Display:

Results

Viewing 61 to 90 of 8630
Technical Paper
2014-06-30
Yuan feng Xia, Jian Pang, Chengtai Hu, Cui Zhou, Cong Wu
Abstract The paper analyzes the characteristics of driveline torsional vibration of a RWD vehicle and provides the control methods of transmission rattle noise caused by the system torsional resonances. A driveline dynamic model of the RWD vehicle is established by multi-body dynamic method. The natural frequencies and modal shapes are calculated for each gear position and torsional vibration responses are predicted by forced vibration analysis. The system sensitivity and DOE are analyzed based on the parameterized stiffness, inertia and damping. The 2nd and 3rd order modal results show that the transmission shaft possesses the maximum amplitudes and its corresponding modal frequencies vary with different gear position. The sensitivity analysis results show that the system torsional vibration is significantly reduced by reducing clutch stiffness, increasing propeller shaft stiffness, raising half shaft stiffness, increasing the input shaft inertia and increasing the clutch damping. The DOE analysis results show that the clutch stiffness, propeller shaft stiffness, and the inertia of axle pinion shaft and transmission input shaft play an important role in reducing torsional vibration of the transmission gear shafts.
Technical Paper
2014-06-30
Albert Albers, Rui Cai, Rainer Spengler, Christian Olfens, Matthias Behrendt
Abstract The driving comfort influences the customer purchase decision; hence it is an important aspect for the vehicle development. To better quantify the comfort level and reduce the experiment costs in the development process, the subjective comfort assessment by test drivers is nowadays more and more replaced by the objective comfort evaluation. Hereby the vibration comfort is described by scalar objective characteristic parameters that correlate with the subjective assessments. The correlation analysis requires the assessments and measurements at different vehicle vibration. To determine the objective parameters regarding the powertrain excitations, most experiments in the previous studies were carried out in several test vehicles with different powertrain units. Due to the different features among test vehicles, the subjective assessments and the objective measurements are influenced by further interfering factors, such as different wheel excitations between vehicles, which lead to an inevitable variance.
Technical Paper
2014-06-30
Gregor Tanner, David J. Chappell, Dominik Löchel, Niels Søndergaard
Abstract Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range. The response of small-scale features and coupling coefficients between sub-components are obtained through local FEM models integrated in the global DFM treatment.
Technical Paper
2014-06-30
Ze Zhou, Jonathan Jacqmot, Gai Vo Thi, ChanHee Jeong, Kang-Duck Ih
Abstract The NVH study of trimmed vehicle body is essential in improving the passenger comfort and optimizing the vehicle weight. Efficient modal finite-element approaches are widely used in the automotive industry for investigating the frequency response of large vibro-acoustic systems involving a body structure coupled to an acoustic cavity. In order to accurately account for the localized and frequency-dependant damping mechanism of the trim components, a direct physical approach is however preferred. Thus, a hybrid modal-physical approach combines both efficiency and accuracy for large trimmed body analysis. Dynamic loads and exterior acoustic loads can then be applied on the trimmed body model in order to evaluate the transfer functions between these loads and the acoustic response in the car compartment. The scenario study of installing different trim components into the vehicle provides information on the acoustic absorption and dynamic damping with regard to added vehicle weight by the trim.
Technical Paper
2014-06-30
Tom Knechten, Christophe Coster, Peter Van der Linden
Abstract The need for more durable mobility has led to a rapid introduction of new electric systems on vehicles. The result of the application of electrified drivelines is a shift in noise energy from the low mid frequencies towards the upper end of the audible range. Following this, the need for higher frequency noise control and accurate measurement has grown. The measurement of the acoustic transfer or vehicle body isolation at higher frequencies poses a challenge for the diffraction, source level and omni-directionality. This paper shows an improved method that increases the accuracy of acoustic transfer function measurements from the components to the ear at high frequencies. A simulation model based on the Boundary Element Methods(BEM) has been made to analyze higher frequency behavior of noise sources during reciprocal measurements up to 12 kHz. Some dedicated hardware was developed in combination with a new process. The simulation results have been validated by experimental test results, and application tests have been done on a full vehicle.
Technical Paper
2014-06-30
Jean-Francois Rondeau, Ludovic Dejaeger, Antoine Guellec, Arnaud Caillet, Lars Bischoff
Abstract Strategies for weight reduction have driven the noise treatment advanced developments with a great success considering the already mastered weight decreases observed in the last years in the automotive industry. This is typically the case for all soft trims parts. In the early 2010's a typical european B-segment car soft trims weights indeed 30 to 40% less than in the early 2000's years. The main driver behind such a gap has been to combine insulation and absorption properties on a single part while increasing the number of layers. This product-process evolution was conducted using a significant improvement in the simulation capacities. In that sense, several studies presenting very good correlation results between Transmission Loss measurements and finite elements simulations on dashboard or floor insulators were presented. One may consider that those kinds of parts have already achieved a considerable improvement in performance. But the challenge of weight reduction continues due to up-coming CO2 emissions regulations.
Technical Paper
2014-06-30
Gilles Nghiem, Shanjin Wang
Abstract The vehicle pass-by noise regulation will change in the near future and noise limits will be lowered significantly. This evolution will require improvement of engine's sound radiation. On the other hand, under the current pressure for fuel economy, future engines will be more and more lightened, and this will have negative impact on engine's sound emission. Therefore, the requirements related to the new pass-by noise regulation should be taken into account in the design of new powertrains, and in some cases, innovative solutions must be developed in order to improve the level of noise of the engine while reducing the masse of the engine. One effective way is to optimize the design of some key engine parts, such as crankshaft and engine bottom structure. Original approaches had been conducted and showed how much these engine parts can affect powertrain radiated noise, and in addition to find a quantitative relationship between crankshaft stiffness and powertrain radiated noise.
Technical Paper
2014-06-30
Gregor Koners, Ralf Lehmann
Abstract Low interior noise levels in combination with a comfortable sound is an important task for passenger cars. Due to the reduction of many noise sources over the last decades, nowadays tire-road noise has become one of the dominant sources for the interior noise. Especially for manufactures of luxury cars, the reduction of tire-road noise is a big challenge and therefore a central part of NVH development. The knowledge of the noise transmission behavior based on the characteristics of the relevant sources is a fundamental of a modern NVH - development process. For tire-road noise the source characteristics can be described by wheel forces and radiated airborne noise. In combination with the related vehicle transfer functions it is possible to describe the noise transmission behavior in detail. A method for estimating wheel forces and radiated airborne noise is presented. The method is based on TPA (= Transfer Path Analysis) via matrix inversion and involves the measurement of the vehicle transfer functions.
Technical Paper
2014-06-30
Mahdi Mohammadpour, Ramin Rahmani, Homer Rahnejat
Abstract This paper presents an investigation of Cylinder De-Activation (CDA) technology on the performance of big end bearings. A multi-physics approach is used in order to take into account more realistic dynamic loading effects on the tribological behavior. The power loss, minimum film thickness and maximum temperature of big end bearings have been calculated during maneuver pertaining to the New European Driving Cycle (NEDC). Results show that bearing efficiency runs contrary to efficiency gained through combustion and pumping losses. Under CDA mode, the power loss of big end bearings is more than the power loss under engine normal mode. The problem is predominant at higher engine speeds and higher Brake mean Effective Pressures (BMEP) in active cylinders. It is also observed that the minimum film thickness is reduced under the CDA mode. This can affect wear performance. In addition, same behavior is noted for the maximum temperature rise which is higher under CDA.
Technical Paper
2014-06-30
Daniel Fernandez Comesana, Emiel Tijs, Daewoon Kim
Abstract For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money. An array of special high temperature particle velocity probes is used to measure the radiation simultaneously at many positions near the engine of a compact class car.
Technical Paper
2014-06-30
Ashish Shah, David Lennström, Per-Olof Sturesson, William Easterling
Abstract The increased focus and demands on the reduction of fuel consumption and CO2 requires the automotive industry to develop and introduce new and more energy efficient powertrain concepts. The extensive utilisation of downsizing concepts, such as boosting, leads to significant challenges in noise, vibration and harshness (NVH) integration. This is in conflict with the market expectation on the vehicle's acoustic refinement, which plays an increasingly important role in terms of product perception, especially in the premium or luxury segment. The introduction of the twin charger boosting system, i.e. combining super and turbo charging devices, enables downsizing/speeding in order to achieve improved fuel economy as well as short time-to-torque, while maintaining high driving dynamics. This concept requires also extensive consideration to NVH integration. The NVH challenges when integrating a roots type supercharger are very extensive. The high frequency source characteristics of the supercharger result in complex wave propagation inside the intake duct system since exciting pulsation orders are well above duct cut-on frequencies.
Technical Paper
2014-06-30
Roland Sottek, Bernd Philippen
Abstract In the engine development process, the ability to judge NVH comfort as early as possible is a great benefit. The prediction of engine noise on the basis of a prototype engine without the need to install it in a real car significantly speeds up the development process and leads to a cost reduction, as prototype modifications can be evaluated faster. Meaningful predictions of the perceived NVH comfort cannot be achieved just by comparing order levels, but require listening to an auralization of the engine noise at the driver's position. With the methods of Transfer Path Analysis and Synthesis (TPA/TPS) a prototype engine can be virtually installed in a car using test-bench data. The interior noise can be estimated by combining source signals containing near-field airborne noise radiation and mount forces with transfer functions describing the transmission to the target position in the cabin. Even the transfer functions of a predecessor car could be used if the new car body is not yet available.
Technical Paper
2014-06-30
Ki-Sang Chae, Seung Hwan Lim, Ji Woo Yoo, Seok-Gil Hong
Abstract Dash panel is the most important path of structure-borne and air-borne interior noise for engine-driven vehicles. Reinforcements, which are added to dash panel, are mainly designed in order to suppress the structure-borne noise contribution from the dash panel. However, the effects of dash reinforcements do not seem clear in the viewpoint of air-borne noise. In this paper, the insulation performance of a dash structure with spot-welded reinforcements is studied through several STL (Sound Transmission Loss) tests and STL simulations. The results of this study could be utilized for increasing the sound insulation performance of vehicle body structure.
Technical Paper
2014-06-30
Rainer Stelzer, Theophane Courtois, Ki-Sang Chae, Daewon SEO, Seok-Gil Hong
Abstract The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment. After providing a brief review of the established approaches for TL simulation at LF, the article will present a new FE methodology for TL simulation and introduce the advantages of “in-situ” TL simulations by means of fluid-structure FE calculation.
Technical Paper
2014-06-30
Matteo Kirchner, Eugene Nijman
Abstract Automotive industry is becoming more and more interested in assessing the noise of electric motors, since their integration in many types of road vehicles is rapidly growing in a market oriented to hybridization and electrification. The acoustic characterization of an electric motor is often being performed numerically, having as consequence the fact that the investigation is confined to one specific model belonging to one particular type of motor. This paper proposes an experimental airborne sound characterization methodology, suitable for any type of cylindrical source, based on a set of data acquired following a cylindrical Nearfield Acoustical Holography (NAH) scheme. Such an approach allows the evaluation of sound intensity, as well as pressure level and particle velocity. Practical aspects of cylindrical holography such as positioning error, background noise, hologram distance, spatial sampling, measurement aperture are investigated and discussed with the aid of numerical examples.
Technical Paper
2014-06-30
Vishal Parmar, Daniele Di Rocco, Martin Sopouch, Philippe Albertini
Abstract Over the past 30 years, simulation of the N&V (Noise and Vibration) behaviour of automotive drivelines became an integral part of the powertrain development process. With current and future HEVs (Hybrid-Electrical Vehicles), additional phenomena and effects have entered the scene and need to be taken into account during layout/design as well as optimization phase. Beside effects directly associated with the e-components (namely electric whistle and whine), torque changes caused by activation/deactivation of the e-machine give rise to vibration issues (e.g. driveline shuffle or clonk) as well. This is in particular true for transient operation conditions like boosting and recuperation. Moreover, aspects of starting the Internal Combustion Engine (ICE) using the built-in e-machine in conjunction with the dynamic behaviour of torsional decoupling devices become increasingly important. In order to cope with above-mentioned effects a multi-physics simulation approach is required. The following paper proposes a simulation approach that incorporates the domains of the ICE thermodynamics, the mechanical driveline system, the electric components, the vehicle, as well as the fundamental control functions.
Technical Paper
2014-06-30
Giorgio Veronesi, Christopher Albert, Eugène Nijman, Jan Rejlek, Arnaud Bocquillet
Abstract In many application fields, such as automotive and aerospace, the full FE Biot model has been widely applied to vibro-acoustics problems involving poro-elastic materials in order to predict their structural and acoustic performance. The main drawback of this approach is however the large computational burden and the uncertainty of the input data (Biot parameters) that may lead to less accurate prediction. In order to overcome these disadvantages industry is asking for more efficient techniques. The vibro-acoustic behaviour of structures coupled with poroelastic trims and fluid cavities can be predicted by means of the Patch Transfer Function (PTF) approach. The PTF is a sub-structuring procedure that allows for coupling different sub-systems via impedance relations determined at their common interfaces. The coupling surfaces are discretised into elementary areas called patches. Since the patch impedances can be determined in either computational or experimental manner, the PTF approach offers full modularity.
Technical Paper
2014-06-30
Zoran Radmilovic, Josef Zehetner, Daniel Watzenig
Abstract Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced. Because the system is rather slow and acting upon detection of oscillations has no reasonable effect, the controller has to predict the future behavior and the torque distribution in the drive-train.
Technical Paper
2014-06-30
Joël Perret-Liaudet, Alexandre Carbonelli, Emmanuel Rigaud, Brice Nelain, Pascal Bouvet, C. Jacques Vialonga
Abstract The main source of excitation in gearboxes is generated by the meshing process, which generates vibration transmitted to the casings through shafts and bearings. Casing vibration generates leads to acoustic radiation (whining noise). It is usually assumed that the transmission error and variation of the gear mesh stiffness are the dominant excitation mechanisms. These excitations result from tooth deflection and tooth micro-geometries (voluntary profile modifications and manufacturing errors). For real cases, the prediction of noise induced by the Static Transmission Error (STE) remains a difficult problem. In this work, an original calculation procedure is implemented by using a finite element method and taking into account the parametric excitations and their coupling (Spectral Iterative Method, developed by the Ecole Centrale de Lyon). The procedure is based on a modal approach developed in the frequency domain, particularly efficient to analyze systems having many degrees of freedom.
Technical Paper
2014-06-30
Alois Sontacchi, Matthias Frank, Franz Zotter, Christian Kranzler, Stephan Brandl
Abstract Today, the number of downsized engines with two or three cylinders is increasing due to an increase in fuel efficiency. However, downsized engines exhibit unbalanced interior sound in the range of their optimal engine speed, largely because of their dominant engine orders. In particular, the sound of two-cylinder engines yields half the perceived engine speed of an equivalent four-cylinder engine at the same engine speed. As a result when driving, the two-cylinder engine would be shifted to higher gears much later, diminishing the expected fuel savings. This contribution presents an active in-car sound generation system that makes a two-cylinder engine sound like the more familiar four-cylinder engine. This is done by active, load-dependent playback of signals extracted from the engine vibration through a shaker mounted on the firewall. A blind test with audio experts indicates a significant reduction of the engine speed when shifting to a higher gear. In the blind test, experts favored the interior sound of the proposed sound generation system and perceived better interaction with the vehicle.
Technical Paper
2014-06-30
Alexander Ulz, Alfred Rust, Bernhard Graf, Alois Sontacchi
Abstract Due to future directives of the European Union regarding fuel consumption and CO2 emissions the automotive industry is forced to develop new and unconventional technologies. These include for example stop-start-systems, cylinder deactivation or even reduction of the number of cylinders which however lead to unusual acoustical perceptions and customer complaints. Therefore, it is necessary to evaluate the sound character of engines with low numbers of cylinders (2 and 3 cylinders) and also the differences to the character of the more common 4-cylinder engines. Psychoacoustic parameters are used to describe and understand the differences. Based on the gained knowledge possible potentials for improvement can be derived in the future. The used data base consists of artificial head recordings of car interior noise according to defined driving conditions measured on the AVL test track. Naturally, there are more recordings available for 4-cylinder engines than for 2- and 3-cylinder engines.
Technical Paper
2014-06-30
Christoph Meier, Dirk Lieske, Stefan Bikker
Abstract Electric cars are getting popular more and more and the expectations of the customers are very challenging. Concerning comfort, the situation is clear: customers want an electric car to be quiet and without any annoying noise from the powertrain. To develop an electric powertrain with a minimum noise level and minimized whining it is necessary to have an accurate CAE-simulation and precise criteria to assess whining noise. Based on the experience with electric powertrains in research cars the CAE-modelling was improved and a new ‘whining intensity factor’ was acquired for the development of Daimler's electric cars. The results are a very low noise level and a minimized whining noise, nearly not noticeable giving a comfortable sound to the customers of the smart electric drive and the B-Class Electric Drive.
Technical Paper
2014-06-30
Janko Slavic, Martin Cesnik, Miha Boltezar
Abstract Car components are exposed to the random/harmonic/impact excitation which can result in component failure due to vibration fatigue. The stress and strain loads do depend on local stress concentration effects and also on the global structural dynamics properties. Standardized fatigue testing is long-lasting, while the dynamic fatigue testing can be much faster; however, the dynamical changes due to fatigue are usually not taken into account and therefore the identified fatigue and structural parameters can be biased. In detail: damage accumulation results in structural changes (stiffness, damping) which are hard to measure in real time; further, structural changes change the dynamics of the loaded system and without taking this changes into account the fatigue load in the stress concentration zone can change significantly (even if the excitation remains the same). This research presents a new approach for accelerated vibration testing of real structures. The new approach bases on phase locked harmonic excitation and can be used for identification of natural frequencies and damping while the damage due to vibration is being accumulated.
Technical Paper
2014-06-30
Matthias Frank, Franz Zotter, Alois Sontacchi, Stephan Brandl, Christian Kranzler
Abstract When employing in-car active sound generation (ASG) and active noise cancellation (ANC), the accurate knowledge of the vehicle interior sound pressure distribution in magnitude as well as phase is paramount. Revisiting the ANC concept, relevant boundary conditions in spatial sound fields will be addressed. Moreover, within this study the controllability and observability requirements in case of ASG and ANC were examined in detail. This investigation focuses on sound pressure measurements using a 24 channel microphone array at different heights near the head of the driver. A shaker at the firewall and four loudspeakers of an ordinary in-car sound system have been investigated in order to compare their sound fields. Measurements have been done for different numbers of passengers, with and without a dummy head and real person on the driver seat. Transfer functions have been determined with a log-swept sine technique. According to the measurements, the shape of the sound field produced by the shaker is more balanced than one produced by the loudspeakers, albeit the shaker's frequency response is limited to low frequencies.
Technical Paper
2014-06-30
Jean-Baptiste Dupont, Racha Aydoun, Pascal Bouvet
Abstract The noise radiated by an electrical motor is very different from the one generated by an internal combustion engine. It is characterized by the emergence of high frequency pure tones that can be annoying and badly perceived by future drivers, even if the overall noise level is lower than that of a combustion engine. A simulation methodology has been proposed, consisting in a multi-physical approach to simulate the dynamic forces and noise radiated by electric motors. The principle is first to calculate the excitation due to electromagnetic phenomena (Maxwell forces) using an electromagnetic finite element solver. This excitation is then projected onto the structure mesh of the stator in order to calculate the dynamic response. Finally, the radiated sound power is calculated with the aid of a standard acoustic finite element method. The calculation methodology assumes a weak coupling between the different physical levels. It has been validated by comparison with the experiment.
Technical Paper
2014-06-30
Matt Maunder, Steven A Amphlett, Mathias S Perchanok, Martin Kukacka, Patrick C Niven
Abstract Intake and exhaust system development is an important step in automotive design. The intake system must allow sufficient air to flow into the engine, and the exhaust system must allow exhaust gases to depart at the rear of the vehicle, without excessive pressure loss. These systems must also attenuate the acoustic pressure pulsations generated by the engine, such that the noise emitted from the intake and exhaust orifices is constrained within reasonable limits, and exhibits a sound quality in keeping with the brand and vehicle image. Pressure loss and orifice noise tend to be in conflict, so an appropriate trade-off must be sought. Simulation of both parameters allows intake and exhaust systems to be designed effectively, quickly, cheaply and promptly. Linear simulation approaches have been widely used for intake and exhaust acoustic prediction for many decades. The frequency domain characteristics of ducts and mufflers are extremely well established, and calculation times are very short.
Technical Paper
2014-06-30
Hans Boden
The paper gives an overview of techniques used for characterization of IC-engines as acoustic sources of exhaust and intake system noise. Some recent advances regarding nonlinear source models are introduced and discussed. To calculate insertion loss of mufflers or the level of radiated sound information about the engine as an acoustic source is needed. The source model used in the low frequency plane wave range is often the linear time invariant one-port model. The acoustic source data is obtained from experimental tests or from 1-D CFD codes describing the engine gas exchange process. The IC-engine is a high level acoustic source and in most cases not completely linear. It is therefore of interest to have models taking weak non-linearity into account while still maintaining a simple method for interfacing the source model with a linear frequency domain model for the attached exhaust or intake system. The use of source characterization in acoustic design of mufflers is also briefly discussed.
Technical Paper
2014-06-30
Albert Albers, Jan Fischer, David Landes, Matthias Behrendt
Abstract The driving comfort is an important factor for buying decisions. Especially for battery electric vehicles (BEV) the acoustic quality is an elementary distinguishing feature, since the masking of an internal combustion engine (ICE) is no longer present. Opposing the importance of the acoustic quality is the lack of knowledge of how to measure and interpret the high frequency noise generated by an electric powertrain with respect to the NVH behavior influencing the passengers [1, 2]. In this contribution a method for measuring and interpreting the transfer path of acoustic phenomena from the drivetrain of a battery electric vehicle into the passenger cabin is presented. Due to the lack of masking by the ICE in case of BEV, high frequency phenomena must be considered as well. In order to determine the airborne transfer function from the electric powertrain to the driver cabin, a dodecahedral speaker is used for reciprocal measurements. Therefore in a first step, the sound power and the emission characteristic of the dodecahedron is investigated in a novel approach by laser scanning vibrometry and by measurements according to DIN EN ISO 3745:2012 [3].
Technical Paper
2014-06-30
Jan Hendrik Elm, Jens Viehöfer, Jan-Welm Biermann
Abstract The automotive industry permanently enhances Downsizing concepts due to environmental commitments and energy consumption concerns. Even in the category of city- and supermini-cars, great efforts are made for the development of highly charged engines with small displacement. So far the main focus of these developments is set on the reduction of CO2 emissions and fuel consumption. However these are not the only aspects, which have to be fulfilled by the vehicle in order to meet the demands of the customers and to be successful in competition. The NVH characteristics of such Downsizing vehicles have to match a class-specific level, which can only be achieved by additional measures. Regarding this, a view of the dynamic behavior of the entire vehicle is required. At the Institut für Kraftfahrwesen Aachen (ika) the potential for reducing fuel consumption and CO2 emissions of a Downsizing concept is investigated using a city-car as reference. For this purpose, among other things, the three-cylinder-engine of the reference car is replaced by a highly charged two-cylinder-engine with same power output but smaller displacement.
Technical Paper
2014-06-30
Raimo Kabral, Lin Du, Mats Åbom, Magnus Knutsson
Abstract Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest. Due to the high damping achieved at the Cremer optimum (hundreds of dB/m) it is easy to create a compact silencer with a significant damping (say > 30 dB) in a range larger than an octave.
Viewing 61 to 90 of 8630

Filter

  • Article
    862
  • Book
    21
  • Collection
    16
  • Magazine
    252
  • Technical Paper
    6893
  • Subscription
    1
  • Standard
    585

Subtopics