Display:

Results

Viewing 31 to 60 of 8881
2015-06-15
Technical Paper
2015-01-2257
Ki-Chang Kim, Sang-Woo Lee, Seok-Gil Hong, Jay Kim, Gil-Jun Lee, Jae Min Choi, Yong-Jin Kim
Recently, in automobile industry, squeak and rattle (S&R) in body structure and trim parts has become a very significant issue in Initial Quality Study (IQS). In this study, a new CAE process developed by the authors to reduce S&R noises in the door system is reported. Friction-induced vibration and noise generation mechanism of a door system are studied numerically. The effect of degradation of plastics used in door trims is studied by using a model obtained from experiments. Effects of changes of material properties such as Young's modulus and loss factor, due to the material degradation as well as statistical variations are predicted using, several cases of door systems. As a new concept, the rattle and squeak index is proposed, which can be used to guide design of the body structure and trim parts. The predicted of S&R in the door system, from the proposed CAE process were compared to those obtained from the experiment.
2015-06-15
Technical Paper
2015-01-2258
Gil-Jun Lee, Kichang Kim, Jay Kim
Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs were developed to automatically detect and rate S&R events over the years, these programs could distinguish squeak and rattle noises from each other. Because the causes of squeak noises and rattle noises are different, distinguishing two types of noises will be very useful for automotive engineers in choosing an appropriate solution to reduce S&R noises. Authors developed a new algorithm to differentiate squeak noises and rattle noises utilizing a combination of sound quality metrics. Specifically, sharpness, roughness and fluctuation strength of the noises were employed in the algorithm. A three-dimensional space defined by the maximum values of sharpness, roughness, and fluctuation strength of the noise are used to differentiate two different types of noises. The developed algorithm was applied to 86 recorded squeak or rattle noises.
2015-06-15
Technical Paper
2015-01-2274
Paul R. Donavan
Rumble strips are used commonly through the United States to alert drivers that they have wandered out of the lane of travel and need to take corrective action. In general, there are two conflicting requirements for rumble strips: producing sufficient warning for vehicle operators and minimizing the exterior noise that can create community annoyance. A measurement program was completed to assess driver input versus exterior noise generation for four vehicles designs and two approaches to rumble strip design. The vehicles included a small compact car, an immediate size car, a full sport utility vehicle, and a medium duty dump truck. The rumble strips included one of conventional design providing shorter wavelength input to the tire and one designed to provide longer wavelength, more harmonic input to the tire.
2015-06-15
Technical Paper
2015-01-2270
Oliver Unruh, Christopher Blech, Hans Peter Monner
Global attenuation of structural velocities is one of the most effective approaches in order to reduce noise emitted by shell structures such as a car roof or aircraft fuselage panels. This global reduction can be achieved by the application of passive damping treatments like constraint layer damping on large fractions of the vibrating surface. The main disadvantage of this approach is the fact that it leads to increasing total cost and weight of the structure. To overcome this problem, acoustic black holes can be used to focus the energy of structure borne sound on some critical locations of the structure in order to dissipate it by a very limited application of damping treatments. Acoustic black holes are funnel shaped thickness reductions that attract sound radiating bending waves and allow a global vibration reduction by an acceptable use of additional damping.
2015-06-15
Technical Paper
2015-01-2283
Andrew Smith
iOS devices, including iPhones and iPads, are being used increasingly for professional and scientific applications. Using an iOS device for noise & vibration measurements is an application with many advantages, given its small size, availability, cost, and ease of operation. We have created a system for measuring noise level, logging noise over time, doing FFT frequency analysis of sound, and measuring speech intelligibility using iPhones and iPads as the host device. This provides a portable, cost-effective, and easy to deploy test and measurement system. The main area of concern for the performance of the system is the transducer, which in the case of the microphone was designed for the speech applications, rather than wide-band acoustical analysis, and for the gyroscope, for recognizing gross movement.
2015-06-15
Technical Paper
2015-01-2277
Vishal Vaidya, Pravin Hujare
Recently quietness has become an important quality parameter for automotive vehicles and as a result various improvements have been brought to reduce noise at system and vehicle level. Due to stringent noise emission norms on automotive vehicles and increasing desire of quieter in-cab performance by users, reduction of air intake noise tends to be an area of explanation. Air intake noise, which was relatively considered as a minor source of noise in the past, is now gaining importance. This paper emphasizes the sound pressure level reduction through the increase in transmission loss at an air intake system. The intake noise of an automobile induced by firing of an engine accompanies acoustic resonance of ducts of an intake system. Conventionally, the adoption of an integrated type resonator was one of possible ways to eliminate the booming noise due to acoustic resonances of air ducts.
2015-06-15
Technical Paper
2015-01-2320
Andreas Schuhmacher
Indoor vehicle pass-by noise applications deal with measuring the exterior noise from a vehicle fixed on a chassis dynamometer in a large hemi-anechoic room. During a standardised acceleration test, the noise is measured with an array of microphones placed in the far-field, and the overall noise level versus vehicle position can be simulated. In addition, the indoor facility allows controlled and repeatable measurements independent of weather. The indoor testing can be extended with pass-by contribution analysis for engineering purposes providing information about the pass-by noise contribution from major noise sources during the test. This work presents a novel application of blind source separation to vehicle measurements from an indoor pass-by measurement campaign for estimating pass-by noise contribution from tyres and engine during different operating conditions.
2015-06-15
Technical Paper
2015-01-2321
Nicholas Oettle, Andrew Bissell, Sivapalan Senthooran, Mohammed Meskine
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting targets as well as broadband noise targets for the sunroof in vent position and any noise generated by deflectors. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
2015-06-15
Technical Paper
2015-01-2325
Paul Bremner, Chris Todter, Scott Clifton
Title: Sideglass Turbulence and Wind Noise Sources Measured with a High Resolution Surface Pressure Array Authors: Paul Bremner – AeroHydroPLUS, Del Mar CA 92104 USA Chris Todter – Keppel Professional Services, San Diego CA 92107 Scott Clifton – c/o AeroHydroPLUS, Del Mar CA 92104 USA The authors report on the design and use of high resolution micro-electro-mechanical (MEMS) microphone arrays for automotive wind noise engineering. The arrays integrate both sensors and random access memory (RAM) chips on a flexible circuit board that eliminates high channel count wiring and allows the array to be deployed on automobile surfaces in a convenient “stick-on/peel-off” configuration. These arrays have application to the quantitative evaluation of interior wind noise from measurements on a clay model in the wind tunnel, when used in conjunction with a body vibro-acoustic model.
2015-06-15
Technical Paper
2015-01-2326
Denis Blanchet, Anton Golota
Recent developments in the prediction of the contribution of wind noise to the interior SPL have opened a realm of new possibilities. The main physical mechanisms related to noise generation within a turbulent flow and transmission through the vehicle greenhouse are nowadays better understood. Several simulation methods such as CFD, FEM, BEM, FE/SEA Coupled and SEA can be coupled together to represent the physical phenomena involved. The main objective being to properly represent the convective and acoustic component within the turbulent flow to ensure proper computation of the wind noise contribution to the interior SPL of a vehicle. This paper presents comparisons between simulations results and measurements for various configurations such as i) with and without mirror, ii) various A-Pillar shapes, iii) various vehicle speeds and finally iv) various yaw angles.
2015-06-15
Technical Paper
2015-01-2332
Jan Deleener, Akira Sekitou, Masanori OHTA
Shift feeling is an important comfort attribute for manual transmission driven vehicles. For front-wheel-drive vehicles, there are 3 main parts of interest: the gearbox, the shifter and the shift cable. Often only a test based evaluation process on the actual assembly is available in the later stages of development. In order to frontload the shift feeling evaluation a virtual simulation process is required. For the shift lever and the gearbox there are well established models available. With 3D multibody models or even 2D planar models the effect of kinematics and compliances like connection stiffness and friction are already studied today. However, the modelling of the transmission cable, connecting the gearbox and the shifter remains a challenge to accurately represent the physical feel. By experience it was known that the 3D positioning and curvature of the cable affected the friction force and therefore the shift feeling.
2015-06-15
Technical Paper
2015-01-2333
Brandon Sobecki, Patricia davies, J Stuart Bolton, Frank Eberhardt
Component sound quality is an important factor in the design of competitive diesel engines. One component noise source that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
2015-06-15
Technical Paper
2015-01-2331
Alexander Schell, Vincent Cotoni
Aero-vibro-acoustic prediction of interior noise associated with exterior flow requires accurate predictions of both fluctuating surface pressures across the exterior of a vehicle and efficient models of the vibro-acoustic transmission of these surfaces pressures to the interior of a vehicle. The frequency range of interest varies depending on the region and source of interest. For noise transmitted through a sideglass the frequency range of interest is typically from 1-5kHz. The vibro-acoustic methods used to describe noise and vibration transmission also depend on the frequency range of interest. At higher frequencies methods like statistical energy analysis (SEA) are particularly well suited for describing the response of a trimmed cabin due to the short wavelength response of the interior acoustic space and sound package. An accurate prediction of fluctuating surface pressures also requires an accurate model of the flow over the exterior of the vehicle.
2015-06-15
Technical Paper
2015-01-2334
David Bogema, Gary Newton, Mark Stickler, Chris Hocking, Frank Syred
Realistically experiencing the sound and vibration data through actually listening to and feeling the data in a full-vehicle NVH simulator remarkably aids the understanding of the NVH phenomena and speeds up the decision-making process. In the case of idle vibration, the sound and vibration of the idle condition are perceived simultaneously, and both need to be accurately reproduced simultaneously in a simulated environment in order to be properly evaluated and understood. In this work, a case is examined in which a perceived idle quality of a vehicle is addressed. In this case, two very similar vehicles, with the same powertrain but somewhat different body structures, are compared. One has a lower subjective idle quality rating than the other, despite the vehicles being so similar.
2015-06-15
Technical Paper
2015-01-2338
Dong Guo, Quan Shi, Peng Yi
In-vehicle noise is composed of a variety of tonal (frequency-related) components and the tonal components play an important role in the improvement of interior vehicle sound quality. Much research has been focused on the suppression of sound pressure level and achieved certain positive effects. However, in some operating conditions, customers still perceive the tonal components and complain about the vehicle quality even the sound pressure level is relatively low. Therefore, a better understanding of how tonal components are perceived is necessary for automotive designers. To do so, psychoacoustics results about human hearing mechanism to tonal components are comprehensively summed in this study: human hearing response to pure tone, two tones and multiple tones. Then, well-controlled testing stimuli were generated and subjective annoyance testing was conducted. The results show agreement with former researchers’ findings.
2015-06-15
Technical Paper
2015-01-2356
Huangxing Chen, David W. Herrin
The insertion loss of louvered terminations is determined using acoustic finite element analysis. The analysis is conducted in the plane wave regime and the source is anechoic. Insertion loss is determined by taking the difference between the sound power with and without the louvers at the termination. The effect of different louver configurations on insertion loss is examined. Parameters investigated include louver length, angle, spacing between louvers, and sound absorption thickness.
2015-06-15
Technical Paper
2015-01-2357
Hiromichi Tsuji, Kimihiko Nakano
In the early stage of digital phase and prototype experimental phase, the identification of the operational force on the components and the most important paths of the vibration correlated to the one of the evaluation points, such as steering, seats, and passenger ears, is required for optimizing the dynamic characteristics of the subsystem components of the vehicle. The transfer path analysis (TPA) with the impedance matrix of the component joints is widely used and reliable method to identify the force and the paths of the noise and vibration. However, the conduction of this TPA costs a lot of times. In addition, the estimated force includes not contributing to the evaluation responses. The uncorrelated force to the evaluation responses causes the design errors of the dynamic characteristics in the digital development phase. To solve the problems, a new force estimation technique is presented in this paper.
2015-06-15
Technical Paper
2015-01-2358
Rod Morris-Kirby, Evan Harry, Dirk Jaeger, Bernd Borgmann
Acoustic Diagnostic Network Algorithms (DNA) are experimental methods that extract airborne acoustic characteristics from a motor vehicle and decompose this information into a set of networks from which the source, path and receiver noise sources and paths can be determined. Unlike traditional transfer path analysis Acoustic DNA takes the problem into the fine detail and answers questions such as what, where and how does a vehicle system need to be changed in order to achieve any given objective. This paper describes the fundamental methodology and features together with how it has been implemented into a user friendly computer program that has been used successfully in over 50 vehicle projects within the Adler Pelzer group on a wide range of motor vehicles.
2015-06-15
Technical Paper
2015-01-2360
Todd Freeman
Source-path-contribution (SPC) analysis, or transfer-path-analysis, is a test based method to characterize noise and vibration contributions of a complex system. The methodology allows for the user to gain insight into the structural forces and acoustic source strengths that are exciting a system, along with the effects of the structural and acoustic paths between each source and a receiver position. This information can be utilized to understand which sources and/or paths are dominating the noise and vibration performance of a system, allowing for focused target cascading and streamlined troubleshooting efforts. The SPC process is widely used for automotive applications, but is also applicable for a wide range of product types. For each unique application the basic SPC principles remain constant, however best practices can vary for both measurement and analysis depending on the type of system being evaluated.
2015-06-15
Technical Paper
2015-01-2361
Nowadays, by the introduction of significant advances in automotive industries, noise, vibration and harshness (NVH), in the position of the main comfort attribute, plays a crucial role in marketing and passenger satisfaction. In order to cope NVH problems, three main actions are taken by NVH engineers for reducing perceived level of noise in cabin: Noise reduction in sources, Noise path treatment and Noise control at receiver. Among these approaches, those pertain to modification of noise pass, through structure and air, to the cabin are more prevalent in automotive applications. Accordingly, identification of noise paths that dominantly contribute to sound and vibration transfer to cabin phenomenon should be dealt with importance. In practice, engine vibration transmitted through sub-frame attachments to body can induce high level of noise and vibration to the passenger cabin.
2015-06-15
Technical Paper
2015-01-2214
Zuo Shuguang, Guo Long, Xudong wu, Longyang Xiang, Jun Zhang, jiajie HU
In order to reduce the critical narrowband high-frequency noise produced by the blower in the auxiliary system of fuel cell vehicle (FCV), active noise control (ANC) method is preferably adopted instead of traditional passive mufflers since the blower demands clean air condition and expects good acoustic performance. However, it’s entirely possible that the inaccurate signal acquisition (e.g. existing the rotational speed error) in ANC practical applications can lead to the frequency difference between the reference signal and the actual primary signal, i.e. the frequency mismatch (FM). FM significantly degrades the high-frequency performance of narrowband ANC system. In this paper, a new narrowband ANC system is proposed to compensate for the performance degeneration due to the existence of FM and in the meanwhile improve noise reduction.
2015-06-15
Technical Paper
2015-01-2336
Anastasios Arvanitis, Jeff Orzechowski, Todd Tousignant, Kiran Govindswamy
Automotive companies are looking into adding extra value to their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer’s preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
2015-06-15
Technical Paper
2015-01-2248
Florian Pignol, Emiel Tijs, Daniel Fernandez Comesana, Daewoon Kim
It is important to determine the contribution of different engine components to the total sound perceived inside the cabin in order to apply an effective noise reduction treatment. Accelerometer or laser based vibration tests are usually performed, however, the radiated sound is not always captured accurately. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using particle velocity sensors while the engine remains mounted in the car. Similar results were obtained as with a dismounted engine in an anechoic room. This paper is dedicated to the evaluation of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener’s position. To achieve a good signal to noise ratio during acoustic transfer paths a novel monopole sound source was designed.
2015-06-15
Technical Paper
2015-01-2271
Yong Du Jun, Bong Hyun Park, Kang Seok Seo, Tae Hyun Kim, Myoung Jae Chae
An objective measure is proposed for seat riding comfort evaluation under low frequency (0~2 Hz) vibratory conditions which represents typical roll and pitch motions of driving motor vehicles. The related feeling due to this low frequency vehicle motion is termed ‘hold feeling’ because the seated body may tend to deviate from the defined seating position under such vehicle motion inputs. In the present study, dynamic pressure distribution measurements have been performed with a roll motion simulator at different frequencies between 0.3 and 1.0 Hz, to monitor the interface pressure change behavior of the seat-subject body. Temporal changes in body pressure in terms of the magnitude and the representative locations, and the time delay in pressure change at different regions of the seat are identified to be useful parameters for describing the subject's responses and with the subjective test results.
2015-06-15
Technical Paper
2015-01-2272
Pradeep Dinkar Jawale, E Ramachandran, Nagesh Voderahobli Karanth, Ammar Ali
Day by day, customer expectations for comfort in the vehicle interior are driving automotive manufactures to provide better environment in their vehicles. Considering the ongoing developments in diesel powered engines and vehicles in India, the necessity of noise reduction has become more relevant. In such a scenario, NVH benchmarking has become very critical for new product development. Also, given the increasing customer awareness, noise and vibration have also become indicators of overall vehicle perception and hence provide crucial inputs for NVH design, optimization and target setting. In this paper, two families of diesel powered cars in India have been evaluated for their NVH performance, both for exterior & interior noise to arrive at noise & vibration contribution relevant to passenger comfort in order to quantify contribution of powertrain, tyre, wind etc. to the overall noise and their trends are presented.
2015-06-15
Technical Paper
2015-01-2276
Zhengyu Liu, Donald Wozniak, Manfred Koberstein, Curtis Jones, Jan Xu, Suhas Venkatappa
Refrigerant flow-induced gurgling noise is perceived in automotive refrigerant systems which equipped with variable displacement compressors. In this study, the condition of the gurgling generation is investigated in vehicle level and the fundamental root cause is identified as the two-phase refrigerant flow entering the TXV. By conducting literature review, the acoustic characteristics of the flow patterns and the parameters affecting the flow regimes in horizontal and vertical tubes are summarized, and then the gurgling mechanism is explained as that the intermittent flow is developed at the evaporator inlet. In the end, the improved and feasible design for avoiding the intermittent flow (slug, plug or churn flow) or minimizing its formation is proposed and verified in refrigerant sub-system (RSS) level. Finally, the guidelines for the attenuation and suppression of the gurgle are provided.
2015-06-15
Technical Paper
2015-01-2275
Manfred Koberstein, Zhengyu Liu, Curtis Jones, Suhas Venkatappa
In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle at 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
2015-06-15
Technical Paper
2015-01-2319
Uije Kim, Matthew Maunder, Phil Grant, Duncan Mawdsley
A new pass-by noise test method has been introduced, in which engine speeds and loads are reduced (compared to the old test method) to better reflect real world driving behaviour. New noise limits come into effect on 1 July 2016, and tighten by up to 4dB by 2026. The new test method is recognised internationally, and it is anticipated that the limits will also be adopted in most territories around the world. To achieve these tough new pass-by noise requirements, vehicle manufacturers need to address several important aspects of their products. Vehicle performance is critical to the test method, and is controlled by engine torque, speed of response to accelerator pedal input, transmission type, overall gear ratios, tyre rolling radius, and resistance due to friction and aerodynamic drag. Noise sources (exhaust, intake, powertrain, driveline, tyres) and vehicle noise insulation are critical to the noise level radiated to the far-field.
2015-06-15
Technical Paper
2015-01-2322
Bastien Ganty, Jonathan Jacqmot, Ze Zhou
At high cruising speed, the car A-pillars generate turbulent air flow. The resulting aerodynamic pressure applied on the windows significantly contributes to the total cabin noise. In order to predict this particular noise contribution, the physic of both the flow and the cabin needs to be accurately modeled. This paper presents an efficient methodology to predict the turbulent noise transmission through the car windows. The method relies on a two-step approach: the first step is the computation of the exterior turbulent field using an unsteady CFD solver (EXA PowerFlow); the second step consists in the computation of the acoustic propagation inside the cabin using a finite element vibro-acoustic solver (Actran). The simplified car cabin of Hyundai Motor Company, studied in this paper, involves aluminum skin, windows, sealant, inner air cavity and acoustic treatment (porous material, damping layer). A pure vibro-acoustic model with hammer shock excitation on a window is first built.
2015-06-15
Technical Paper
2015-01-2337
Gordon Ebbitt, Todd Remtema
Speech communication from the front seat to the rear seat in a passenger vehicle can be difficult. This is particularly true in a vehicle with an acoustically absorptive interior. Speech Transmission Index (STI) measurements can quantify the speech intelligibility, but they require specialized signal processing. The STI calculations can be simplified if it is assumed that reverberation and echoes play an insignificant role in an automobile. A simplification of a STI measurement is described that uses a stationary reference speech signal from a talker mannequin in the driver’s seat to create a signal at the rear passenger positions. On-road noise measurements are used for the noise level and the calculated signal to noise ratio is used to calculate a simplified STI value that tracks closely to a full implementation of the STI method for sedans. In fact, this method is very similar to the techniques described in the Articulation Index (AI) and Speech Interference Index (SII) standards.
Viewing 31 to 60 of 8881

Filter

Subtopics