Display:

Results

Viewing 91 to 120 of 9057
2015-06-15
Technical Paper
2015-01-2171
Winston Spencer, Djamel Bouzit, Joseph Pace, Sudeep Dhillon
Driveline plunge mechanism dynamics has a significant contribution to the driver's perceivable transient NVH error states and to the transmission shift quality. As it accounts for the pitch or roll movements of the front powerplant and rear drive unit, the plunging joints exhibit resisting force in the fore-aft direction under various driveline torque levels. This paper tackles the difficult task of quantifying the coefficient of static friction and the coefficient of dynamic friction in a simple to use metric as it performs in the vehicle. The comparison of the dynamic friction to the static friction allows for the detection of the occurrence of stick-slip in the slip mechanism; which enables for immediate determination of the performance of the design parameters such as spline geometry, mating parts fit and finish, and lubrication. It also provides a simple format to compare a variety of designs available to the automotive design engineer.
2015-06-15
Technical Paper
2015-01-2250
Masahiro Akei, Nobutaka Tsujiuchi, Akihito Ito, Takayuki Yamauchi, Daisuke Kubota
Abstract This paper describes the identification of a sound source model for diesel engines installed on agricultural machines by using Inverse-Numerical Acoustic (INA) analysis, and noise predictions using the sound source model identified by INA. INA is a method of identifying surface vibrations from surrounding sound pressures. This method can be applied to sound sources with complicated shapes like those in engines. Although many studies on INA have been conducted, these past studies have focused on improvements to the identified accuracy and prediction of noise in free sound field or hemi-free sound field. The authors accurately predicted the sound pressure levels of engine enclosures using a sound source model identified by INA and a boundary element method (BEM). However, we had not yet verified the effectiveness of this sound source model against enclosures that had sound absorbing materials and openings.
2015-06-15
Technical Paper
2015-01-2251
Alex Varghese, Satish Palled
Abstract NVH in automobile has been very demanding over the years and is considered to be one of the key focus areas for customer satisfaction identified by the automobile companies. A lot of work has been done towards optimizing noise treatment materials and its effective placement to suit performance, weight and cost. This paper outlines a unique method to optimize the coverage of the NCT around the FOD area by conducting an effective sound intensity mapping around the FOD area at the cabin side with the help of a two microphone based sound intensity probe.
2015-06-15
Technical Paper
2015-01-2249
Saad Bennouna, Said Naji, Olivier Cheriaux, Solene Moreau, Boureima Ouedraogo, Jean Michel Ville
Abstract Passengers' thermal comfort inside a car cabin is mainly provided by the Heating, Ventilation and Air Conditioning (HVAC) module. Air provided by HVAC is blown via a blower, passing through different components: flaps, thermal exchangers, ducts… and then distributed to car cabin areas. Interaction between airflow and HVAC components generates noises that emerge in car cabin. Due to this fact, noise is naturally created and its level is linked to flow rate. Valeo is aiming, though CEVAS project, to develop a prediction tool which will provide HVAC spectrum and sound quality data. This tool will be based, in particular, on aeroacoustic measurements using 2N-ports model and Particle Image Velocimetry methods to provide characteristics of HVAC components.
2015-06-15
Technical Paper
2015-01-2248
Florian Pignol, Emiel Tijs, Daniel Fernandez Comesana, Daewoon Kim
Abstract In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
2015-06-15
Technical Paper
2015-01-2253
Kimitoshi Tsuji, Katsuhiko Yamamoto
Abstract It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration in advance. This can be accomplished using virtual engine specifications and a virtual vehicle frame. In this paper, I will show the power plant model with electric starter and battery that can predict fuel economy, combustion heat results and transient torque. The power plant is a 1.3L 4cyl designed for NA Spark Ignition. The power plant model was realized using an energy based model using VHDL-AMS. Here, VHDL-AMS is modeling language stored in IEC international standard (IEC61691-6) and can realize multi physics in 1D simulation. The modeling language supports electrical, magnetic, thermal, mechanical, fluidic and compressive fluidic domains. The model was created in house using VHDL-AMS and validated on ANSYS SIMPLORER. The simulated results of fuel energy consumption agreed with driving energy and amount of energy losses, e.g. cooling loss, exhaust loss.
2015-06-15
Technical Paper
2015-01-2259
Jan Zuleeg
Abstract Tribological contacts between plastic or polymer materials can exhibit stick-slip behaviour that generates noise. Tribological properties can be influenced by lubricants such as bonded coatings, greases, and fluids. In this paper, well known theories about polymer friction from the literature will be shown to be useful in the development of new lubricants. Theoretical results have been validated with a Ziegler Stick-Slip Test Rig. The test methods presented in this paper are used in the development of lubricants for automotive applications (in the interior of the car including invisible lubricants developed for Class “A” surfaces).
2015-06-15
Technical Paper
2015-01-2258
Gil-Jun Lee, Kichang Kim, Jay Kim
Abstract Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs have been developed to automatically detect and rate S&R events over the years, no reported work has been found that can detect squeak and rattle noises and distinguish them. Because the causes of squeak noises and rattle noises are different, knowing if it is a squeak noise or rattle noise will be very helpful for automotive engineers to choose an appropriate measure to solve the problem. The authors have developed a new algorithm to differentiate squeak noises and rattle noises, and added it to the S&R detection algorithm they had developed previously. The new algorithm utilizes a combination of sound quality metrics, specifically sharpness, roughness, and fluctuation strength.
2015-06-15
Technical Paper
2015-01-2257
Ki-Chang Kim, Sang-Woo Lee, Seok-Gil Hong, Jay Kim, Gil-Jun Lee, Jae Min Choi, Yong-Jin Kim
Abstract Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
2015-06-15
Technical Paper
2015-01-2256
Colin Troth
Abstract This paper considers important aspects of rigid body dynamics of power trains with respect to noise and vibration (by definition a power train (PT) term here is an engine plus transmission). Flexibility of PT's and their ancillaries leads to unwanted levels of noise and vibration. By employing rigid body concepts we can assess the levels of unwanted flexibility of whole PT's and their ancillaries e.g. mounting brackets. Using dedicated software based on rigid body theory it is possible to define vibration and noise ‘entitlement’ i.e. minimum vibration and noise that can theoretically be achieved. Targets can then be to set based upon these entitlements. This can then lead to better more robust designs to achieve higher levels of refinement. The use of generic 3 and 4 cylinder one liter in-line PT's modes are used within the software to aid this study.
2015-06-15
Technical Paper
2015-01-2234
Giancarlo Chiatti, Ornella Chiavola, Silvia Conforto, Manfredi Amalfi
Abstract Besides pollutant emissions, fuel consumption and performance, vehicle NVH constitutes a further object during engine development and optimization. In recent years, research activity for diesel engine noise reduction has been devoted to investigate aerodynamic noise due to intake and exhaust systems and surface radiated noise. Most of the attention has been concerned with the identification and analysis of noise sources in order to evaluate the individual contribution (injection, combustion, piston slap, turbocharger, oil pump, valves) to the overall noise with the aim of selecting appropriate control strategies. Several studies have been devoted to analyze combustion process that has a direct influence on engine noise emission; the impact of injection strategies on the combustion noise has been evaluated and approaches able to separate engine combustion and mechanical noise components have been presented.
2015-06-15
Technical Paper
2015-01-2235
Arnaud Caillet, Denis Blanchet
Abstract The need in the automotive industry to understand the physical behavior of trims used in a vehicle is high. The PEM (poro-elastic method) was developed to permit an explicit representation of the trims in the FEM full vehicle models and to give tools to diagnose the effect of the trims and test design changes (porous material property, geometry, etc.,). During the last decade, the evolution of software and hardware has allowed the creation of models with highly detailed trim description (porous material using Biot parameters, plastic trims, etc.,). These models can provide good correlation up to 400Hz compared to measurements in contrast to classical NSM (Non Structural Mass) methodology which shows limitations.
2015-06-15
Technical Paper
2015-01-2231
Masashi Arakawa, Miho Nakatsuka, Hiroo Yamaoka
Abstract To analyze vibration generated from the gears caused by meshing error, a new prediction methodology has been developed for vibration transmitted through the engine mounts from the transmission housing. This paper focuses on the left engine mount and brackets attached to the transmission housing of a compact front-wheel drive (FWD) vehicle that connect the transmission housing to the body structure. In this methodology, a modeling technique that incorporates the dynamic characteristics of rubber mounts and brackets is indispensable. A new simulation technique deals with a detailed rubber mount FE model that considers the contact area at the attachment point of the mount and brackets. The methodology is able to estimate vibration with high accuracy by taking into account dynamic characteristics such as surging for the rubber mount, and using the actual contact area confirmed by pressure sensitive paper for the vehicle FE model.
2015-06-15
Technical Paper
2015-01-2238
Marina Roche, Marco Mammetti, Claudi Crifaci
Abstract Emissions and fuel consumption reduction for the year 2020 have led to the development of new powertrain solutions. The development of new electric concepts presents vehicle integration challenges, involving among others, NVH. Energy flow is controlled by inverters that transform the energy from DC to AC by working at frequencies of the order of kilohertz with a control strategy that can abruptly switch, and motors introduce high orders and electro-magnetic forces due to their topology, inducing phenomena that are not present in internal- combustion engine vehicles. In Particular, a common characteristic of permanent magnet motors is cogging torque, which is due to the attraction of the rotor poles and stator slots that induces a torque ripple causing comfort challenges at low speed and low torque conditions.
2015-06-15
Technical Paper
2015-01-2236
Parimal Tathavadekar, Ricardo O. de Alba Alvarez, Michael Sanderson, Rabah Hadjit
Abstract Finite element analysis (FEA) is commonly used in the automotive industry to predict low frequency NVH behavior (<150 Hz) of structures. Also, statistical energy analysis (SEA) framework is used to predict high frequency (>400 Hz) noise transmission from the source space to the receiver space. A comprehensive approach addressing the entire spectrum (>20 Hz) by taking into account structure-borne and air-borne paths is not commonplace. In the works leading up to this paper a hybrid methodology was employed to predict structure-borne and air-borne transfer functions up to 1000 Hz by combining FEA and SEA. The dash panel was represented by FE structural subsystems and the noise control treatments (NCTs) and the pass-throughs were characterized via testing to limit uncertainty in modeling. The rest of the structure and the fluid spaces were characterized as SEA subsystems.
2015-06-15
Technical Paper
2015-01-2237
Nickolas Vlahopoulos, Sergey Medyanik
In the Energy Finite element Analysis (EFEA) method, the governing differential equations are formulated for an energy variable that has been spatially averaged over a wavelength and time averaged over a period. A finite element approach is used for solving the differential equations numerically. Therefore, a library of elements is necessary for modeling the various wave bearing domains that are present in a structural-acoustic system. Discontinuities between wave bearing domains always exist due to the geometry, from a change in material properties, from multiple components being connected together, or from different media interfacing with each other. Therefore, a library of joints is also necessary for modeling the various types of physical connections which can be encountered in a structural-acoustic system.
2015-06-15
Technical Paper
2015-01-2243
Yang Liu, Pingjian Ming, Wenping Zhang, Xinyu Zhang
Abstract Turbocharger is an important part of the turbocharged diesel engine. Due to the increase of mass flow rate and pressure ratio, aerodynamic noise of turbocharger has become more apparent. And turbocharger noise becomes one of the major noise sources of the main engine system of the ship. In the paper, the aerodynamic noise is predicted by using Computational fluid mechanics (CFD) and indirect boundary element method (IBEM) based on Lighthill acoustic analogy theory. Unsteady viscous flow in the centrifugal Compressor is simulated with finite volume method using the single stator and rotor blade passages and the characteristic of compressor is agreed well with the experimental value. The flow field characteristics and frequency spectrum of the fluctuating pressure are analyzed which agree well with the theoretical value. Dipole is the main noise source in compressor and the datum of pressure fluctuation at rotor blade are extracted.
2015-06-15
Technical Paper
2015-01-2240
Gong Cheng, David W. Herrin
Abstract The theory of patch (or panel) contribution analysis is first reviewed and then applied to a motorcycle engine on a test stand. The approach is used to predict the sound pressure in the far field and the contribution from different engine components to the sound pressure at a point. First, the engine is divided into a number of patches. The transfer functions between the sound pressure in the field and the volume velocity of each patch were determined by taking advantage of vibro-acoustic reciprocity. An inexpensive monopole source is placed at the receiver point and the sound pressure is measured at the center of each patch. With the engine idling, a p-u probe was used to measure particle velocity and sound intensity simultaneously on each patch. The contribution from each patch to the target point is the multiplication of the transfer function and the volume velocity, which can be calculated from particle velocity or sound intensity. There were two target points considered.
2015-06-15
Technical Paper
2015-01-2247
Masao Nagamatsu
Abstract The sound localization methods are used for detection of noise source locations of prototypes of mechanical products including automobile engines. There are several types of sound localization methods. In middle frequency around 1kHz, which is most sensitive frequency for human auditory, these sound localization methods have enough resolution in their reconstructed images, and they are effective to localize the sound sources. For high frequency sound localization, the holographic type methods take long time in its measurement. To overcome this problem, I have developed a converted method of Nearfield Acoustic Holography (NAH) method, which is one of conventional holographic sound localization method. However, in low frequency, all holographic localization methods do not have enough resolution in reconstructed images. I am now developing new sound localization method, Double Nearfield Acoustic Holography (DNAH) method.
2015-06-15
Technical Paper
2015-01-2246
Kurt Veggeberg, Mike Denton
Abstract This is an overview of the development of a portable, real-time acoustic beamformer based on FPGA (Field Programmable Gate Arrays) and digital microphones for noise source identification. Microphone arrays can be a useful tool in identifying noise sources and give designers an image of noise distribution. The beamforming algorithm is a classic and efficient algorithm for signal processing of microphone arrays and is the core of many microphone array systems. High-speed real-time beamforming has not been implemented much in a portable instrument because it requires large computational resources. Utilizing a beamforming algorithm running on a Field Programmable Gate Array (FPGA), this camera is able to detect and locate both stationary and moving noise sources. A high-resolution optical camera located in the middle of the device records images at a rate of 25 frames per second.
2015-06-15
Technical Paper
2015-01-2244
Ulhas Mohite, Niket Bhatia, Prashant Bhavsar
Abstract In this paper the approach to predict engine noise under combustion forces is presented. This Methodology is divided into three stages: 1. Multi body dynamic (MBD) Simulation to determine excitation forces 2. Vibration analysis of engine under combustion load 3. Acoustic analysis of engine to predict Sound Pressure Level (SPL). Important parts of motorcycle engine with single cylinder are considered as flexible bodies for MBD simulation. It is necessary to accurately model crankshaft ball bearing for capturing the accurate transmissibility of combustion forces from crankshaft to casings. In this work crankshaft ball bearing is modeled with 6×6 stiffness matrix. It provides coupling between radial, axial and tilting deflections of bearing and it also allows moment transfer from crankshaft to casing. It helps to predict the realistic forces at bearings. Forces predicted from MBD simulation are applied to engine FE model for carrying out vibration analysis.
2015-06-15
Technical Paper
2015-01-2287
Yaqiong Deng, Yanjing Zhao, Xiandi Zeng
Abstract Among the lower frequency vehicle NVH problems, booming noise is one of the most concerned issues. One of the most common booming noise sources is the torsional vibration of the powertrain and driveline for rear-wheel drive and four-wheel drive vehicles. The solutions for this problem are either to use a torsional dynamic absorber or to use a lower stiffness clutch. Both solutions require the modal frequency of the torsional vibration mode of the powertrain and driveline. At early design stages, vehicle prototype is not available for measuring this frequency. Analytical method is usually used to calculate this frequency. Currently, mostly used method is the so-called 1D method in which the whole powertrain and driveline are represented by one-dimensionally connected disks (lumped inertia) and shaft (lumped stiffness). However, those lumped parameters are not always available at early design stage. In this paper, a method using finite element models is presented.
2015-06-15
Technical Paper
2015-01-2290
Sivanandi Rajadurai, Guru Prasad Mani, Kavin Raja, Sundaravadivelu Mohan
Abstract Bending moment is one of the strongest pursuits in resonator's structural validation. Eigen problems play a key role in the stability and forced vibration analysis of structures. This paper explains the methodology to determine the weak points in the resonator assembly considering the additional effects of the installation forces and temperature impacts. Using strain energy plots, weakest part of the product is identified in the initial stage. The solution comes in unique way of utilizing the worst case scenarios possible. As a consequence, the stress generated by these analyses will prove to be critical in concerning the durability issue of the system. These conditions are evaluated by a finite element model through linear approaches and results are summarized.
2015-06-15
Technical Paper
2015-01-2292
Xiaorui Lu, Junda Ma
Abstract Over recent years, NVH refinement of engine is becoming increasingly important in buying decision and can significantly give competitive edge to the vehicle in market place. This paper deals with the development phase of a prototype engine in which a specific testing activity was carried out to improve the overall NVH behavior of the powertrain. In order to explain the optimization process in detail, a case study was described in this paper. First, NVH targets of the engine were set via benchmark tests on existing competitive products. Then series of baseline tests, such as 1M sound pressure level test and noise source identification, were performed on the engine. Test results indicated that an obvious breathing vibration mode exist near the intake manifold, which radiates high level noise. In order to achieve the NVH targets, a correlation validation was performed to find out the main reason that caused the vibration of intake manifold.
2015-06-15
Technical Paper
2015-01-2291
Pandurang Maruti Jadhav, Sandesh A Dunung, Pravin T Nitnaware
Abstract There are many environmental issues in India. Air pollution, water pollution, garbage, vibration, noise pollution and pollution of the natural environment are all challenges for India. India has a long way to go to reach environmental quality similar to those enjoyed in developed economies. Pollution remains a major challenge and opportunity for India. The review of trends in farm practices and machinery development suggests that vibration & noise problems are still prevalent in agricultural situations, even though there has been a steady increase in the availability of materials and equipment for vibration & noise control over recent years. Diesel engine is the main source of power for agricultural equipments, such as water pump set, compressor, electric generator and tractor. Even it is one of the sources of vibration & noise in agricultural field. There is reluctance of the agricultural sector to use of vibration & noise control methods.
2015-06-15
Technical Paper
2015-01-2294
Kodali Ajay Krishna, Pankaj Bhardwaj, Sanjeevgouda Patil, Mansinh Kumbhar
Abstract One of the primary excitation sources in a passenger car comes from the powertrain [1]. Refinement of powertrain induced noise is the most critical tasks during a vehicle refinement. Due to ever increasing demand for reduced design and development cycle, most critical decisions have to be made at the concept stage. Powertrain radiated noise is one of the most important performance factor that must be evaluated during the concept stage. Solution time for calculating the radiated noise using the existing acoustic solvers is very high and requires very expensive resources like software and hardware. Arriving the optimal design with conventional method is very tedious job. A new method has been adopted for identifying the critical areas and coming up with the optimal design modifications within a short span of time. Powertrain radiated noise has been calculated with the help of acoustic solver.
2015-06-15
Technical Paper
2015-01-2293
Manchi Venkateswara Rao, S Nataraja Moorthy, Prasath Raghavendran
Abstract Tactile vibration during vehicle key on/off is one of the critical factors contributing to the customer perceived quality of the vehicle. Minimization of the powertrain transient vibration in operating conditions such as key on/off, tip in/out and engagement/disengagement of engine in hybrid vehicles must be addressed carefully in the vehicle refinement stage. Source of start/stop vibration depends on many factors like engine cranking, engine rpm at which the combustion process starts and rate of engine rpm rise etc. The transfer path consists of elastomeric mounts of powertrain and the part of vehicle structure from mounts to tactile response location. In this paper, the contribution of rigid body motion of powertrain of a front wheel drive vehicle during key on/off is analyzed in both frequency and time domain. The signal is analyzed in frequency domain by using fast fourier transform, short time fourier transform and wavelet analysis.
2015-06-15
Technical Paper
2015-01-2295
Aniket Parbat, Todd Tousignant, Kiran Govindswamy
Abstract The definition of vehicle and powertrain level NVH targets is one of the first tasks toward establishing where a vehicle's NVH behavior will reside with respect to the current or future state of industry. Realization of vehicle level NVH targets relies on a combination of competitive powertrain (source) and vehicle (path) NVH performance. Assessment of vehicle NVH sensitivity is well understood, and can be accomplished through determination of customer interface NVH response to measured excitations at the source input locations. However, development of appropriate powertrain source targets can be more difficult, particularly related to sound quality. This paper discusses various approaches for definition of powertrain targets for sound quality, with a specific focus on impulsive noise.
2015-06-15
Technical Paper
2015-01-2300
Robert Fiedler, Chadwyck Musser, Petr Cuchý
Abstract This paper addresses the NVH design of a light rail vehicle whose maximum allowable interior SPL levels at certain speeds are regulated and may vary between countries, states, and cities. The objective of this study was to predict sound pressure levels (SPL) at several interior locations across a wide range of frequencies and estimate if the current design configuration will meet the noise level limits. Statistical Energy Analysis (SEA) was used to predict interior SPL and to understand and rank the various noise contribution paths and give a better understanding of the physics of transmission and what types of design changes are most effective to reduce the overall interior SPL to meet targets. A typical light rail vehicle is composed of a frame-like structure covered by lightweight panels and with interior panels that are increasingly made from composites, sandwich, laminated, or honeycomb materials or extruded panels.
2015-06-15
Technical Paper
2015-01-2299
Dhanesh Purekar
Abstract NVH development of light duty diesel engines require significant collaboration with the OEM as compared to medium duty and heavy duty diesel engines. Typically, competitive benchmark studies and customer expectations define the NVH targets at the vehicle level and are subsequently cascaded down to the powertrain level. For engine manufacturing companies like Cummins Inc., it is imperative to work closely with OEM to deliver on the NVH expectations. In certain situations, engine level NVH targets needs to be demonstrated in the OEM or 3rd party acoustic test facility for customer satisfaction or commercial purposes. Engine noise tests across different noise test facilities may introduce some variation due to differences in the acoustic test facilities, test hardware, instrumentation differences, etc. In addition, the engine itself is a major source of variation.
Viewing 91 to 120 of 9057

Filter

Subtopics