Display:

Results

Viewing 61 to 90 of 8668
2014-08-04
Article
The SAB 32 shield connection clip from Conta-Clip provides a quick, simple connection when cables require shielding from interference.
2014-08-04
Article
The R&S SMW200A high-end vector signal generator from Rohde & Schwarz supports frequencies up to 20 GHz.
2014-08-04
Article
Sonoscan’s AW322 200 automated system for ultrasonic inspection of MEMS wafers images and identifies internal gap-type defects down to 5µm in size.
2014-08-04
Article
The Model XLUS88 subminiature, bidirectional tension/compression load cell from tecsis LP operates from 150 g to 1000 lb.
2014-07-30
Article
The Electric Power Research Institute has announced a collaboration with 8 automakers and 15 utilities to develop and demonstrate an open grid integration platform for plug-in electric vehicles (PEVs).
2014-07-29
Article
To develop an electric powertrain with a minimum noise level and minimized whining it is necessary to have accurate CAE simulation and precise criteria to assess whining noise.
2014-07-23
Article
In development of an advanced test engine to demonstrate fuel-saving and emissions-reducing technologies, the EPA is using ANSYS FORTÉ CFD software, giving its engineers the ability to quickly and inexpensively make multiple design iterations.
2014-07-16
Article
Ram’s official move to adopt the SAE J2807 towing standard for validating all three (1500, 2500, and 3500) of its pickup weight classes raises the competitive bar for the industry's other pickup players. Meanwhile, Ford has engineered its latest F-450 with half the GCVW capability of a Class-8 tractor-trailer.
2014-07-15
Article
Opel recently broke ground on a €210 million expansion of its Rüsselsheim International Technical Development center (ITDC) that will be used to develop and test engines. The 36,000-m² (400,000-ft²) expansion will be completed in 2017.
2014-07-15
Article
Northrop Grumman Corp. broke ground on a new $20 million Maryland Space Assembly and Test (M-SAT) facility on its Baltimore campus adjacent to Baltimore Washington International Thurgood Marshall Airport.
2014-07-15
Article
VPT Inc. has added a comprehensive radiation laboratory and test services facility to its Chelmsford, MA, facility. The 5000-ft² VPT Rad facility, which will serve the radiation and related test needs of aerospace electronics manufacturers, provides specialized environments and equipment for evaluating electronics used in applications where ionizing radiation can degrade device performance.
2014-07-10
Magazine
Off-highway engines advance beyond Tier 4 With Tier 4 Final/Stage IV needs met, engine OEMs direct their focus and competitive energies toward optimizing competitive solutions. At the same time, they need to keep a weather eye out for future regulations, which many expect. Autonomous vehicle challenges span many fields Many of the challenges faced by military and commercial design teams are similar. Racket busters With a quiet cab at the top of many tractor buyers' wish lists, agricultural equipment manufacturers are pursuing every opportunity possible to shed decibels.
2014-07-07
Article
Recently, with increased vehicle safety requirements, vehicle manufacturers are installing cutting-edge testing equipment in their own crash test facilities.Chrysler Group LLC partnered with Messring Systembau GmbH to upgrade Chelsea Proving Grounds, the central testing facility in Chelsea, MI.
2014-07-01
Standard
AIR4362A
This SAE Aerospace Information Report (AIR) provides Nuclear, Biological and Chemical (NBC) protection considerations for environmental control system (ECS) design. It is intended to familiarize the ECS designer with the subject in order to know what information will be required to do an ECS design where NBC protection is a requirement. This is not intended to be a thorough discussion of NBC protection. Such a document would be large and would be classified. Topics of NBC protection that are more pertinent to the ECS designer are discussed in more detail. Those of peripheral interest, but of which the ECS designer should be aware are briefly discussed. Only radiological aspects of nuclear blast are discussed. The term CBR (Chemical, Biological, and Radiological) has been used to contrast with NBC to indicate that only the radiological aspects of a nuclear blast are being discussed. This is actually a more accurate term to describe the subject of this paper, but NBC has become more widely used in the aircraft industry.
2014-06-30
Article
Camber Corp. signed an agreement with Texas A&M–Corpus Christi (TAMUCC) to be the lead systems and business integrator for the Lone Star Unmanned Aircraft Systems Center (LSUASC) Test Site. The LSUASC is one of six unmanned aircraft systems (UAS) test sites identified by the FAA.
2014-06-30
Technical Paper
2014-01-2072
Christoph Meier, Dirk Lieske, Stefan Bikker
Abstract Electric cars are getting popular more and more and the expectations of the customers are very challenging. Concerning comfort, the situation is clear: customers want an electric car to be quiet and without any annoying noise from the powertrain. To develop an electric powertrain with a minimum noise level and minimized whining it is necessary to have an accurate CAE-simulation and precise criteria to assess whining noise. Based on the experience with electric powertrains in research cars the CAE-modelling was improved and a new ‘whining intensity factor’ was acquired for the development of Daimler's electric cars. The results are a very low noise level and a minimized whining noise, nearly not noticeable giving a comfortable sound to the customers of the smart electric drive and the B-Class Electric Drive.
2014-06-30
Technical Paper
2014-01-2066
Ennes Sarradj, Thomas Geyer, Christoph Jobusch, Sebastian Kießling, Alexander Neefe
Abstract The development of energy-efficient and lightweight vehicles is a major challenge for researchers and engineers in the automotive industry, with one solution being the use of micro gas turbines in serial hybrid vehicles. Among other advantages, the use of a micro gas turbine instead of a reciprocating engine enables a high reliability and low emissions. What makes the concept of using a gas turbine even more interesting are its special NVH characteristics, which are quite different from those of a reciprocating engine. Besides the fact that a gas turbine in general produces less noise and vibration than a diesel engine of the same power, the characteristic noise spectrum is also very different. In this paper, the noise characteristics of a micro gas turbine are compared to those typical for a common reciprocating engine and the sources of the noise are considered. The data that form the basis for these analyses were obtained using measurements on a 70 kW micro gas turbine that is designed to be used in a serial hybrid concept for buses.
2014-06-30
Technical Paper
2014-01-2067
Michael Klanner, Mathias Mair, Franz Diwoky, Oszkar Biro, Katrin Ellermann
Abstract The noise vibration and harshness (NVH) simulation of electric machines becomes increasingly important due to the use of electric machines in vehicles. This paper describes a method to reduce the calculation time and required memory of the finite element NVH simulation of electrical machines. The stator of a synchronous electrical machine is modeled as a two-dimensional problem to reduce investigation effort. The electromagnetic forces acting on the stator are determined by FE-simulation in advance. Since these forces need to be transferred from the electromagnetic model to the structural model, a coupling algorithm is necessary. In order to reduce the number of nodes, which are involved in the coupling between the electromagnetic and structural model, multipoint constraints (MPC) are used to connect several coupling nodes to one new coupling node. For the definition of the new coupling nodes, the acting load is analyzed with a 2D-FFT. After the coupling with MPCs, forces are only acting on the newly defined coupling nodes.
2014-06-30
Technical Paper
2014-01-2068
Sameh AFFI
Abstract Many car manufacturers are introducing Stop & Start systems based on conventional ring gear starter, which represents an economical solution without heavy modifications of their existent architectures especially if they consider hybrid technology. However, this solution is unfortunately not very satisfying from NVH point of view. Indeed, customers usually accept a noisy and quite long engine restart when it happens only one time at the kick-off. However, for hybrid vehicles, an inaudible and quick restart is required because it happens without any drivers' demand and thus it may disturb them. In this paper, we focused on NVH analysis of engine restart sequence with conventional ring gear starter. Some solutions were tested in order to optimize restart duration and noise level. Permanently engaged starter and high power starter are two simple and economical solutions that allow reducing significantly both starter noise level and engine restart duration, which makes this technology acceptable for hybrid vehicles.
2014-06-30
Technical Paper
2014-01-2069
Barry M. James, Andreas Hofmann
Abstract The noise performance of fully electric vehicles is essential to ensure that they gain market acceptance. This can be a challenge for several reasons. Firstly, there is no masking from the internal combustion engine. Next, there is pressure to move to cost-efficient motor designs such as Switched Reluctance Motors, which have worse vibro-acoustic behaviour than their Permanent Magnet counterparts. Finally, power-dense, higher speed motors run closer fundamental frequency to the structural resonances of the system [1]. Experience has shown that this challenge is frequently not met. Reputable suppliers have designed and developed their “quiet” subsystems to state of the art levels, only to discover that the assembled E-powertrain is unacceptably noisy. The paper describes the process and arising results for the noise simulation of the complete powertrain. The dynamic properties are efficiently modelled as a complete system and subjected to motor excitation (torque ripple, electro-magnetic forces and rotor imbalance).
2014-06-30
Technical Paper
2014-01-2045
Hiromichi Tsuji, Satoshi Takabayashi, Eiji Takahashi, Hitoshi Murakami, Shinichi Maruyama
A finite element (FE) model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, is utilized for the improvement of the performance in the vehicle development phase. However, the accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. Therefore, conducting the experiments with the prototype vehicle or the existed production vehicle is still very important for the performance evaluation and the model validation. The vehicle noise transfer function of the road noise performance cannot be evaluated with the existed excitation equipment, such as the 3 or 6 directional electromagnetic shaker. Therefore, this paper proposes new experimental method to measure the road noise vehicle transfer function. This method is based on the reciprocity between the tire contact patch and the driver's ear location. The reaction force sensor of the tire contact patch is newly developed for the reciprocal loud speaker excitation at the passenger ear location.
2014-06-30
Technical Paper
2014-01-2047
Georg Eisele, Klaus Wolff, Jannis Hoppermanns, Peter Genender
Abstract Transfer path analysis is a powerful tool to support the vehicle NVH development. On the one hand it is a fast method to gain an overview of the complex interplay in the vehicle noise generation process. On the other hand it can be used to identify critical noise paths and vehicle components responsible for specific noise phenomena. FEV has developed several tools, which are adapted to the considered noise phenomena: Powertrain induced interior noise and vibration is analyzed by VINS (Vehicle Interior Noise Simulation), which allows the deduction of improvement measures fast enough for application in the accelerated vehicle development process. Further on vehicle/powertrain combinations not realized in hardware can be evaluated by virtual installation of the powertrain in the vehicle, which is especially interesting in the context of engine downsizing from four to three or six to four cylinders. Road induced interior noise is investigated by “Chassis-VINS” or “Fast-VINS”, depending on the required level of detailing and project timing.
2014-06-30
Technical Paper
2014-01-2041
Alexander Ulz, Alfred Rust, Bernhard Graf, Alois Sontacchi
Abstract Due to future directives of the European Union regarding fuel consumption and CO2 emissions the automotive industry is forced to develop new and unconventional technologies. These include for example stop-start-systems, cylinder deactivation or even reduction of the number of cylinders which however lead to unusual acoustical perceptions and customer complaints. Therefore, it is necessary to evaluate the sound character of engines with low numbers of cylinders (2 and 3 cylinders) and also the differences to the character of the more common 4-cylinder engines. Psychoacoustic parameters are used to describe and understand the differences. Based on the gained knowledge possible potentials for improvement can be derived in the future. The used data base consists of artificial head recordings of car interior noise according to defined driving conditions measured on the AVL test track. Naturally, there are more recordings available for 4-cylinder engines than for 2- and 3-cylinder engines.
2014-06-30
Technical Paper
2014-01-2044
Yong Che
Abstract As motor assembly of Battery Electric Vehicle (BEV) replaces engine system of Internal Combustion Engine (ICE) vehicle, interior structure-borne noise induced by road random excitation becomes more prominent under middle and high speed. The research is focused on central driving type BEV. In order to improve interior noise in middle and low frequency range, dynamic load of BEV body must be identified. Consequently the structural noise induced by road excitation is conducted. The limitations of common identification method for dynamic body load are analyzed. The applied several identification methods are proposed for deterministic dynamic load such as engine or motor. Random dynamic load generated by road excitation is different from deterministic dynamic load. The deterministic load identification method cannot be applied to the random load directly. An identification method of dynamic body load for BEV is presented based on power spectrum decomposition. The procedure of BEV body load identification is described.
2014-06-30
Technical Paper
2014-01-2043
Bryce Gardner, Tiago Macarios
Abstract Speech transmissibility is a critical factor in the design of public address systems for passenger cabins in trains, aircraft and coaches. Speech transmissibility is primarily affected by the direct field, early low order reflections, and late reflections (reverberation) of the source. The direct and low order reflections are affected by the relative location of speakers and seats as well as the acoustic properties of the reflecting walls. To properly capture these early reflections, measures of speech transmissibility typically require time domain information. However, another important factor for speech transmissibility is background noise due to broadband exterior sources such as a flow noise sources. The background noise is typically modeled with broadband steady state assumptions such as in statistical energy analysis (SEA). This works presents an efficient method for predicting speech transmissiblity by combining ray tracing with SEA. In this method, the direct field and low order reflections are modelled using raytracing, while the reverberant field and background noise are modelled using SEA.
2014-06-30
Technical Paper
2014-01-2054
Alessandro Zanon, Michele De Gennaro, Helmut Kuehnelt, Domenico Caridi, Daniel Langmayr
Abstract In hybrid and electrical vehicles new challenges in meeting the drivers' expectation with regards to acoustic comfort arise. The absence of the internal combustion engine noise enhances the passengers' perception of other noise sources, such as the Heating, Ventilation and Air-Conditioning (HVAC) system. Therefore efficient and reliable numerical models able to predict flow-induced broadband noise have become a major research topic in automotive industry. In this framework, the Zonal LES coupled with the Ffowcs Williams-Hawkings (FWH) acoustic analogy are capable to simulate broadband noise from low speed axial fan. As demonstrated in previous works from the authors, this approach is able to cope with the complexity of the physical phenomena involved (i.e. turbulent noise generation, laminar-to-turbulent transition, etc.), even though the numerical model requires a careful setup of the mesh topology, boundary conditions and simulation parameters. The aim of this article is to provide the scientific community with the latest developments of our research work on numerical modelling of broadband noise from axial fans, focusing on the performance of two different mesh topologies to locate and estimate the noise sources.
2014-06-30
Technical Paper
2014-01-2053
Xiaohong Kuang, Jian Pang, Haiyan Zhang, Liang Yang, Jiang-hua FU
Abstract The paper describes the identification and control methods of turbocharger surge noise. Some parameters, such as temperature, flow quantity, pressure, vibration, turbocharger rpm and noise, are provided to identify surge noise. The advantages and disadvantages for each parameter are analyzed. The paper identifies that some special vehicle interior noise is contributed by turbocharger surge noise by using correlation analysis of the turbocharger inlet temperature, outlet pressure and vehicle internal noise. Spectral filtration analysis shows that the surge noise frequency components are above 1000Hz with wide frequency band. Quarter wave tuner's effective frequency range is found to be consistent with the surge noise frequency band. A panfluter-resonator which is a combination of several special quarter wave tuners is invented to diminish the wide band high frequency noise. After the panfluter-resonator is installed on a turbocharger system, the vehicle interior surge noise is significantly reduced.
2014-06-30
Technical Paper
2014-01-2055
Augusto Medeiros, Tiago Macarios, Gregorio Azevedo, Bryce Gardner
Abstract Transmission loss (TL) is a common metric for the comparison of the acoustic performance of mufflers. Muffler TL can be computed from a Boundary Element Method (BEM) model. Perforated tube elements are commonly used in automotive muffler applications. These can be modeled with a detailed BEM model that includes each individual hole in the perforated tube. The main drawback with such a straightforward BEM approach is that the discretionary of the perforated surfaces can result in computationally expensive models. The current work uses an approach that is a more computationally-efficient, yet, precise way of modeling complex mufflers that contain perforated surfaces with BEM. In this approach, instead of explicitly modeling the perforations explicitly they are taken into account as equivalent transfer impedances. There are several models in the literature that can be used to develop the transfer impedance model of the perforated surface. This paper investigates how these models can be used in a BEM prediction and also how one needs to be careful in selecting the cases used to evaluate the models.
2014-06-30
Technical Paper
2014-01-2056
Kasper Steen Andersen, Fuyang Liu
The tailpipe noise from an aftertreatment system must comply with legislation and meet customer expectations. The approach to capture the influence of complicated geometries and the ceramic substrates included in full aftertreatment systems (ATS) is implemented by coupling the 1D analytical solution of the substrates with the 3D FEM solution. The simulations are verified with measurements in a flow acoustic test rig.
2014-06-30
Technical Paper
2014-01-2050
Gregor Müller, Gottfried Grabner, Michael Wiesenegger, Jörg Jany
The optimal styling of the exterior surface of a vehicle and its suspension system have a direct impact on interior wind noise. Both are determined in early project phases when no hardware prototype is available. Turbulent flows produce both external pressure fluctuations at the vehicle shell, known as hydrodynamic excitation, and sound waves, known as acoustic excitation. Hydrodynamic and acoustic sound sources are evaluated separately and relative to each other in the frequency domain in order to perform evaluations of different body shapes. The technical aim of the presented work is to investigate how acoustic quantities measured at the outside of a vehicle can be used to assess the influence of styling modifications to interior sound pressure level. The methodology is required to be capable of being integrated into the serial development process and therefore be quickly applicable. MAGNA STEYR Engineering has conducted extensive research to develop a method to ensure the best option is selected in the early project stages.
Viewing 61 to 90 of 8668

Filter

  • Article
    886
  • Book
    22
  • Collection
    16
  • Magazine
    252
  • Technical Paper
    6902
  • Standard
    590

Subtopics