Technical Paper
2014-04-01
Li Yan, Weikang Jiang, Jiangqi Zhou
Abstract Sound quality of vehicle interior noise affects passenger comfort. In order to improve the sound quality of a micro commercial vehicle, the vehicle interior noise under different conditions such as idle, constant speeds and accelerating is recorded by using artificial head with dual microphones. The sound quality of recorded noise is evaluated in both objective and subjective ways. Physical parameters of interior noise are calculated objectively, and annoyance score is analyzed subjectively using paired-comparison method. According to the regression analyzing of the annoyance score and the physical parameters, an objective evaluation parameter of the sound quality is employed. To analyze the vehicle body panel contribution to interior noise sound quality, the location and spectrum characteristics of major panel emission noise sources are identified based on partial singular valued decomposition (PSVD) method. By investigating the contribution of each noise sources to the sound quality evaluation formula, the dominant interior noise source is determined.
Technical Paper
2014-04-01
Jong Ho Lee
Abstract Since vehicle NVH reduction technology has improved dramatically, buzz, squeak and rattle (hereafter referred to as “BSR”) noise quantification from interior and exterior of the vehicle becomes an important factor to measure the quality of the vehicle. (The cost rate of BSR noise claims take around 10-15%, moreover BSR noise negatively affects customers to purchase vehicles.) Therefore, a research of BSR evaluation comes to the fore to make a premium car. In this paper, we would like to introduce the development of a vehicle excitation test mode, the full-vehicle BSR test system, and a sound acoustic camera to detect BSR noise. The test profiles were correlated with various road severities such as the domestic field test sites including 5,000km cross-country off road, 19 test tracks for BSR in R&D test center, and quality test tracks in domestic factories. These test modes were classified into 4 levels (Low-Normal-High-Crazy) by judging degrees of GRMS values. The full-vehicle test system can reproduce various field road profiles of the BSR for chassis parts, interior, and exterior for temperatures of −40∼60°C.
Technical Paper
2014-04-01
Gaurav Gupta, Rituraj Gautam, Chetan Prakash Jain
Abstract Interior sound quality is one of the significant factors contributing to the comfort level of the occupants of a passenger car. One of the major reasons for the deterioration of interior sound quality is the booming noise. Booming noise is a low frequency (20Hz∼300Hz) structure borne noise which occurs mainly due to the powertrain excitations or road excitations. Several methods have been developed over time to identify and troubleshoot the causes of booming noise [1]. In this paper an attempt has been made to understand the booming noise by analyzing structural (panels) and acoustic (cavity) modes. Both the structural modes and the acoustic modes of the vehicle cabin were measured experimentally on a B-segment hatchback vehicle using a novel approach and the coupled modes were identified. Panels contributing to booming noise were identified and countermeasures were taken to modify these panels to achieve decoupling of structural and cavity modes which results in the reduction of cabin noise levels.
Technical Paper
2014-04-01
Gen Shibata, Hirooki Ushijima, Hideyuki Ogawa, Yushi Shibaike
Abstract When fuel is vaporized and mixed well with air in the cylinder of premixed diesel engines, the mixture auto-ignites in one burst resulting in strong combustion noise, and combustion noise reduction is necessary to achieve high load premixed diesel engine operation. In this paper, an engine noise analysis was conducted by engine tests and simulations. The engine employed in the experiments was a supercharged single cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave data from the cross power spectrum of the sound pressure of the engine noise. The parameters investigated in the engine tests were the maximum rate of pressure rise, intake pressure by the supercharger, intake oxygen content by EGR, and the fuel injection timing, in all experiments the engine speed was maintained at 1600 rpm.
Technical Paper
2014-04-01
Ornella Chiavola, Giancarlo Chiatti, Erasmo Recco
Abstract Many studies have demonstrated that an efficient control of the combustion process is crucial in order to comply with increasingly emerging Diesel emission standards and demanding for reduced fuel consumption. Methodologies based on real-time techniques are imperative and even if newly sensors will be available in the near future for on-board installation inside the cylinder, non intrusive measurements are still considered very attractive. This paper presents an experimental activity devoted to analyze the noise emission from a small displacement two-cylinder Diesel engine equipped by HPCR (high pressure common rail) fuel injection system. The signals acquired during stationary operation of the engine are analyzed and processed in order to highlight the different sources contributing to the overall emission. Particular attention is devoted to the specific samples of the signal that are mainly caused by the combustion process in order to extract the combustion contribution. The relationship between such a noise contribution and the in-cylinder pressure development during the combustion process is analyzed with the final aim of developing an algorithm in which the engine acoustic emission is used to compute key parameters able to fully characterize the pattern of the pressure development during the combustion process.
Technical Paper
2014-04-01
Gihwan Kim, Chi-Hoon Choi, You Sung Moon, Yong Sun (Steven) Jin
Abstract The main contribution of this paper is to employ a sound and vibration theory in order to develop a light and cost effective plastic intercooler pipe. The intercooler pipe was composed of two rubber hoses and one aluminum pipe mounted between an ACV (Air Control Valve) and an intercooler outlet. The engineering design concept is to incorporate low-vibration type bellows and an impedance-mismatched center pipe, which replaces the rubber hoses and aluminum pipe respectively. The bellows were designed to adapt powertrain movement for high vibration transmission loss to the intercooler outlet. Also, the impedance-mismatched center pipe was implemented to increase reflected wave by using relatively higher modulus than bellows part and applying a SeCo (Sequential Coextrusion) processing method.
Technical Paper
2014-04-01
Xingyu Liang, Kang Sun, Yuesen Wang, Gequn Shu, Lin Tang, Lei Ling, Xu Wang
Abstract Like outside scenery, the car interior noise and road condition will affect the driver's mental state when driving. In order to explore the influence of external visual and auditory factors on the driver's mood in the driving process based on research of traffic soundscape, this paper has selected four backbone roads of Tianjin city (China) to test and drive a gasoline passenger vehicle at different speeds. Near Acoustic Holographic was used to scan interior acoustic field distribution, while the tracking shot of the driver's location was recorded by a Sony camera. People with different characteristics were invited to watch the video and completed a self-designed survey questionnaire. The external factors affecting the driver's mood were explored by analyzing all these data. After the investigation, we found that the sound field distribution inside the car could be affected directly and significantly by the opening and closing the car window when driving; in the case of keeping the window closed, the acoustic characteristics of the car cabin was relatively stable; and the visual impact factor of the driver's mood is mainly related to the traffic congestion degree and the construction quality of road surface, whereas the road appearance and aesthetics, which people usually concern about have very little influence.
Technical Paper
2014-04-01
Fred G. Mendonca, Terence Connelly, Satish Bonthu, Philip Shorter
Abstract The interior noise in a vehicle that is due to flow over the exterior of the vehicle is often referred to as ‘windnoise’. In order to predict interior windnoise it is necessary to characterize the fluctuating surface pressures on the exterior of the vehicle along with vibro-acoustic transmission to the vehicle interior. For example, for greenhouse sources, flow over the A-pillar and side-view mirror typically induces both turbulence and local aeroacoustic sources which then excite the glass, and window seals. These components then transmit noise and vibration to the vehicle interior. Previous studies by the authors have demonstrated validated CFD (Computational Fluid Dynamics) techniques which give insight into the flow-noise source mechanisms. The studies also made use of post-processing based on temporal and spatial Fourier analysis in order to quantify the amount of energy in the flow at convective and acoustic wavenumbers. In the present study, the previously validated transient CFD techniques are used to describe sources that are input to frequency-based vibro-acoustic methods in order to predict interior noise.
Technical Paper
2014-04-01
Hangsheng Hou
Abstract When a window opens to provide the occupant with fresh air flow while driving, wind throb problems may develop along with it. This work focuses on an analytical approach to address the wind throb issue for passenger vehicles when a front window or sunroof is open. The first case of this paper pertains to the front window throb issue for the current Ford Escape. Early in a program stage, CAA (Computational Aeroacoustics) analysis predicted that the wind throb level exceeded the program wind throb target. When a prototype vehicle became available, the wind tunnel test confirmed the much earlier analytical result. In an attempt to resolve this issue, the efforts focused on a design proposal to implement a wind spoiler on the side mirror sail, with the spoiler dimension only 6 millimeters in height. This work showed that the full vehicle CAA analysis could capture the impact of this tiny geometry variation on the wind throb level inside the vehicle cabin. The independent wind tunnel effort came to the same conclusion, and the difference between the analysis and testing is only about 1 dB.
Technical Paper
2014-04-01
L.A.Raghu Mutnuri, Sivapalan Senthooran, Robert Powell, Zen Sugiyama, David Freed
Abstract A computational approach to evaluate rear-view mirror performance on wind noise in cars is presented in this paper. As a comfort metric at high speeds, wind noise needs to be addressed, for it dominates interior noise at mid-high frequencies. The impetus on rear-view mirror design arises from its crucial role in the flow field and the resulting pressure fluctuations on the greenhouse panels. The motivation to adopt a computational approach arises from the need to evaluate mirror designs early in vehicle design process and thus in conjunction with different vehicle shapes. The current study uses a Lattice Boltzmann method (LBM) based computational fluid dynamics(CFD) solver to predict the transient flow field and a statistical energy analysis(SEA) solver to predict interior noise contribution from the greenhouse panels. The accuracy of this computational procedure has been validated and published in the past. Realistic car geometry is chosen and the transient flow field around the vehicle resulting from mounting two different rear-view mirror designs is analyzed.
Technical Paper
2014-04-01
Kenji Yoshida, Junichi Semura, Itsuhei Kohri, Yoshihiro Kato
Abstract This study investigates the reduction of the Blade Passing Frequency (BPF) noise radiated from an automotive engine cooling fans, especially in case of the fan with an eccentric shroud. In recent years, with the increase of HV and EV, noise reduction demand been increased. Therefore it is necessary to reduce engine cooling fan noise. In addition, as a vehicle trend, engine rooms have diminished due to expansion of passenger rooms. As a result, since the space for engine cooling fans need to be small. In this situation, shroud shapes have become complicated and non-axial symmetric (eccentric). Generally, the noise of fan with an eccentric shroud becomes worse especially for BPF noise. So it is necessary to reduce the fan BPF noise. The purposes of this paper is to find sound sources of the BPF noise by measuring sound intensity and to analyze the flow structure around the blade by Computational Fluid Dynamics (CFD). From the present results, suggest a design concept of the shroud shape to reduce the fan BPF noise is suggested.
Technical Paper
2014-04-01
Giovanni Morais Teixeira
Abstract Fatigue caused by forced vibration of a random nature is one of the major concerns in the automotive field. Random loading of components under actual driving conditions causes dynamic stress/strain responses which can be better described and handled in the frequency domain. Power Spectrum Density (PSD) is usually the most concise and straightforward way of representing a random process. Since frequency domain methodologies are gaining more respect and interest it is very important to be aware of their limitations and scope, particularly when compared to time domain algorithms. The present paper aims to discuss both approaches and establish some comparisons in terms of accuracy, range of application, computation time and user friendliness.
Technical Paper
2014-04-01
Manchi Venkateswara Rao, Jos Frank, Prasath Raghavendran
Abstract Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation. In this paper, a new method is proposed in which the structure borne noise associated with powertrain is quantified easily and reliably.
Technical Paper
2014-04-01
Marcus Becher, Stefan Becker
Abstract This paper focuses on the applicability of numerical prediction of sound radiation caused by an axial vehicle cooling fan. To investigate the applicability of numerical methods, a hybrid approach is chosen where first a CFD simulation is performed and the sound radiation is calculated in a second step. For the acoustic simulation an integral method described by Ffowcs-Williams-Hawkings is used to predict the sound propagation in the far-field. The simulation results are validated with experiments. The corresponding setup in experiments and simulation represents an overall system which includes the cooler, the cooling fan and a combustion engine dummy. To optimize the economical applicability in terms of simulation setup and run time, different approaches are investigated. This includes the simulation of only one blade using a periodic boundary condition as compared to the whole fan geometry. In the CFD simulation an SAS-turbulence-model is applied. The results show that this is a very useful approach considering the challenges in prediction of numerical sound.
Technical Paper
2014-04-01
Ajo John Thomas, Avnish Gosain, Prashanth Balachandran
Abstract The automobile market is witnessing a different trend altogether - the trend of shifting preference from powerful to fuel efficient machines. Certain factors like growing prices of fuel, struggling global economy, environmental sensitiveness and affordability have pushed the focus on smaller, efficient and cleaner automobiles. To meet such requirements, the automobile manufacturers, are going stringent on vehicle weights. Using electric and hybrid power-plants are other options to meet higher fuel efficiency and emission requirements but significant cost of these technologies have kept their growth restricted to only few makers and to only few regions of the globe. Optimizing the vehicle weight is a more attractive option for makers as it promises lesser time to market, is low on investment and allows use of existing platforms. However, lightweighting and NVH often conflict each other in vehicle development and hence design optimization plays a vital role in assigning a tradeoff between the lightweighting and NVH.
Technical Paper
2014-04-01
Atul Devidas Pol, Praveen Naganoor
Abstract Achieving targeted global modes (torsion, vertical bending and lateral bending) is one of the main enablers in meeting desired NVH performance characteristics of a new vehicle program. The torsion mode of next generation Land Rover - Freelander was lagging behind its target while the development cycle was quite progressed beyond underbody freeze. There was a challenge to recover more than 8 Hz in BIW torsion mode. A combination of Nastran Sol 200 (design sensitivity and optimization) and iterative process was adopted to demonstrate how the mode could be recovered with optimum mass penalty to the program. The paper states the existing modal status when this work was taken up. Next it elucidates design sensitivity/optimization module outcome which identifies sensitive areas to improve torsion mode. Then it describes how feasible design solutions were developed while iterating using Nastran Sol 103 modal analysis, based on the outcome of above sensitivity/optimization analyses, to converge to the specified target.
Technical Paper
2014-04-01
Xiaozhen Sheng, Shouhui Huang, Sheng Tian, Xia Cao, Youlin Huang
Abstract Subject to excitations from pressure pulsations in boost air, the rubber pipe connecting the turbo compressor outlet and the intercooler of an engine vibrates structurally and radiates noise. If the pipe is improperly selected, the resulted vibration may be strong enough to radiate noise which is sufficient to damage the sound quality of the vehicle. This paper presents an initial analysis on this issue. First, formulae are derived for predicting vibration and sound radiation of the pipe for a given pressure pulsation, resulting in sound transmission index for the pipe to quantify its sound insulation behavior. Then effects on the sound transmission index are investigated for pipe parameters such as pipe wall thickness, Young's modulus and density of pipe material.
Technical Paper
2014-04-01
Hyungtae Kim, Sehwun Oh, Ki-Chang Kim, Ju Young Lee, Jungseok Cheong, Junmoo Her
Abstract It is common knowledge that body structure is an important factor of road noise performance. Thus, a high stiffness of body system is required, and determining their optimized stiffness and structure is necessary. Therefore, a method for improving body stiffness and validating the relationship between stiffness and road noise through CAE and experimental trials was tested. Furthermore, a guideline for optimizing body structure for road noise performance was suggested.
Technical Paper
2014-04-01
Ravi Kiran Cheni, Chetan Prakash Jain, Revathy Muthiah, Srikanth Gomatam
Abstract Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range. Design methodology follows the concept of Mass-damper system on vehicle body or engine structure where panel with multi-degree of freedom vibrating at medium level frequency is transferred to damper which is vibrating at same resonant frequency in 180° opposite phase.
Technical Paper
2014-04-01
Changxin Wang, Deguang Fang, Fuxiang Guo
Abstract To find out the main excitation sources of a bus floor's vibration, modal analysis and spectral analysis were respectively performed in the paper. First we tested the vibration modal of the bus's floor under the full-load condition, and the first ten natural frequencies and vibration modes were obtained for the source identification of the bus floor's vibration. Second the vibration characteristic of the bus floor was measured in an on-road experiment. The acceleration sensors were arranged on the bus's floor and the possible excitation sources of the bus, which includes engine mounting system, driveline system, exhaust system, and wheels. Then the on-road experiment was carefully conducted on a highway under the four kinds of test condition: in-situ acceleration, uniform velocity (90km/h, 100km/h, 110km/h, 120km/h), uniform acceleration with top gear, and stall sliding condition with neutral gear. After that, by performing order tracking analysis and spectral analysis, the 1st order rotation frequency of the driveline and the 2nd order frequency of engine were identified to be the main cause of bus floor's vibration.
Technical Paper
2014-04-01
Mohit Kohli, S Nataraja Moorthy, Manchi Venkateswara Rao, Prasath Raghavendran
Abstract The present quiet and comfortable automobiles are the result of years of research carried out by NVH engineers across the world. Extensive studies helped engineers to attenuate the noise generated by major sources such as engine, transmission, driveline and road excitations to a considerable extent, which made other noise sources such as intake, exhaust and tire perceivable inside. Many active and passive methods are available to reduce the effect of said noise sources, but enough care needs to be taken at the design level itself to eliminate the effect of cavity resonances. Experimental investigation of cavity resonances of real systems is necessary besides the FEA model based calculations. Acoustic cavity resonance of vehicle sub systems show their presence in the interior noise through structure borne and air borne excitations. Cavity resonances for some systems e.g. intake can only be suppressed through resonators. The exact location and nature of acoustic cavity resonance needs to be found as accurately as possible to bring out the best from a resonator.
Technical Paper
2014-04-01
Masashi Terada, Takashi Kondo, Yukihiro Kunitake, Kunitomo Miyahara
Abstract In automobile development, steering vibrations caused by engine excitation force and suspension vibration input from the road surface are a problem. The conventional method of reducing vibrations and thereby securing marketability has been to dispose a dynamic damper inside the steering wheel. The resonance frequency of a steering system varies for each vehicle developed (as a result of the vehicle size, the arrangement of the stiff members of the vehicle body, and the like). As a result, the individual values of dynamic dampers that are used with vehicles must be adjusted for each developed vehicle type. To address this problem, we have developed a new structure in which, rather than using a conventional dynamic damper, we disposed a floating bush on the Supplemental Restraint System (SRS) module attachment section and used the SRS module itself as the weight for the dynamic damper. In this structure, the dynamic damper weight is approximately eight times greater than the conventional weight, the vibration reduction effect is enhanced, and the effective frequency range is widened.
Viewing 151 to 180 of 8642

Filter

  • Article
    864
  • Book
    21
  • Collection
    16
  • Magazine
    252
  • Technical Paper
    6903
  • Subscription
    1
  • Standard
    585

Subtopics