Sponsored Content
Display:

Results

Viewing 1 to 30 of 8655
Technical Paper
2014-11-11
Kazuhiko Tanaka, Haruomi Sugita, Hibiki Saito, Masahiko Sekita
The exhaust sound of a motorcycle is one of the key appealing factors to the customers along with its styling and dynamic performances. Accordingly, various attempts have been made to realize attractiveness of exhaust sounds. Recently, there is an increasing demand to divert a common motorcycle engine to various vehicle categories. An individual engine configuration category has its own featuring exhaust sound. Despite of these circumstances, it is also required to create the best suitable sound for each vehicle category with a specific vehicle feature. Accordingly, there is a possible case in which an inline-four-cylinder engine is shared with another motorcycle model in the vehicle category with nostalgic appearances in which V-twin engine flavor is frequently featured. In this study, three essential factors were extracted from the verbal expressions that appear as adjectives, exclusively or commonly, used to illustrate the exhaust sounds in each vehicle category or engine type. We tried to develop a method applicable to various engine types to design a targeting exhaust sound, by clarifying the relationship between the position of each exhaust sound, appeared on the mapping chart for the three factors, and the feature of the waveform of the sound,.
Technical Paper
2014-11-11
Sara Gronchi, Riccardo Maccherini, Raffaele Squarcini, Fabio Guglielmo, Emanuela Ligarò
In the modern both small and large size engine, the acoustic emission is a very important matter increasingly studied as per specific international standards. This paper presents the study of the acoustic emission of a hydraulic rotary oil pump by means of measurement techniques and numerical approaches. This activity aims at showing a complete test-case in which both methods are used to face a noise issue and highlighting also the “weight” of the hydraulic excitation in both cases. In particular, an oil pump has been completely characterized on a test bench to verify the hydraulic performances and the noise radiation. A structural modification has been suggested with the target of altering the noise spectrum of the pump, achieving an optimization of the noise generation. From this assumption, experimental and numerical activities have started in parallel. Measurements have been carried out by means of the intensimetric method and supported also by conventional acquisitions performed with hydraulic pressure transducers, accelerometers and microphones.
Technical Paper
2014-11-11
Vishnu Kumar Kuduva Shanthulal, Kannan Marudachalam, V Pattabiraman, S Jabez Dhinagar, Chandramouli Padmanabhan
The diesel power train (engine and transmission) is the most significant mass contributor in a three- wheeled vehicle. High idling vibrations of a single cylinder four-stroke diesel engine causes discomfort for driver and passengers as vibrations from the engine get transmitted to the structure and the body panels through the engine mounts. The isolation of these vibrations by proper design of rubber mounts is the most effective engineering approach to improve ride quality of vehicle. In the present study, a mathematical model of the powertrain and mount system is developed; the engine and transmission are assumed to behave as a rigid body (6 degrees-of-freedom) and the compliance comes from the mounts. Both four and three mount configurations have been investigated, with the mounts being represented by three independent springs in the compression and shear modes. Since the mounts can be inclined, appropriate transformations are carried out from the local mount co-ordinate system to the global co-ordinate system.
Technical Paper
2014-11-11
Thomas Metzinger, Christoph Raber, Christoph Wittmann
20th Small Engine Technology Conference “New development approach for wet motorcycle clutch systems” The change of the motorcycle market in the last decade ask for “solutions” for the changed requirements. The strong rising bike segment of the emerging markets characterized by one cylinder engines up to 250ccm and 25HP and a focus of low price range of the vehicle in combination with a high sales volume. These bikes normally daily used for individual transportation. On the other side you have the bike segment of the industrial countries in which the bikes used mainly for hobby purposes or as amateur bike racer. The sales volume of these segment consolidated in the last years and have several subgroups like sport bike, touring, off-road and others. All of the segments and subgroups have their individual requirements to the clutch system. Now Schaeffler combine their experience in developing and producing components for small engines and clutch systems for the automotive sector to develop the ideal clutch system for a motorbike.
Technical Paper
2014-11-11
Antonio Agresta, Francesca Di Puccio, Paola Forte, Gabriele Benigni
NVH simulations for an automotive component industry represents a convenient mean to compare different solutions and make decisions on design choices based on the predictions of the component vibro-acoustic behavior. This paper presents the work carried out by the Modeling & Simulation Department of Continental Automotive Italy Spa in cooperation with LMS Italy Srl and the Department of Civil and Industrial Engineering of University of Pisa aimed at the vibro-acoustic characterization and comparison of two fuel rails assemblies (FRAs) by mean of simulations in Ansys Workbench & LMS Virtual.Lab. These simulations required a preliminary finite element (FE) modal analysis on the FRAs. To verify the reliability of the FE models, an experimental modal analysis was performed on one of the two fuel rails in free condition. The correlation between FE and test models highlighted some differences: a sensitivity study proved that the differences depend on the modeling of some brazed joints. The results of the following NVH simulations were checked by performing an acoustic impact test on the two FRAs in free condition inside an anechoic chamber.
Technical Paper
2014-11-11
Andrea Fioravanti, Giulio Lenzi, Giovanni Vichi, Giovanni Ferrara, Stefano Ricci, Leonardo Bagnoli
The intake and exhaust lines are the main elements contributing to the abatement of the acoustic emissions of an Internal Combustion Engine (ICE). Many different numerical approaches can be used to evaluate their acoustic attenuation, which is commonly expressed by the Transmission Loss. One-dimensional (1D) and three-dimensional (3D) simulations are conventionally carried out only within the acoustic domain of the muffler or the air-box. The walls of the acoustic filter are considered fully rigid and the interaction between the acoustic waves and the structure is then neglected. Moreover, the effect of the manufacturing characteristics and the attenuation of the acoustic waves due to the fluid viscothermal effects are also commonly disregarded in the numerical analysis of the filters. In addition the presence of a catalytic converter or a filter cartridge may have an influence on the numerical results. All these aspects, however, can remarkably affect the matching between simulations and experiments both at high frequencies and also at medium-low ones.
Technical Paper
2014-11-11
Diego Copiello, Ze Zhou, Gregory Lielens
This paper addresses the numerical simulation of vehicle exhaust system noise using an innovative transfer matrix method (TMM) supporting high order duct modes combined with finite element method (FEM). Exhaust systems usually consist of complex volume components (mufflers, catalyzers ...) connected by simpler pipes. The noise propagation through such systems can be efficiently addressed by means of the Transfer Matrix Method (TMM). The TMM is an analytical method which allows assessing efficiently the acoustic behavior of an entire exhaust line by combining acoustic transfer matrices of each of its constitu¬ent sub-components (i.e., volume components: mufflers, catalyzers, etc.). The main assumption of this method is that within the exhaust line only the plane wave is propagating and thus the transfer matrices could be computed analytically. On the contrary, this assumption leads to a strong limitation in the maximum frequency of analysis which is the cut off frequency of the first higher order mode present in any one of the exhaust line components.
Technical Paper
2014-10-13
Jouji Kimura, Shinichiro Kobayashi, Katsuhiro Hoshina, Kousuke Kawase, Koji Matsui, Atsushi Yamamoto
This paper describes the characteristics and mechanism of crankshaft impact noise that radiates from the cylinder body at full load medium engine speeds, based on the mechanism for axial vibration of crankshaft coupled with torsional vibration of crankshaft. Crankshaft Impact noise (hereinafter referred to as ‘impact noise’) is heard as an intermittent noise from the front of the 6-cylinder in-line engine at the full load engine speeds from 1000rpm to 1500rpm, predominant at 1200rpm, and the impact noise frequency ranges from 1.5 kHz to 3.5 kHz. The following steps were taken to prove that impact noise is caused by an axial vibration of crankshaft coupled with a torsional vibration of crankshaft. Firstly, impact noise was heard from the engine front, and thus the noise at a distance of one meter from the engine front, the vibrations on the cylinder body at No.1 crank-journal center and the crank angle were measured at a full load speed of 1200 rpm. In the measurement, the large vibrations (hereinafter referred to as ‘impact vibration’) were detected three times per two rotations of crankshaft at about 50° after the firing top dead centers (50° ATDC) of No.1, No.3 and No.2 cylinders, and impact noise was detected at a crank angle of about 50°ATDC of No.1 cylinder and at this angle, the impact vibration was the largest.
Technical Paper
2014-10-13
Yuan Fang, Tong Zhang
Abstract Because of the vehicle market competitive and of the raise of customers' demanding, NVH performance became an important job, especially for new energy vehicles. As the electric vehicle moving into the direction of high speed and large torque, electric vehicle vibration and noise problems highlighted gradually. In recent years, CAE has played an increasing role in the design, development and optimization of powertrain NVH at component and system levels. The subject of this paper was the numerical and experimental evaluation of the electromagnetic and vibro-acoustic behavior of an electric powertrain. For this purpose, a coupled and fully flexible dynamics model of the electric powertrain was developed. Then electromagnetic forces including both radial and tangential force and gear mesh excitations including time-varying meshing stiffness, meshing error and meshing impact were computed, which were used to perform forced response analysis on the full FE mesh of the powertrain housing.
Technical Paper
2014-10-13
Zhiyong Chen, Zhiyuan Chen, Yang Mao, Wenku Shi, Guihui Zhang
Abstract To research the torsional vibration damping characteristic of magneto-rheological fluid dual mass flywheel (MRF-DMF) and the control system in power train, the multi-degree power train torsional vibration model which contains MRF-DMF and semi-active fuzzy control model are built, then the damping characteristic of MRF-DMF in several conditions are gained and compared with MRF-DMF when no control system. The result indicates: the damping characteristic of MRF-DMF effect on power train when using control is better than without control in idle, speed up, slow down, ignition and stalling, while the damping characteristic is less obvious in constant speed because the simulation condition and damping moment relatively stable.
Technical Paper
2014-10-13
Daniela Siano, Fabio Bozza, Luigi Teodosio, Vincenzo De Bellis
This paper reports 1D and 3D CFD analyses aiming to improve the gas-dynamic noise emission of a downsized turbocharged VVA engine through the re-design of the intake air-box device, consisting in the introduction of external or internal resonators. Nowadays, modern SI ICEs show more and more complex architectures that, while improving the brake specific fuel consumption (BSFC), may be responsible for the increased noise radiation at the engine intake mouth. In particular VVA systems allow for the actuation of advanced valve strategies that provide a reduction in the BSFC at part load operations thanks to the intake line de-throttling. In these conditions, due to a less effective attenuation of the pressure waves that travel along the intake system, VVA engines produce higher gas-dynamic noise levels. The worsening of the engine gas-dynamic performance can be compensated with a partial re-design of the air-box device, without significantly penalizing the engine power output. In order to find new design configurations of the air-box device capable of improving the noise levels, different numerical models can be successfully employed.
Technical Paper
2014-10-13
Georg Johann Meingaßner, Hermann Pflaum, Karsten Stahl
Downsizing and downspeeding are currently important development approaches of the automobile industry to improve fuel efficiency and to reduce emissions. Decreased operational speeds in combination with higher combustion pressures lead to an increase of the excitation of torsional vibrations by the combustion engine. Torsional vibrations in powertrains can cause strength and NVH problems as well as lower driving comfort and reliability of the vehicle. Currently, conventional systems for reduction of torsional vibrations are increasingly reaching their limits. In cooperation with several institutes of the Technische Universität München (TUM) innovative concepts for an improved reduction of torsional vibrations in automotive powertrains have been developed. Several of those concepts have been realized as prototype assemblies engineered by the Gear Research Centre (FZG). ([6], [7], [8], [12], [13], [14]) During the design process, different challenges with regard to mass, mass moment of inertia and space demands have to be considered to ensure system performance and to meet vehicle-related requirements.
Technical Paper
2014-10-01
Uday Nayak, S Aravind, Sunil Aundhekar
Abstract The present competitive market scenario and customer requirements demand for improved NVH quality and to meet statutory norms without increased cost. When gears are used for power transmission, gear noise is of particular concern. The noise may be created due to harmonics of the rotating and meshing internal components. This has a significant effect on the overall vehicle sound quality. Various factors contribute to gearbox noise. Some of them include shaft misalignments, gear geometry, lubrication, bearings and loose mountings. Hence it is essential to study which factors contribute to the gearbox noise and to develop countermeasures for the same. Although a number of factors may contribute to gear noise as mentioned, the scope of this paper is limited to the effect of gear geometry alone on the gearbox noise. This paper offers an experimental investigation of reducing the noise levels in Ashok Leyland gearbox by modifying the gear tooth profile on one of the gear trains in order to meet the futuristic noise statutory norms.
Article
2014-09-30
The Model T261 series rotary transformer coupled torque sensors from SensorData Technologies meet the demanding in-line testing requirements of small motors, pumps, compressors, turbines, fans, and other fractional horsepower rated devices.
Technical Paper
2014-09-30
John Stuart, Stefano Cassara, Brendan Chan, Nicholas Augustyniak
Wobble and shimmy vibrations are commonly observed in commercial highway vehicles with solid-beam front axles. These vibrations are typically self-excited and manifest themselves as sustained oscillations about the kingpin and axle tramp. A study was initiated to investigate and quantify wobble and shimmy behaviors, with a primary focus on wobble. A cross functional team including test and simulation engineers evaluated a vehicle exhibiting these behaviors. The team developed an ADAMS model to reproduce the behaviors and developed a DOE to quantify the impact of variables and combinations of variables. The evaluation demonstrated that dynamic imbalance in the rotating masses is a primary source of excitation. Wheel run-out, caster angle, tire brand, tire wear and tire inflation are also significant sources. Future studies will use these findings to mitigate the concern.
Technical Paper
2014-09-30
John Anderson
Abstract This paper describes the development and testing of a Dynamic Vibration Absorber to reduce frame beaming vibration in a highway tractor. Frame beaming occurs when the first vertical bending mode of the frame is excited by road or wheel-end inputs. It is primarily a problem for driver comfort. Up until now, few options were available to resolve this problem. The paper will review the phenomenon, design factors affecting a vehicle's sensitivity to frame beaming, and the principles of Dynamic Vibration Absorbers (AKA Tuned Mass Dampers). Finally, the paper will describe simulation and testing that led to the development of an effective vibration absorber as a field fix.
Technical Paper
2014-09-30
Masahiro Akei, Takayuki Koizumi, Nobutaka Tsujiuchi, Takayuki Yamauchi
Abstract This paper describes a prediction of vibration and the transfer path analysis (TPA) using an engine multi body dynamics (MBD) model and measured frequency response functions (FRFs). TPA is used in order to analyze each contribution of vibration transfer paths. In the TPA, input forces from vibration source to passive part should be identified accurately. In the traditional TPA, an identification of input forces is done using only experimental results. Therefore, a parametric study to an improvement of a structure or an isolation system is impossible. In this study, the MBD model of engine is constructed, and input forces from engine to mainframe of agriculture machine are predicted. The accuracy of prediction is confirmed, compared with the results from the traditional TPA method. The contribution of each transfer path is analyzed, and the vibration levels of operator position are predicted using the measured FRFs and the simulated input forces. As a result, the input forces and the vibration levels of operator position can be predicted accurately.
Technical Paper
2014-09-30
Rahul Ramola, G Senthilkumar, P Kannan, Muralidharan Chennakrishnan
Abstract The demand for comfort level in commercial vehicles is steadily increasing. Hence, fine-tuned performance parameters and attributes are required to fulfill the expectations from these vehicles. Refinement of noise and vibration without affecting performances of sub-systems and components has become extremely challenging with increasing customer requirements. This paper presents an approach to identify and reduce the high level whistling noise that was perceived in the passenger compartment while the vehicle was accelerated above 50 kmph. Interior noise measurements in static engine run-up condition reveal that the whistling noise is of specific order. Since, whistling noise is related to aerodynamic response of components, engine cooling fan, turbo charger, alternators and compressors were suspected. Using order tracking and near field measurements, HVAC alternator was confirmed as the main cause for whistling noise. Noise measurements confirmed that orders related to alternator cooling fan became dominant above 50 kmph.
Technical Paper
2014-09-30
Masahiro Akei, Takayuki Koizumi, Nobutaka Tsujiuchi, Takayuki Yamauchi
Abstract This paper describes an identification of a sound source model for a diesel engine installed on an agricultural machine by Inverse-Numerical Acoustic analysis (INA), and the applicability of the identified sound source model. INA is a method to identify surface vibrations from surrounding sound pressures. This method is applicable for a complicated-shaped sound source like an engine. In order to confirm the accuracy of the identified sound source model, the surface vibrations of the engine are compared with the measured results. Moreover, in the condition of the simulated engine room, the surrounding sound pressure levels of the engine are predicted using the sound source model and the boundary element method (BEM). For the verification of the prediction accuracy, the surrounding sound pressures of the engine are measured using the testing device which simulated actual engine room, namely an enclosure. As a result, the sound source model of the diesel engine is identified accurately using the INA.
Technical Paper
2014-09-28
Meechai Sriwiboon, Nipon Tiempan, Kritsana Kaewlob, Seong Kwan Rhee
The influence of processing conditions on Low-Copper NAO disc pads were investigated as part of an effort to develop Low-Copper disc pad formulations as this kind of information is not readily available in open literature. Processing conditions as well as formulation modifications are found to influence friction, pad wear, disc wear and brake squeal. Low-Copper disc pads for pick-up trucks, equivalent to an OE pad, are developed. It is also found that brake squeal measured during the SAE J2522 (AK Master) Performance testing is related to the combined total wear rate of the disc plus the inner/outer pads or the disc wear rate alone, and that there is a threshold wear rate, above which brake squeal increases rapidly.
Technical Paper
2014-09-28
Juan Carlos Martinez Laurent, Adrian Jordan, Francisco Canales
Abstract The brake system and components are essential active safety systems for users of motor vehicles, one common NVH phenomenon known as Brake Disc Thermal Coning creates a perception of poor braking system performance. Although Brake Disc Thermal Coning does not deteriorate the braking distance or the vehicle performance, is a concern for the customer who identifies any undesired vibration as a potential performance loss resulting in complaints and warranty claims. In order to increase the quality, and reliability of the products, Automotive OEMs have created processes and tests, today incorporating the ones based in computational solutions, to identify, prevent and correct potential issues before its present in the final product. As computer technologies like Computer Aided Design (CAD), Computer Aided Engineering (CAE) and Computer Aided Manufacturing (CAM) have become more robust, and PC power clusters have increased the complexity of the problems resolution and decreasing the solver processing time, OEMs are moving forward from the road, to the lab and today to CAE.
Technical Paper
2014-09-28
SeongJoo Lee, JooSeong Jeong, ShinWook Kim, ShinWan Kim, Seong Rhee
A previous investigation showed that minor variations in alloying elements in gray cast iron disc contributed to measurable differences in friction and disc wear. This investigation was undertaken to find out if and how the increased friction and disc wear might affect brake squeal. The SAE J2522 and J2521 dynamometer procedures as well as an OEM noise dynamometer procedure and a chassis dynamometer noise procedure were used to find out if a correlation between disc wear and brake squeal could be discovered. In all cases, as the wear rate of a disc increases under a given set of test conditions, disc material transfer to the pad surface increases, which results in increased friction and brake squeal. Also a good method to detect disc variability (disc to disc, within a disc) is discussed.
Technical Paper
2014-09-28
Kun Diao, Lijun Zhang, Dejian Meng
Abstract Disc brake squeal has always been a great challenge to the automotive industry. Based on the pin-on-disc system, a series of frictional squeal bench tests are carried out, which show significant time-varying characteristics on occurrence, sound pressure and frequency of frictional squeal. To investigate the generation mechanism of time-varying characteristics of frictional squeal, a four-degree-of-freedom (4DOF) lumped parameter model considering the time-varying tangential contact stiffness, the normal contact stiffness and the friction coefficient is established in this paper. Through both the system stability analysis and the transient response analysis, the time-varying frictional squeal is predicted successfully, and the generation mechanism and the key impact factors are also investigated in depth. The simulation results show that the time-varying characteristics of frictional squeal are influenced by the frictional contact characteristics of the friction pair, including tangential contact stiffness, normal contact stiffness and friction coefficient.
Technical Paper
2014-09-28
Diego Masotti, Ney Ferreira, Patric Neis, Ademir Menetrier, Luciano Matozo, Paulo Varante
Abstract Creep groan is a low-frequency (20-300Hz) self-excited brake vibration caused by stick-slip phenomena at the friction interface observed at very low vehicle speed. The creep groan propensity of friction materials is closely related with the difference (Δμ) between the static (μs) and the kinetic (μk) coefficients of friction. In this study, a NAO brake pad material was used as a base formulation and the abrasives tested were commercial grade of black iron oxide, chromite, zirconium oxide, magnesium oxide and aluminum oxide. Experimental results were obtained by testing seven different friction material formulations, in which the type of abrasives or its hardness or its particle size was changed in order to explore the impact of these variables on the stick-slip occurrence. A laboratory-scale tribometer was used to investigate the influence of different types of abrasives and their physical properties in the stick-slip. The results showed that abrasive particle size and hardness significantly affect the propensity of stick slip.
Technical Paper
2014-09-28
Katsuhiro Uchiyama, Yuji Shishido
Abstract Last year, we presented the “spring - mass model” FEA simulation from stick-slip phenomenon standpoint for improvement of “creep groan”. “Creep groan” is one of representative groan of brake system for automobile and it is clarified by µ vs velocity (µ−V) property of friction material. This time, we will present our study for reduction of creep groan by pad shape parameter (chamfer and slot) with “advanced” spring - mass model” FEA simulation which used actual pad shape as mass model. In addition, this paper was revised based on oral presentation which we presented at SAE 2013.
Technical Paper
2014-09-28
Jin kuk Park, Hyun Bum Jung, Min Gyu Han, Nam ill Jeon
Abstract Prediction of noise and vibration of a gear train is important to achieve a competitive design. Objective of this paper is to develop a dynamic simulation model for vibration analysis and a synthesis process to predict vehicle interior noise using TPA (Transfer Path Analysis). The hybrid gear model is developed to simulate the stiffness of teeth and meshing characteristics in a gear pair. It is modeled by using the teeth stiffness map which is following real contact characteristics of a gear pair. The teeth stiffness is obtained by structural analysis. The multi-body model is composed of flexible bodies, shafts and nonlinear bearings. Input forces at the mounting point (input point) of the gear train are calculated by accelerations from dynamic analysis under real operating conditions. Calculated forces are used to synthesize a vehicle interior noise. Predicted noise is compared with experiment data.
Technical Paper
2014-09-28
Tobias Schramm, Georg Peter Ostermeyer
Abstract There are few principal excitation mechanisms that brake system NVH simulations are based on, especially the high frequency squeal simulations. These mechanisms can be described by some simple mechanical models that exhibit excitation or self-excitation effects induced by friction [1, 2]. These models use very simple friction laws of Coulomb type, described by a friction coefficient that is either a constant or simple functions of some state variables, taking into account a Stribeck characteristic. Measurements from the AK-Master or SAE J2521, however, show that the friction coefficient is not a simple function of some state variables, describing a steady state behavior of friction. In the past several years, material dependent descriptions of the frictional brake interface have started attracting attention [3]. These aspects are greatly influenced by the tribological effects at the frictional interface, which can be characterized by typical wear patterns. To get a better understanding of the friction mechanisms between the brake pad and the disk, the topography of the disk must be measured using in-situ nondestructive methods, which must be very fast because of the size of the data set and also highly accurate to attain, for example, the wear properties of ceramic disks.
Technical Paper
2014-09-28
Qiang Wang, Gang Qi, Guangrong Zhang, Xinyu Pu
Abstract A brake durability experimental method is proposed to simulate a brake durability vehicle road test. Brake judder and noise often occur in brake durability road testing. Brake judder is difficult to address because of its many potential causes, such as assembly run out, component stiffness, lining characteristics, thermal coning/hot spot/thermal instability and corrosion. There are currently several test procedures to predict brake thermal roughness and pad cleaning corrosion performance for preventing brake judder. Brake durability vehicle road testing is performed to check brake NVH and wear; examples include the Mojacar test in Spain and the Huangshan test in China. Brake energy intensity and road vibration are the significant factors that cause brake rotor thickness variation, which generates brake judder in public road testing. This study is focused on brake pad wear depending on brake energy intensity and brake rotor temperature to simulate brake durability road testing and brake rotor thickness variation (RTV) generation induced by wear.
Technical Paper
2014-09-28
Jung Hoon Woo, Jeongkyu Kim, Kwang Yun Kim, Daekyung Ko
Abstract Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. It is caused by the stick-sleep phenomenon at the lining and disc interface. Recently, the field claim of low frequency creep groan has increased. There are a lot of efforts to improve creep groan noise by means of modification of lining material. In this paper, Transfer path of creep groan noise was analyzed through ODS and TPA. Additionally the correlation between Source (Brake torque variation, Brake vibration) and Creep Groan Sound level was discussed. Finally countermeasure to Creep Groan noise was suggested.
Viewing 1 to 30 of 8655

Filter

  • Article
    878
  • Book
    23
  • Collection
    16
  • Magazine
    252
  • Technical Paper
    6896
  • Standard
    590

Subtopics