Display:

Results

Viewing 91 to 120 of 9353
2016-04-24
Article
Consortium of OEMs and suppliers worked on all fronts, while the SAE Interior Climate Control Committee reopened a suite of draft standards to prepare for possible importation of cars with R-744: CO2 as a refrigerant.
2016-04-20
Article
Experts say Phase Change Material (PCM) formulated for high latent heat capacity can provide cabin warmth for a typical U.S. daily commute, with residual capacity insulated for an EV parked during an eight-hour workday.
2016-04-20
Article
Ruetz System Solutions provides an interoperability test platform for Automotive Ethernet that constitutes a component of the test set-up for Open Alliance Layer 1 interoperability tests for ECUs.
2016-04-20
Standard
J3001_201604
This procedure is applicable to modes from 500 and 13,000 Hz. The parameters measured with this procedure are defined as the damping factor, ξ for first nine vibration modes of the beam. The measurement will be done in free-free conditions and with temperature.
2016-04-14
Article
Manufacturing and service teams are discovering ways to use AR technology to handle complex systems like wire harnesses.
2016-04-13
Article
The nCode brand of durability, test, and analysis software by HBM introduces nCode VibeSys, a new data processing system designed to help acoustics and vibration engineers.
2016-04-11
Article
Automakers are increasingly employing digital crash test dummies made of zeroes and ones to take the big hits in virtual vehicles.
2016-04-05
Journal Article
2015-01-9152
André Lundkvist, Arne Nykänen, Roger Johnsson
Abstract Many of the information systems in cars require visual attention, and a way to reduce both visual and cognitive workload could be to use sound. An experiment was designed in order to determine how driving and secondary task performance is affected by the use of information sound signals and their spatial positions. The experiment was performed in a driving simulator utilizing Lane Change Task as a driving scenario in combination with the Surrogate Reference Task as a secondary task. Two different signal sounds with different spatial positions informed the driver when a lane change should be made and when a new secondary task was presented. Driving performance was significantly improved when both signal sounds were presented in front of the driver. No significant effects on secondary task performance were found. It is recommended that signal sounds are placed in front of the driver, when possible, if the goal is to draw attention forward.
2016-04-05
Journal Article
2015-01-9153
André Lundkvist, Arne Nykänen
Abstract The number of advanced driver assistance systems is constantly increasing. Many of the systems require visual attention, and a way to reduce risks associated with inattention could be to use multisensory signals. A driver's main attention is in front of the car, but inattention to surrounding areas beside and behind the car can be a risk. Therefore, there is a need for driver assistance systems capable of directing attention to the sides. In a simulator study, combined visual, auditory and vibrotactile signals for directional attention capture were designed for use in driver assistance systems, such as blind spot information, parking assistance, collision warnings, navigation, lane departure warning etc. An experiment was conducted in order to measure the effects of the use of different sensory modalities on directional attention (left/right) in driver assistance systems.
2016-04-05
Technical Paper
2016-01-1186
Dong Hao, Yongping Hou, Jianping Shen, Liying Ma
Abstract The vehicular fuel cell stack is unavoidably impacted by the vibration in the real-world usage due to the road unevenness. However, effects of vibration on stacks have yet to be completely understood. In this work, the mechanical integrity and gas-tightness of the stack were investigated through a strengthen road vibration test with a duration of 200 h. The excitation signals applied in the vibration test were simulated by the acceleration of the stack, which were previously measured in a vehicle vibration test. The load signals of the vehicle vibration test were iterated through a road simulator from vehicle acceleration signals which were originally sampled in the proving ground. Frequency sweep test was conducted before and after the vibration test. During the vibration test, mechanical structure inspection and pressure maintaining test of the stack were conducted at regular intervals.
2016-04-05
Journal Article
2016-01-1181
Takao Watanabe, Tadashi Fujiyoshi, Akira Murakami
Abstract In the present paper, we introduce a drivetrain system using an electromagnetic coupling for hybrid electric vehicles, and propose a new control concept of vibration torque interception. The electromagnetic coupling is an electric machine that is composed of a pair of rotors, and electromagnetic torque acts mutually between the rotors. In the drivetrain system, the electromagnetic coupling works as a torque transmission device with a rotational-speed-converting function. We demonstrate that, by using this control, the electromagnetic coupling also works as a damping device that intercepts the vibration torque of the internal combustion engine, while transmitting the smooth torque to its drive line. Using a model of a two-inertia resonance system, a control system is designed such that a transfer function representing input-to-output torque is shaped in the frequency domain.
2016-04-05
Technical Paper
2016-01-1069
Masayoshi Otaka, Taro Kasahara, Kenichi Komaba
Abstract As a means of further improving combustion efficiency of gasoline engine, an increase in compression ratio, which enhances the risk of knocking, is thinkable. To optimize engine combustion parameters, a technology that can precisely detect knocking is desirable. Presently skillful experts have been evaluating knocking subjectively by listening to radiation noise so far. The authors developed a device that can precisely detect knocking by means of processing sound signals, which are captured by a high-performance microphone that is sensitive in the wide frequency range. Shock waves induced by knocking cause in-cylinder gas vibrations that emits metallic hit noises from the outer engine wall. We studied how to identify the feature values of frequency characteristics when knocking occurs, under the assumption that the engine radiation noise includes more than 2nd-order harmonic components with respect to the basic frequency of the in-cylinder gas vibration mode.
2016-04-05
Technical Paper
2016-01-1060
Arnab Ganguly, Niket Bhatia, Vikas Kumar Agarwal, Ulhas Mohite
Abstract With ride comfort in a motorcycle gaining significance, it is important to minimize vibration levels at the customer touch points. The reciprocating piston imparts rotary motion to the crankshaft which in turn induces unbalance forces and produces vibration in the vehicle, thus influencing the ride quality. Generally, the primary inertial forces are balanced by a combination of balancer body and crank web. However, being a commuter bike, a balancer body could not be accommodated due to cost and space constraints. In such scenario, the first order unbalance force cannot be completely eliminated but can only be redistributed by adding counterweight to the crankshaft. Proper distribution of these forces is required for optimum vibration levels at motorcycle touch sensitive points (TSP) such as handle bar, footrest etc.
2016-04-05
Technical Paper
2016-01-1061
Guiping Yue, Wenbo Niu, Jian Zhao, Dandan Kong, Yun Li, Hangsheng Hou
Abstract Gear whine noise impacts customer perception of vehicle interior quietness in general and sound quality in particular. It has been a frequently occurred annoying phenomenon during vehicle development and much discussed topic regarding transmission NVH refinement in automotive industry. This work pertains to a transmission gear whine issue encountered in prototype evaluations during a vehicle program development process. The effort centers itself on the optimization of transmission gear macroscopic and microscopic parameters to fix the issue which is deemed unacceptable for customers. Specifically, by using multi-body dynamics approach, this work carries out a transmission system whine noise simulation based on optimal gear macro parameter selection and micro tooth flank modification. The obtained results show that the proposed design changes could successfully resolve the issue, which is verified by subsequent test measurement and confirmed by subjective evaluations.
2016-04-05
Technical Paper
2016-01-1063
George Nerubenko
Abstract Up to 30% of engine noise is delivered by front end pulley combined with torsional vibration damper, and technically it is the main contributor to recorded engine noise level. So the novel solutions in terms of improving the design and performance of torsional vibration damper would help to reduce radically this component of engine noise. The results of dynamical study of patented torsional vibration damper combined with pulley are presented. Design and structure of torsional vibration damper is based on author’s US Patent 7,438,165 having the self-tuning control system for all frequencies in running engine in all operational regimes. Mathematical model has been used for the analysis of the emitting noise of engine having proposed torsional vibration damper. Attention is paid to mitigation of the sound power levels contributing by engine subsystem “end of crankshaft - torsional vibration damper - pulley”.
2016-04-05
Technical Paper
2016-01-1094
Fang Liao, Weimin Gao, Yan Gu, Fei Kang, Yinan Li, Cheng Wang
Abstract Generally, the gear rattle noise prediction models are composed of the mass and stiffness elements. The proposals are about the gear inertia or backlash and the shaft inertia or stiffness, but there are many detailed designs in the same inertia, stiffness or backlash conditions. Therefore, these proposals can’t guide detailed designs. These models only investigate the rattle in the rotating degree, and ignore rattle contribution in the radical and axial directions. Those prediction models only consider one or several factors which affect the rattle noise performance. It is difficult to predict the influence of individual factor and multi-factors coupling on the gear rattle noise in a rattle simulation model.
2016-04-05
Technical Paper
2016-01-1127
Enrico Galvagno, Guido Ricardo Guercioni, Alessandro Vigliani
Abstract This paper presents a methodology for the assessment of the NVH (noise vibration and harshness) performance of Dual Clutch Transmissions (DCTs) depending on some transmission design parameters, e.g. torsional backlash in the synchronizers or clutch disc moment of inertia, during low speed maneuvers. A 21-DOFs nonlinear dynamic model of a C-segment passenger car equipped with a DCT is used to simulate the torsional behavior of the driveline and to estimate the forces at the bearings. The impacts between the teeth of two engaging components, e.g. gears and synchronizers, generate impulses in the forces, thus loading the bearings with force time-history characterized by rich frequency content. A broadband excitation is therefore applied to the gearbox case, generating noise and vibration issues.
2016-04-05
Technical Paper
2016-01-1114
Jinsung Kim
Abstract A dry clutch induces judder phenomenon which is caused by variations in the vehicle load condition and frictional material properties. Such a problem may lead to the stick-slip limit cycle that results in undesired longitudinal vibrations of vehicles. To solve this problem, a vibration suppression control is proposed. The amplitude of vibrations is detected by the signal conditioning from the measurements with the transmission input shaft speed and the wheel speed sensors. Based upon this, a perturbation torque is applied additionally on the nominal launch controller to make the drive shaft oscillation vanish. It can be achieved by the control design without any extra hardware cost. Finally, experimental results confirm the effectiveness of the proposed mechanism.
2016-04-05
Technical Paper
2016-01-1123
Ante Bozic
Abstract Among the various types of hydrostatic transmissions, those based on radial piston multi-stroke machines are well-known solutions for off-road mobile machines. The balance between compactness, efficiency, control, comfort and price is the main reason for this. For the same reason, several car companies have tried to introduce hydrostatic transmissions into on-road applications. All such efforts have failed, mainly due to the whine noise produced by the hydrostatic machines. In particular, well-known standard solutions that aim to address the noise of radial piston multi-stroke machines, such as optimized relief grooves known as ‘notches’, are oriented toward reduction of the noise level. Unfortunately, the remaining whine noise, even with well-optimized notches, is unacceptable for automotive NVH standards.
2016-04-05
Technical Paper
2016-01-1121
Fang Liao, Weimin Gao, Yan Gu, Fei Kang, Yinan Li, Cheng Wang
Abstract Noise signals of the driver’s right ear include those of engine, environment, chassis dynamometer, loaded gears and unloaded gears when they are recorded in full vehicle on chassis dynamometer in semi-anechoic room. Gear rattle noise signals of the driver’s right ear caused by unloaded gear pairs can’t be identified or quantified directly. To solve the problems, relative approaches are used to identify and quantify the gear rattle noise signals. Firstly, the rattle noise signals of the driver’s right ear are filtered by human ear characteristic functions and steady noise signals are extracted by regression and smoothing processes. The noise signals are regressed at 200ms interval in the hearing critical frequency bands and smoothed in the flanking frequencies. Then, the noise relative approaches are obtained by subtracting the steady noise signals from the filtered noise signals, which are the transient noise signals of the unloaded gear pairs inducing the rattle noise.
2016-04-05
Technical Paper
2016-01-1053
TL Balasubramanian, Vigneshwara Raja Kesavan, V Lakshminarasimhan, Vamsi Krishna Balla, Suresh Palani
Abstract This paper discusses various noise sources of cylinder head assembly and focuses on design options developed to reduce the cylinder head noise in a single cylinder, 110cc scooter engine. Various experimental procedures were used for identification and ranking of different noise sources. In case of air-cooled small engines, temperature effects are dominant and as a consequence certain noises stand out in hot condition causing severe noise discomfort. After identifying the reasons for abnormal cylinder head noise, countermeasure mechanisms for reducing unintended impacts of valve train/ rocker arm in the layout were developed. The side-effects due to introduction of these additional mechanisms are studied using performance metrics. It is essential to limit noise deterioration over time to increase customer satisfaction. Simulation cycles were developed to quantify the cylinder head noise deterioration using accelerated testing procedures.
2016-04-05
Technical Paper
2016-01-1057
Masaya Miyazawa, Kei Mochizuki, Kondo Takashi
Abstract To achieve lightweight, low friction and fuel efficient engine, the crankshaft is required to be designed lightweight, small-diameter shaft, long stroke. In this case, vibration of the crankshaft is increased by reduction of shaft stiffness. The conventional way of dealing with this increased vibration used to be to add an inertia mass ring or a double mass damper. Such an approach, however, increases weight, making the balance of weight reduction and vibration reduction less readily achieved. This paper therefore reports on how the main factors causing crankshaft vibration to increase in the shaft with reduced stiffness were clarified. Based on that clarification, efforts were made to reduce crankshaft vibration without increasing the weight of the crankshaft system. Measurement and analysis were used to analyze crankshaft vibration during operation.
2016-04-05
Technical Paper
2016-01-1617
Yoshinobu Yamade, Chisachi Kato, Shinobu Yoshimura, Akiyoshi Iida, Keiichiro Iida, Kunizo Onda, Yoshimitsu Hashizume, Yang Gou
Abstract A wall-resolving Large Eddy Simulation (LES) has been performed by using up to 40 billion grids with a minimum grid resolution of 0.1 mm for predicting the exterior hydrodynamic pressure fluctuations in the turbulent boundary layers of a test car with simplified geometry. At several sampling points on the car surface, which included a point on the side window, the door panel, and the front fender panel, the computed hydrodynamic pressure fluctuations were compared with those measured by microphones installed on the surface of the car in a wind tunnel, and effects of the grid resolution on the accuracy of the predicted frequency spectra were discussed. The power spectra of the pressure fluctuations computed with 5 billion grid LES agreed reasonably well with those measured in the wind tunnel up to around 2 kHz although they had some discrepancy with the measured ones in the low and middle frequencies.
2016-04-05
Technical Paper
2016-01-1616
Keiichiro Iida, Kunizo Onda, Akiyoshi Iida, Chisachi Kato, Shinobu Yoshimura, Yoshinobu Yamade, Yoshimitsu Hashizume, Yang Guo
Abstract One-way coupled simulation method that combines CFD, structural and acoustical analyses has been developed aiming at predicting the aeroacoustical interior noise for a wide range of frequency between 100 Hz and 4 kHz. Statistical Energy Analysis (SEA) has been widely used for evaluating transmission of sound through a car body and resulting interior sound field. Instead of SEA, we directly computed vibration and sound in order to investigate and understand propagation paths of vibration in a car body and sound fields. As the first step of this approach, we predicted the pressure fluctuations on the external surfaces of a car by computing the unsteady flow around the car. Secondly, the predicted pressure fluctuations were fed to the subsequent structural vibration analysis to predict vibration accelerations on the internal surfaces of the car.
2016-04-05
Technical Paper
2016-01-1557
Francesco Castellani, Nicola Bartolini, Lorenzo Scappaticci, Davide Astolfi, Matteo Becchetti
Abstract Shock absorber is one of the most relevant sub-systems of the suspension system for a wide range of vehicles. Although a high level of development and tuning has been reached, in order to ensure high safety standards in almost every situation, some dynamic phenomena affecting vehicle handling or NHV (Noise Vibration Harshness) can appear. The aim of present work is to improve a mathematical model using experimental data from a prototype of monotube shock absorber developed for research purposes. The model takes into account all the main features affecting the global performance of the device, such as non-linear behaviour and the presence of hysteresis loops. Actually, the most important parameters are analyzed, such as flow and orifice coefficients of the valves, coefficients of mechanical compliance of the chambers and oil compressibility, dry and viscous friction coefficients.
2016-04-05
Technical Paper
2016-01-1549
Nicola Bartolini, Lorenzo Scappaticci, Francesco Castellani, Alberto Garinei
Knocking noise is a transient structural noise triggered by piston rod vibrations in the shock absorber that excite the vibration of chassis components. Piston rod vibrations can be caused by valve motion (opening and closing) and dry friction during stroke inversions. This study investigates shock absorber knocking noise in twin tube gas-filled automotive shock absorbers and its aim is to define an acceptance criterion for a sample check of the component. If, in fact, the damper comes from a large mass production, it may happen that small mounting differences lead to different behaviors that result in higher or lower levels of knocking noise. To achieve this goal, experimental tests were carried out using a hydraulic test bench; accelerometers were placed in proximity to the rebound valve and on the piston rod. The vibration phenomenon was then isolated through a post-processing analysis and a damped and unforced lumped mass model was used to characterize the vibration.
2016-04-05
Technical Paper
2016-01-0871
Sanjoy Biswas, Manish Bakshi, G Shankar, Achintya Mukhopadhyay
Abstract An emissions, combustion noise and performance study were conducted to explore the effects of two different multiple injections strategies on emissions, combustion noise and performances without altering EGR %. The experiments were done on a six cylinder inline CRDI diesel production engine. The aim of this study is to improve performances (brake specific fuel consumption [BSFC], torque) and combustion noise (reduction) using multiple injection strategies without violating emission regulations. The other objective of this carried-out analysis is to examine the influence of different operating parameters (Speed and Load) and main injection timing combined, on same multiple injection strategies (Pilot- main – after {PMA}and Early - pilot- main –after {EPMA}) by means of analyzing emissions/soot, combustion noise and performances data.
2016-04-05
Journal Article
2016-01-1315
Yongchang Du, Yingping Lv, Yujian Wang, Pu Gao
Abstract Closed-loop coupling model, based on complex eigenvalue analysis, is one of the most popular and effective methods for brake squeal analysis. In the model, imaginary coupling springs are used to represent the normal contacting force between coupled nodes. Unfortunately, the physical meaning of these coupling springs was seldom discussed and there’s no systematic method to determine the value of spring stiffness. Realizing this problem, this paper, based on finite element model and modal synthesis technique, develops a new closed-loop coupling disc brake squeal model without introducing imaginary coupling springs. Different from the traditional model where two nodes at coupling interface are connected through a spring, these node-pairs in the new model are assumed to remain in tight contact during vibration. Details of the model, including force analysis, coordinate reduction and transformation and complex eigenvalue decomposition are given in this paper.
2016-04-05
Journal Article
2016-01-1316
Vincent Rovedatti, Jacob Milhorn, Richard DeJong, Gordon Ebbitt
Abstract A 1/4 scale model vehicle profile has been tested in a wind tunnel with speeds up to 360 km/h. In order to simulate the free field flow over the vehicle, the top surface of the wind tunnel is contoured. A CFD simulation of the free field flow at various speeds is used to identify the desired top streamline. Then the boundary layer growth on the top surface is calculated and the top contour is adjusted accordingly. Since this contour changes very little with flow speeds of interest, an average contour is used for a fixed top surface of the wind tunnel. Pressure drop measurements are used to verify the flow similarity to the CFD model. Wind noise measurements using surface mounted pressure transducer arrays are used to determine the acoustic loads on the vehicle surfaces.
2016-04-05
Technical Paper
2016-01-1317
Peng Wang, Xin Hua, T. Wu, David W. Herrin
Abstract Insertion loss in one-third or octave bands is widely used in industry to assess the performance of large silencers and mufflers. However, there is no standard procedure for determining the transmission loss in one-third or octave bands using measured data or simulation. In this paper, assuming that the source is broadband, three different approaches to convert the narrowband transmission loss data into one-third and octave bands are investigated. Each method is described in detail. To validate the three different approaches, narrowband transmission loss data of a simple expansion chamber and a large bar silencer is converted into one-third and octave bands, and results obtained from the three approaches are demonstrated to agree well with one another.
Viewing 91 to 120 of 9353

Filter

Subtopics