Display:

Results

Viewing 61 to 90 of 8881
2015-06-15
Technical Paper
2015-01-2323
Abdelhakim AISSAOUI, Ravindra S Tupake, Vilas Bijwe, Mohammed Meskine, Franck Perot, Alain BELANGER, Rohit J Vaidya
F or the automotive industry, acoustic comfort is of increasing importance and changes in the market make the HVAC system noise quality a question to be addressed as early as possible during the vehicle development process. On one hand, the so-called traditional sources of annoyance such as engine, road-tires contact, exhaust systems and wind-noise have been significantly reduced for most traditional combustion engine vehicles. On the other hand, the rapid expansion of hybrid and electric vehicles and idling stop systems increases the importance of sources such as HVAC systems considered in the past as secondary. At high mass flow rate, the flow-induced contribution from the ducts and registers is the main source of noise in the mid to high frequency ranges and is more important than the HVAC structure borne and blower engine contributions.
2015-06-15
Technical Paper
2015-01-2245
Mohammad Moetakef, Abdelkrim Zouani
Gerotor oil pumps are widely used in automotive engine and transmission lubrication systems. The positive displacement characteristic of the pump design along with tight clearances between its different components result in formation of excessive pressure ripples within the pump and the attached oil galleries. Since the pressure ripples act as the excitation source to the engine components any alignment between pressure ripples excitation frequencies and engine components modal frequencies exacerbate the oil pump tonal noises radiated by the engine components. For this reason, it is necessary to perform engine radiated noise analysis with oil pump as the excitation source to assess the NVH performance of the pump. This paper describes a CAE method addressing engine radiated noise and whine due to the excitation from a gerotor oil pump. The method involves a multidisciplinary approach including CFD, frequency-response structural analysis and acoustic analysis.
2015-06-15
Technical Paper
2015-01-2220
Ji Xu, Guohua Sun, Tao Feng, Mingfeng Li, Teik Lim
This paper describes an active sound tuning (AST) system for vehicle powertrain response. Instead of simply aiming to attenuate cabin interior noise, AST system is capable of reshaping the powertrain response based on predetermined vehicle sound quality criteria. However, conventional AST systems cannot yield a balanced result over the broad frequency range when applied to powertrain noise. It is due to the fact that existing systems are typically configured with the filtered-x least mean square (FXLMS) algorithm or its modified versions, which has inherent frequency dependent convergence behavior due to large dynamic range of secondary path (the electro-acoustic path from the control speaker to the error microphone). Therefore, fast convergence can only be reached at the resonant frequencies.
2015-06-15
Technical Paper
2015-01-2231
Masashi Arakawa, Miho Nakatsuka, Hiroo Yamaoka
To analyze gear transmitted vibration which occurs due to transmission error, a new prediction methodology is developed when vibration transmits through engine mounts from housing. This paper focuses on a left-hand engine mount and brackets which are assembled on a transmission housing of a compact FF vehicle connecting transmission housing to body structure. Thus a modeling technique dealing with the dynamic characteristic of mount rubber and its bracket is indispensable. A mount rubber is pre-loaded under power plant weight and undergoes from its initial shape to deformed one until reaching equilibrium state. To precisely predict a dynamic characteristic of mount rubber when the power plant is mounted in vehicle, we have to consider the deformed shape when pre-load is applied.
2015-06-15
Technical Paper
2015-01-2359
Craig Reynolds, Jason Blough, Carl Anderson, Mark Johnson, Jean Schweitzer
Sound power is commonly estimated using either a reverberant chamber or an anechoic environment as described by the ISO 3741:2012 and ISO 3744:2012 standards respectively. Both methods require the volume of the noise source to be less than 1% of the chamber volume leading to a requirement of relatively large test chambers. Torque converter cavitation noise testing in an enclosed metallic test fixture violates both standards due to volume and/or space requirements. This paper describes a new method developed to accurately determine torque converter sound power through characterization of the test environment. Two types of reference noise sources were created to represent torque converter geometries and noise output. A tweeter was used to output broadband high frequency noise typical of cavitation noise. The first source consisted of the torque converter cover and tweeter only. The second used the cover and pump with a tweeter in place of the turbine, stator, and clutch.
2015-06-15
Technical Paper
2015-01-2274
Paul R. Donavan, Bruce Rymer
Rumble strips are used commonly through the United States to alert drivers that they have wandered out of the lane of travel and need to take corrective action. In general, there are two conflicting requirements for rumble strips: producing sufficient warning for vehicle operators and minimizing the exterior noise that can create community annoyance. A measurement program was completed to assess driver input versus exterior noise generation for four vehicles designs and two approaches to rumble strip design. The vehicles included a small compact car, an immediate size car, a full sport utility vehicle, and a medium duty dump truck. The rumble strips included one of conventional design providing shorter wavelength input to the tire and one designed to provide longer wavelength, more harmonic input to the tire.
2015-06-15
Technical Paper
2015-01-2250
Masahiro Akei, Nobutaka Tsujiuchi, Akihito Ito, Takayuki Yamauchi, Daisuke Kubota
This paper describes the identification of the sound source model for the diesel engine installed on the agricultural machine by Inverse-Numerical Acoustic analysis (INA), and the noise prediction using the sound source model identified by INA. INA is a method to identify surface vibrations from surrounding sound pressures. This method is applicable for a complicated-shaped sound source like an engine. Although many studies about INA have been conducted, these past studies are the studies on improvement of the identified accuracy and noise prediction in the free sound field or hemi-free sound field. The authors predicted accurately sound pressure level of engine enclosure using sound source model identified by INA and boundary element method (BEM). However, we have not yet verified the effectiveness of sound source model against the enclosure which has an absorption material and an opening.
2015-06-15
Technical Paper
2015-01-2214
Zuo Shuguang, Guo Long, Xudong wu, Longyang Xiang, Jun Zhang, jiajie HU
In order to reduce the critical narrowband high-frequency noise produced by the blower in the auxiliary system of fuel cell vehicle (FCV), active noise control (ANC) method is preferably adopted instead of traditional passive mufflers since the blower demands clean air condition and expects good acoustic performance. However, it’s entirely possible that the inaccurate signal acquisition (e.g. existing the rotational speed error) in ANC practical applications can lead to the frequency difference between the reference signal and the actual primary signal, i.e. the frequency mismatch (FM). FM significantly degrades the high-frequency performance of narrowband ANC system. In this paper, a new narrowband ANC system is proposed to compensate for the performance degeneration due to the existence of FM and in the meanwhile improve noise reduction.
2015-06-15
Technical Paper
2015-01-2273
Curtis Jones, Zhengyu Liu, James Hurd III, Suhas Venkatappa
This paper presents the methodology of predicting vehicle level automotive air-handling system air-rush noise sound quality (SQ) using the sub-system level measurement. Measurement setup in both vehicle level and sub-system levels are described. To assess the air-rush noise SQ, both 1/3 octave band sound pressure level (SPL) and overall Zwicker's loudness are used. The "Sound Quality Transfer Functions (SQTF)" between sub-system level and vehicle level are developed for the specified climate control modes and vehicle segment defined by J.D. Power & Associates, while the Zwicker's loudness is calculated using the un-weighted predicted 1/3 octave band SPLs by the Matlab-based program. The predicting models are demonstrated in a fairly good agreement with the measured data. The methodology is applied to the development of sub-system SQ requirement for upfront delivery of the optimum design to meet global customer satisfaction.
2015-06-15
Technical Paper
2015-01-2201
Paul B. Murray, Jason T. Kunio, Leif Christensen, Flemming S. Larsen
Acoustic material testing is becoming increasingly relevant to engineers, designers and manufacturers from a broad range of industries. This paper presents comparisons between material absorption measurements made using the traditional approaches of the reverberation room method and the fixed impedance tube using a sample holder, and compares the results with those obtained using a new portable flanged impedance tube method. The portable tube allows fast non-destructive in-situ material measurements. They therefore include the impact of the installed lay-up (e.g. effects of facing sheets, curvature, material compression, bagging, etc). Comparison between the varying measurement techniques shows that the portable meter data are more repeatable than both the reverberation room and sample holder procedures. The repeatability of the reverberation room absorption results is subject to variations in panel edge diffraction, non-diffuse field conditions, and source/ receiver repeatability.
2015-06-15
Technical Paper
2015-01-2241
Hiromichi Tsuji, Shinichi Maruyama
In the product development phase, the noise transfer functions (NTF) from the wheel or the tire contact patch to the passenger ear location are evaluated by the impact hammer or the ground excitation. However, no reduction of the road noise spectrum under the driving condition is occurred even if the level of the NTF peaks acquired by these methods reduces by the countermeasures on the structure. This is because the vehicle NTF of the road noise performance cannot be evaluated with the existed test equipment, such as the impact on the wheel or the 3 or 6 directional electromagnetic shaker on the ground. The cause of the issue is difficulty to excite the same structural modes coupled with acoustic modes as the one under the driving condition. Road Noise is generated by the change of random displacement input inside tire contact patch.
2015-06-15
Technical Paper
2015-01-2336
Anastasios Arvanitis, Jeff Orzechowski, Todd Tousignant, Kiran Govindswamy
Automotive companies are looking into adding extra value to their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer’s preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
2015-06-15
Technical Paper
2015-01-2320
Andreas Schuhmacher
Indoor vehicle pass-by noise applications deal with measuring the exterior noise from a vehicle fixed on a chassis dynamometer in a large hemi-anechoic room. During a standardised acceleration test, the noise is measured with an array of microphones placed in the far-field, and the overall noise level versus vehicle position can be simulated. In addition, the indoor facility allows controlled and repeatable measurements independent of weather. The indoor testing can be extended with pass-by contribution analysis for engineering purposes providing information about the pass-by noise contribution from major noise sources during the test. This work presents a novel application of blind source separation to vehicle measurements from an indoor pass-by measurement campaign for estimating pass-by noise contribution from tyres and engine during different operating conditions.
2015-06-15
Technical Paper
2015-01-2247
Masao Nagamatsu
The sound localization methods are used for noise source detection of prototype of mechanical products including automobile engines. There are several types of sound localization methods. In middle frequency sound localization around 1kHz, which is most sensitive band for human auditory, these methods have enough resolution in reconstructed images, and are effective to localize the sound source. In high frequency sound localization, the holographic type methods take long time in measurement. To overcome this problem, I have developed the converted method of Nearfield Acoustic Holography (NAH) method, which is one of conventional holographic sound localization method. However, in low frequency sound localization, all methods do not have enough resolution in reconstructed images. I am now developing new sound localization method, Double Nearfield Acoustic Holography (DNAH) method. This method is converted method of conventional Nearfield Acoustic Holography method.
2015-06-15
Technical Paper
2015-01-2328
Barbara Neuhierl, Sivapalan Senthooran, Reinier Toppinga, Anke Jäger, Maarten Brink, Timo Lemke, Philippe Moron, L.A.Raghu Mutnuri
The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of german car manufacturers (Audi, Daimler, Porsche, Volkswagen). It consists of a simplified cabin whose interior can be equipped with either reverberant or partly absorbing walls. To obtain more realistic flow and pressure excitation typical for production vehicles, an a-pillar and a series rear view mirror were attached to the exterior surface. Furthermore the test object contains a glass side window, allowing noise transmission to the interior. Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper.
2015-06-15
Technical Paper
2015-01-2332
Jan Deleener, Akira Sekitou, Masanori OHTA
Shift feeling is an important comfort attribute for manual transmission driven vehicles. For front-wheel-drive vehicles, there are 3 main parts of interest: the gearbox, the shifter and the shift cable. Often only a test based evaluation process on the actual assembly is available in the later stages of development. In order to frontload the shift feeling evaluation a virtual simulation process is required. For the shift lever and the gearbox there are well established models available. With 3D multibody models or even 2D planar models the effect of kinematics and compliances like connection stiffness and friction are already studied today. However, the modelling of the transmission cable, connecting the gearbox and the shifter remains a challenge to accurately represent the physical feel. By experience it was known that the 3D positioning and curvature of the cable affected the friction force and therefore the shift feeling.
2015-06-15
Technical Paper
2015-01-2235
Arnaud Caillet, Denis Blanchet
The need in the automotive industry to understand the physical behavior of trims used in a vehicle is high. The PEM (poro-elastic method) was developed to permit an explicit representation of the trims in the FEM full vehicle models and to give tools to diagnose the effect of the trims and test design changes (porous material property, geometry…). During the last decade, the evolution on software and hardware sides have allowed to create models with a highly detailed trim description (Porous material using the Biot parameters, plastic trims...). These models can provide a good correlation up to 400Hz against the measurements compared to the classical NSM methodology which shows limitations.
2015-04-14
Technical Paper
2015-01-0666
Chenguang Li, Fue-Sang Lien, Eugene Yee, Mike Dong
A deeper understanding of the complex phenomenology associated with the flow induced noise and vibration in a dynamic valve is of critical importance to the automotive industry. To this purpose, a two-dimensional axisymmetric numerical model has been developed to simulate the complex processes that are responsible for the noise and vibration in a poppet valve (or poppet). More specifically, an Eulerian multiphase flow model, a dynamic mesh and a user-defined function are utilized within the ANSYS-FLUENT software system in order to facilitate the modeling of the complicated two-phase fluid-structure interaction problem associated with the generation of noise and vibration in a poppet valve. In this strongly coupled simulation framework, the poppet valve which is driven by spring and various dynamical fluid forces (e.g., viscous and pressure forces), is modeled as an under-damped vibration system.
2015-04-14
Journal Article
2015-01-0610
Guangqiang Wu, Wenbo Luan
During the launch of a car, severe torsional vibration sometimes may occur in its driveline due to somewhat the slipping of the clutch, its intuitive sense for an occupant is the longitudinal vibration of the vehicle, referred to as the launch shudder, whose characteristic frequency is from 5 to 25 Hz generally. As the main vibratory sources of the driveline and its crucial nonlinear components, variable stiffness and backlash of the gear meshing are considered, their impacts on launch shudder are analyzed in this paper. Conformal mapping, finite element method and regression method etc. are the main approaches to calculate the variable meshing stiffness of a gear pair. If this stiffness is get, it can usually be substituted for its approximate analytical expression, or just with finite harmonic terms, in Fourier series form into Ordinary Differential Equations(ODEs) to calculate the vehicle responses considering its nonlinearity.
2015-04-14
Technical Paper
2015-01-0625
Manfred Baecker, Axel Gallrein, Michael Roller
Abstract The tire plays a fundamental role in the generation of acoustically perceptible driving noise and vibrations inside the vehicle. An essential part of these vibrations is induced by the road excitation and transferred via the tire into the vehicle. There are two basic ways to study NVH behavior: Simulations in time and frequency domains. The system can be simulated using a transient simulation method with the disadvantage of high simulation and process turnaround times. Alternatively, a linearization around a stationary state is performed and solved in frequency domain with fast numerical schemes. Modelling the tire transfer behavior in frequency domain requires special attention to the rotation of the tire. This paper shows the approach taken by the authors to include the transfer behavior in the frequency range up to 250 Hz from geometric road excitations to resulting spindle forces in frequency domain. Special care has been used in the modelling of local road excitations.
2015-04-14
Technical Paper
2015-01-0615
Li Jie, Wang Wenzhu, Gao Xiong
Abstract In order to study the influence of body flexibility on the truck ride comfort, a 4 DOF half vibration model of truck based on the motion synthesis between rigid body and body flexibility is established using elastic beam theory of equal section with both free ends. At the same time, a corresponding 2 DOF rigid vibration model is also built. The frequency response functions of system and response variables of two models are derived based on front wheel. The power spectral densities and the root mean square values of body acceleration, dynamic deflections and relative dynamic loads are obtained. By comparing the simulation results of rigid-elastic model and rigid model, it shows that body flexibility has a great impact on truck ride comfort and it cannot be ignored.
2015-04-14
Technical Paper
2015-01-0672
Douglas Marriott, Takeshi Ohtomo, Tohru Wako
Abstract Predicting sloshing noise as early as possible during the design process has become an increasingly desired simulation for fuel tank suppliers as the demand for quieter vehicles increase. Simulating early on in the design process enables suppliers to build products directly to customer specifications, at a lower cost and shorter timeframe. The procedure to accurately and efficiently analyze complete sloshing noise behavior has to date not been fully established. Current methods rely on indirect noise deduction based on specific positions from Fluid-Structure Interaction (FSI) analyses or uncoupled fluid analysis with separate structural and acoustic analyses. In this paper, we introduce a technique to analyze the fully coupled sloshing noise generated in the fuel tank of an automobile. The technique takes advantage of combining an explicit coupled Lagrangian and Eulerian solver with an acoustics solver.
2015-04-14
Technical Paper
2015-01-0631
Cuiping Feng, Zhihong Dong, Yuliang Yang, Chaoxing Xie, Kai Wang
Abstract The vibration theory and dynamic vibration absorber (DVA) theory is presented. Based on the finite element analysis and rigid-flexible coupling analysis, combined with an engineering example, drive shaft analysis model including DVA was established. The effects of DVA's parameters on the dynamic response of the main system, such as frequency ratio, mass ratio, installed position and damping ratio were studied independently as an experimental design. The studied conclusion was used to optimize DVA directionally, and optimization of multiple factors was completed. In this paper, the optimization design of a drive shaft with DVA was completed and a final test evaluation was implemented, that the rigid-flexible coupling analysis method was verified.
2015-04-14
Technical Paper
2015-01-0635
Changxin Wang, Wenku Shi, Zhijun Guo, Meilan Liu
Abstract For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
2015-04-14
Technical Paper
2015-01-0618
Zhihong Dong, Ying Sun, Guitao Zhu, Shihu Wang, Jian Zeng, Yuliang Yang
Abstract Based on the modal frequency response theory and experiment, the installation layout evaluation and structural optimization method for SIS(side impact sensors) installation position is studied. Establish the finite element model including B-pillar, roof and floor with local constraint. Than study the key parameter's influence on the frequency response analysis results, and the simulation results are correlated by experiment. In view of the installation layout requirements of side impact sensors, the structure optimization method for installation position of side impact sensor is put forward. The optimal scheme is confirmed by the finite element analysis, and a final experimental verification was implemented by a real vehicle test.
2015-04-14
Technical Paper
2015-01-0617
Jie Zhang, Xiao Chen, Bangji Zhang, Lifu Wang, Shengzhao Chen, Nong Zhang
Abstract This paper demonstrates time response analysis of the mining vehicle with bounce and pitch plane hydraulically interconnected suspension (HIS) system. Since the mining vehicles working in harsh conditions inducing obvious pitch motion and the hard stiffness of suspensions leading to the acute vibration, the passive hydraulically interconnected system is proposed to provide better ride comfort. Furthermore, the hydraulic system also increases the suspension stiffness in the pitch mode to prevent vehicle from large pitch motions. According to the hydraulic and mechanical coupled characteristic of the mining vehicles, a 7degrees of freedom (7-DOFS) mathematical model is employed and the state space method is used to establish the mechanical and hydraulic coupled dynamic equations. In this paper, the vehicles are subjected to straight line braking input, triangle block bump input applied to the wheels and random road tests.
2015-04-14
Technical Paper
2015-01-0613
Donghong Ning, James Coyte, Hai Huang, Haiping Du, Weihua Li
Abstract This paper presents a study on experimental vibration simulation using a multiple-DOF motion platform for heavy duty vehicle seat suspension test. The platform is designed to have 6-DOF with the advantages of high force-to-weight ratio, high dexterity and high position accuracy. It can simulate vehicle vibrations in the x, y and z translational axis and in the roll pitch and yaw axis rotation. To use this platform to emulate the real vibration measured from vehicle seat base under real operation for vehicle seat suspension test in lab, an Inertial Measurement Unit (IMU) is applied to collect the acceleration data from a real vehicle. An estimation algorithm is developed to estimate the displacement from the measured acceleration. The estimated displacement is then used to calculate the length of each leg of the platform so that the platform can generate the motion similar to the measured one.
2015-04-14
Technical Paper
2015-01-0216
Ping-Min Hsu, Ming Hung Li, Kuo-Ching Chang
Abstract This paper discusses noise filtering in an autonomous emergency braking (AEB) system with a sensor fusion between a millimeter wave (MMW) radar and a camera. Three kinds of noise, namely twice harmonic noise, ground noise, and specular reflection noise, are then filtered. The former is caused by the reflection of a radar wave between a target object and the MMW radar; therefore, one of the sensing distances would be twice as longer as one of others. An object featuring this characteristic is treated as the noise and filtered. Next, detecting a ground metal as the target object generates the second noise with a focus of car-like objects. That is, an object-with the sensing distance from the MMW radar being smaller than that from the camera by a threshold value-is taken as the ground metal noise and ignored. Moreover, the third noise happens when there is a radar wave reflection between an object and its surroundings.
2015-04-14
Technical Paper
2015-01-0430
Frédéric Kihm, Andrew Halfpenny, Benoît Beaum
Abstract As part of the design and validation of engine-mounted components, it is essential to define the vibratory mechanical environment in which these components will operate. This is required in order to optimize the reliability of such components subjected to loading from both the engine and road profile, while minimizing development costs and time scales. This paper presents a methodology that superimposes a swept sine on a power spectral density of acceleration in order to evaluate the mechanical durability of engine mounted or gear box mounted components. The first step in the process is to obtain the wave form of the dominant engine orders by extracting the deterministic signals from the random process using an order tracking method in the time domain. The second step is to assess the fatigue damage and extreme response spectra of a Swept-Sine-On-Random profile.
2015-04-14
Technical Paper
2015-01-0831
Wonah Park, Youngchul Ra, Eric Kurtz, Werner Willems, Rolf D. Reitz
Abstract The low temperature combustion concept is very attractive for reducing NOx and soot emissions in diesel engines. However, it has potential limitations due to higher combustion noise, CO and HC emissions. A multiple injection strategy is an effective way to reduce unburned emissions and noise in LTC. In this paper, the effect of multiple injection strategies was investigated to reduce combustion noise and unburned emissions in LTC conditions. A hybrid surrogate fuel model was developed and validated, and was used to improve LTC predictions. Triple injection strategies were considered to find the role of each pulse and then optimized. The split ratio of the 1st and 2nd pulses fuel was found to determine the ignition delay. Increasing mass of the 1st pulse reduced unburned emissions and an increase of the 3rd pulse fuel amount reduced noise. It is concluded that the pulse distribution can be used as a control factor for emissions and noise.
Viewing 61 to 90 of 8881

Filter

Subtopics