Display:

Results

Viewing 1 to 30 of 7836
2017-06-17
Journal Article
2017-01-9550
David Neihguk, M. L. Munjal, Arvind Ram, Abhinav Prasad
Abstract A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
2017-06-05
Technical Paper
2017-01-1842
Akin Oktav, Cetin Yilmaz, Gunay Anlas
As a countermeasure to trunk lid slam noise, reactive openings are used in the trunk cavities of passenger vehicles. In sedans trunk and cabin cavities are coupled acoustically through discontinuities on the parcel shelf and/or the rear seat. In such a case, these openings behave as if necks of a Helmholtz resonator, which in turn change the acoustic response of the system, accordingly. The Helmholtz resonator effect of the trunk cavity is discussed analytically through a simplified cavity model. A case study is also given, where the acoustic response of a sedan is analyzed through the computational model that considers the resonator effect. Sound pressure level results show that instant pressure drops and damping effects observed in the acoustic response can be explained with the resonator effect. Results obtained from the computational model of the sedan are verified by road test measurements
2017-06-05
Technical Paper
2017-01-1883
Arnaud Duval, Guillaume Crignon, Mickael Goret, Maxime Roux
The lightweighting research on noise treatments since years tends to prove the efficiency of the combination of good insulation with steep insulation slopes with broadband absorption, even in the context of bad passthroughs management implying strong leakages. The real issue lies more in the industrial capacity to adapt the barrier mass per unit area to the acoustic target from low to high segment or from low petrol to high diesel sources, while remaining manipulable. The hybrid stiff insulator family can realize this easily with hard felts barriers backfoamed weighting from 800 g/m² to 2000 g/m² typically with compressions below 10 mm. Above these equivalent barrier weights and traditional compressions of 7 mm for example, the high density of the felts begins to destroy the porosity and thus the absorption properties (insulation works anyway here, whenever vibration modes do not appear due to too high stiffness…).
2017-06-05
Technical Paper
2017-01-1848
Richard DeJong
From 1983 to 1995, Richard H. Lyon published several papers on Statistical Phase Analysis, showing that the average phase of the transfer functions in complex systems grows with frequency in proportion to the modal density of the system. In one dimensional systems this phase growth is the same as that of freely propagating waves. However, in two and three dimensional systems this phase growth is much larger than the corresponding freely propagating wave. Recent work has shown that these phase growth functions can be used as mode shape functions in discrete system models to obtain results consistent with Statistical Energy Analysis. This paper reviews these results and proposes naming the statistical mode shape functions in honor of Lyon.
2017-06-05
Technical Paper
2017-01-1775
Mark A. Gehringer, Robert Considine, David Schankin
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large diameter single-piece tubular aluminum propeller shafts with high modal density. The application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, rotating and non-rotating data were acquired in-situ for several propeller shafts of varying construction, including both lined and unlined shafts. Data were also acquired with and without a torsional tuned vibration absorber attached to the driveline. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
2017-06-05
Technical Paper
2017-01-1773
Jing Yuan
The dual phase twin synchronous drive has been developed for belt noise reduction. Two identical synchronous belts are arranged parallel side by side with one tooth staggered against other by the half pitch. The noise cancellation effect is achieved as one belt tooth engagement coincides with the other belt tooth dis-engagement. A center flange is used as a divider to prevent the belts contacting each other along the axial direction during their entrance and exit of the sprocket. An overall 20 [dBA] noise reduction has been achieved with the dual phase twin belt system compared to an equal width single belt counterpart. The vibration amplitude of the hub load is also reduced which is directly correlated to the structural borne noise. Comparing to the related dual phase helical tooth belt, also known as the eagle belt trade marked by Goodyear, the dual phase twin belt is superior in torque carrying capability; and is on par with noise mitigation.
2017-06-05
Technical Paper
2017-01-1784
Guillaume Baudet
Automotive wind noise’s physic is complex : noise for passengers depend of : - acoustic transfer function in the cabin - transfer loss of seals and panels - first of all, exterior loading due to the flow around the vehicle For some years, we know that the exterior loading can and must be split in two parts : - Hydrodynamic (or turbulent) loading with high wave number pressure field - Acoustic loading with low wave number pressure field In simulation people start to separate the two pressure fields by complex signal processing. But in real life test, there is no simple method to do so. In this paper we present an inverse method, call “Panel Inverse Method” (PIM) which can extract the low wave number loading measured on a vehicle panel. The method may be known with the French “RIFF” name. It is based on acceleration measurement of the panel to calculate the pressure which create panel’s motion : that’s typically an inverse method.
2017-06-05
Technical Paper
2017-01-1785
Paul Bremner, Scott Clifton, Chris Todter
Measurements of interior wind noise sound pressure level have shown that dBA and Loudness are not adequate metrics of wind noise sound quality due to non-stationary characteristics such as temporal modulation and impulse. A surface microphone array with high spatio-temporal resolution has been used to observe the corresponding non-stationary characteristics of the exterior aero-acoustic loading. Wavenumber filtering is used to observe the unsteady character of the low wavenumber aero-acoustic loading components capable of exciting glass vibration and transmitting sound.
2017-06-05
Technical Paper
2017-01-1769
Onkar Gangvekar, Santosh Deshmane
In today's automobile market, most of OEM's uses manual transmission for Cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gear can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is the key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia and which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a grit blasting process has been added. These components are tested with Accelerated test plan successfully.
2017-06-05
Technical Paper
2017-01-1820
Martin Sopouch, Josip Hozmec, Alessandro Cadario
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi–Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain – includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
2017-06-05
Technical Paper
2017-01-1800
Robert White
Several analytical tools exist for estimating a driveshaft’s critical speed, from simple elementary beam theory to sophisticated FEA models. Ultimately, nothing is better than a test, because no one will argue with the outcome from a well-designed measurement. Impact response measurements are easy, but they tend to over predict the critical speed. A test which sweeps the shaft speed up until failure is telling, but the speed causing failure is strongly dependent on even small amounts of variation in rotor unbalance. Waterfall plots of shaft displacement measurements offer the best indication of critical speed, however sometimes the resonance isn’t clearly seen or multiple resonances exist, making the critical speed unclear. A method less susceptible to system variation is offered here, fitting shaft orbit measurements to the theoretical single degree of freedom equation.
2017-06-05
Technical Paper
2017-01-1804
Chulwoo Jung, Hyeon Seok Kim, Hyuckjin Oh, Kwang Hyeon Hwang, Hun Park
An efficient method to determine bush stiffness of passenger cars for satisfying requirement of noise and vibration is developed. In general, a passenger vehicle includes various types of bush to connect systems and control forces (loads) transferred between systems which affect characteristics of noise and vibration of the vehicle. Noise and vibration of a vehicle are mainly caused by forces from power train (engine and transmission) and road excitation. While a vehicle is in operation, road excitation is applied to the vehicle through bushes. If a bush transfers less force to the body structure, levels of noise and vibration will be decreased. In other words, it is necessary to well determine characteristics of bushes when developing passenger vehicles. Bush stiffness is one of key factors to affect the performance of noise and vibration of the vehicle.
2017-06-05
Technical Paper
2017-01-1863
Bhaskar Avutapalli, Mayuresh Pathak, Shalini Solipuram, Ken Buczek, Aaron Lock
Road noise and speech intelligibility are becoming ever more important, irrespective of the vehicle size, due to vehicle refinement as well as connectivity with mobile phones. With better aerodynamic designs, development of refined powertrains, and a tectonic shift from I.C. engine to electric motors, road noise will play an influential role for the customer. This paper describes the efforts undertaken to identify the road noise paths and develop countermeasures for a compact SUV vehicle. A hybrid test / CAE approach was followed to improve road noise performance of this vehicle. This effort involved creating tire models from physical hardware, creating synthesized road-load input from data taken on roads. Significant efforts were made to ensure model quality; focus on performing component level tests like bushing / damper characterization at high frequencies, modal correlation, IPI, NTF, and measurement of noise levels due to road input all ensured a high fidelity model.
2017-06-05
Technical Paper
2017-01-1780
Yong Xu
Research Objective: For MT vehicles, gearbox rattle is a common NVH problem which influences the comfort level of vehicle. In order to prevent rattle in the design phase of vehicle, this work aimed to study the excitation mechanism and influence factors of gearbox rattle, and then to propose effective measures. Methodology: First, the root cause of gearbox rattle problem was studied with the aid of classical dynamical theories. And then the simulation model of vehicle powertrain system was built via Matlab-Simulink. Then some critical parameters of the model and some experiential optimum proposals were selected to perform a sensitivity analysis on the torsional vibration, which is the root cause of rattle. Referring the simulation results, the dual-mass flywheel was selected as the most effective solution to gearbox rattle. Results: The simulation results indicated the critical parameters for optimization to prevent gearbox rattle problem in the design phase of the vehicle.
2017-06-05
Technical Paper
2017-01-1768
Yong Xu
Purpose: For rear-wheel-drive (or all-wheel-drive) vehicles, the vibration and noise that caused by driveshaft often become the main factors that influence the comfort level of vehicle. In order to control and improve the NVH problems related to driveshaft, this work aimed to study the excitation mechanism and transfer path of driveshaft vibration, and then to propose effective measures. The purpose of this work was to propose an effective way to improve the NVH performance by controlling the additional excitation force of U-joints in the early phase of project. Methodology: First, the rotation order characteristics of driveshaft were studied with the aid of classical dynamics. Then a rigid-elastic coupling model of vehicle powertrain was modelled with the theory of multi-body dynamics. By inputting the actual vehicle parameters into the model, the acceleration operation of vehicle could be simulated.
2017-06-05
Technical Paper
2017-01-1781
Joshua Wheeler
Automatic Speech Recognition (ASR) and Hands Free Communication (HFC) capabilities have become prominent in the automotive industry, with over 50% of new vehicle sales equipped with some level of ASR system. With the common use of mobile personal assistants and smartphones with Bluetooth capability, customer expectations for built in ASR and HFC systems have increased significantly. The performance of these ASR and HFC systems are highly dependent on the level of background or “masking” noise that competes with the speech engine’s ability to correctly convert the driver’s speech to actionable commands. HVAC noise provides high amplitudes of broadband frequency content that affects the signal to noise ratio (SNR) within the vehicle cabin, and works to mask the user’s speech. Furthermore, when the airflow from the panel or defroster vents are directed toward the vehicle microphone, a mechanical “buffeting” phenomenon occurs that distresses the ASR system even further.
2017-06-05
Technical Paper
2017-01-1864
Joshua Wheeler
Automatic Speech Recognition (ASR) and Hands Free Communication (HFC) capabilities have become prominent in the automotive industry, with over 50% of new vehicle sales equipped with some level of ASR system. With the common use of mobile personal assistants and smartphones with Bluetooth capability, customer expectations for built in ASR and HFC systems have increased significantly. The performance of these ASR and HFC systems are highly dependent on the level of background or “masking” noise that competes with the speech engine’s ability to correctly convert the driver’s speech to actionable commands. HVAC noise and environmental noise (like road and wind noise) provide high amplitudes of broadband frequency content that affects the signal to noise ratio (SNR) within the vehicle cabin, and work to mask the user’s speech. Managing this noise is a vital key to building a vehicle that meets the customer’s expectations for ASR and HFC performance.
2017-06-05
Technical Paper
2017-01-1891
Todd Freeman, Kelby Weilnau
Similar to the automotive industry, the expectations from customers for the noise and vibration performance of personal vehicles such as golf carts, ATV’s, and side-by-side vehicles has continued to evolve. Not only do customers expect these types of vehicles to be more refined and to have acoustic signatures that match the overall performance capabilities of the vehicle, but marketing efforts continue to focus on product differentiators which can include the acoustic and vibration performance. Due to this increased demand for acoustic and vibration performance, additional NVH efforts are often required to meet these expectations. This paper provides a sample of some of the efforts that have occurred to further refine and develop the noise and vibration signature for golf carts.
2017-06-05
Technical Paper
2017-01-1870
Saeed Siavoshani, Prasad Balkrishna Vesikar, Daniel Pentis, Rajani Ippili
The objective of this paper is to develop a robust methodology to study the internal combustion (IC) engine block vibrations and to quantify the contribution of combustion pressure loads and inertial loads (mechanical loads) to the engine block vibrations. This study is not extended to the sound pressure generated by the engine and contribution analysis for that response. In an IC engine, the combustion and mechanical/inertial loads are the main sources of engine block vibrations. They both contain not only strong harmonic content due to their repetitive nature but also transient broadband impact loads. Therefore, it is difficult to identify/separate the contribution of combustion and inertial loads in the vibration response due to their correlated frequency excitations. One of the tools utilized in the industry to separate the combustion and mechanical noise is the Wiener filter.
2017-06-05
Technical Paper
2017-01-1802
Dong chul Lee, Insoo Jung, Jaemin Jin, Stephan Brandl, Mehdi Mehrgou
Classical approaches to development require a lot of time and cost to make samples involved the major design factors, which is why there have been recent researches to improve the efficiency of the development through a variety of simulation techniques. NVH simulation is of importance in this advanced phase, the design of all the parts should be satisfactory from the NVH point of view during the first phase of the project. This paper presents such an approach of simulation for the prediction radiated noise from a diesel engine with integrated powertrain model with changing combustion excitation. For changing combustion excitation, the cylinder pressure is measured and used as an input for simulation. The simulation model is validated with comparing the result of experiment in specified frequency ranges that the level of the noise is made louder than the development target.
2017-06-05
Technical Paper
2017-01-1831
Longchen Li, Wei Huang, Hailin Ruan, Xiujie Tian, Keda Zhu, Melvyn Care, Richard Wentzel, Xiaojun Chen, Changwei Zheng
The control strategy design of vehicle active noise control (ANC) relies too much on experiment experience, it costs a lot to gather mass data and the experimental results lack representation. To solve the problems, a new control strategy optimization method based on the Genetic Algorithm is proposed. First, a vehicle cabin sound field simulation model is built by sound transfer function. Based on the filtered-X Least Mean Squares (FX-LMS) algorithm and the vehicle cabin sound field simulation model, a vehicle ANC simulation model is proposed and verified by a vehicle field test. Furthermore, the Genetic Algorithm is used as a strategy optimization tool to optimize an ANC control strategy parameter set based on the vehicle ANC simulation model. The optimized results provide a reference for the ANC control strategy design of the vehicle.
2017-06-05
Technical Paper
2017-01-1809
Dhanesh Purekar
Engine noise is considered significant aspect of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues which is considered objectionable and impacts the customer perception. Gear whine could results due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro-geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. A gear whine case study is presented on the data collected on one of the Cummins diesel engines in the production environment. This paper also includes quick overview of measurement process, test cell environment, noise acceptance criteria considerations. This paper highlights the benefits of using production facility for developing next generation of product development from whine perspective.
2017-06-05
Technical Paper
2017-01-1904
Tan Li, Ricardo Burdisso, Corina Sandu
Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph. The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise.
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply to the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on analytical and empirical expressions from literature. This includes various types of engine noise – fan, jet, and propeller noise – as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin. This part is again based on analytical and empirical formulations.
2017-06-05
Technical Paper
2017-01-1901
Christian Glandier, Stefanie Grollius
With the reduction of engine noise in internal combustion engines and the advent of alternative propulsion systems, road noise has become the major source of interior noise in urban and suburban driving in the low frequency range. The challenges of weight reduction, performance improvement and reduced development time call for stronger support of the development process by numerical methods. The long and complex transfer paths from the road surface to the occupants’ ears through tire, chassis, bushings, body, trim and air cavity make such a prediction a non-trivial task. This starts with the tire. Tire manufacturers have a thorough knowledge of their product and the physics involved in its behavior and deploy refined simulation techniques. However, interfacing difficulties between tire simulation and vehicle simulation very often lead to unnecessary losses in accuracy.
2017-06-05
Technical Paper
2017-01-1839
Edward T. Lee
It is common for automotive manufacturers and off-highway machinery manufacturers to gain an insight of the system structural dynamics by evaluating the system inertance functions near the mount locations. The acoustic response at the operator’s ears is a function of the vibro-acoustic characteristics of the system structural dynamics interacting with the cavity, with the actual load applied at the mount locations. The overall vibro-acoustic characteristics can be influenced by the change in local stiffness. To analyze the response of a system, it is necessary to go beyond analyzing its transfer functions. The actual load needs to be understood and be applied towards the transfer function set. Finite element (FE) based analysis provides a good foundation for deterministic solutions. However finite element method suffers in accuracy as the frequency increases. Many NVH problems happen to be at the mid frequency range where solving the problem with the FE-only approach falls short.
2017-06-05
Technical Paper
2017-01-1882
Pravin P. Hujare, Anil D. Sahasrabudhe
The reduction of vibration and noise is a major requirement for performance of any vibratory system. Due to legislative pressures in terms of external pass by noise limit of vehicles and customer requirements for better noise and ride comfort in vehicle, NVH attribute has become an important parameter. Major sources for vehicle pass-by noise consist of powertrain, tire and wind. Damping treatment is important to reduce vibration and noise radiation. The passive constrained layer dampening (CLD) treatment can be used to reduce structure-borne noise of vibrating structure using viscoelastic damping material. The performance of the passive constrained layer damping (CLD) treatment can further be enhanced by new segmentation technique. The concept of segmented CLD is based on edge effect. The efficiency of segmenting a constrained layer damping treatment relies on the fact that a high shear region is created in the viscoelastic layer.
2017-06-05
Technical Paper
2017-01-1782
Jobin Puthuparampil, Henry Pong, Pierre Sullivan
Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
2017-06-05
Technical Paper
2017-01-1858
James Haylett, Andrew Polte
Truck and construction seats offer a number of different challenges over automotive seats in the identification and characterization of Buzz, Squeak, and Rattle (BSR) noises. These seats typically have a separate air or mechanical suspension and usually have a larger number and variety of mechanical adjustments and isolators. Associated vibration excitation tend to have lower frequencies with larger amplitudes. In order to test these seats for both BSR and vibration isolation a low-noise shaker with the ability to test to low frequency, down to 1 Hz was used. Slowly swept sine excitation was particularly helpful in understanding the seat mode shapes and nonlinearities at low frequency which showed large displacements. A typical sample set of seat BSR sounds are described in terms their time and frequency characteristics and widely used sound quality metrics.
2017-06-05
Technical Paper
2017-01-1877
Justin Gimbal, Joy Gallagher, John Reffner
Damping materials are applied to the vehicle body during production to provide passenger comfort by reducing noise and structural vibration through energy dissipation. Noise, Vibration, and Harshness (NVH) Engineers identify critical areas of the vehicle body for material placement. Damping materials, which include liquid applied dampers, are typically put directly on the structure; covering large areas. These film forming materials can be spray applied using automation and, after baking, result in a cured viscoelastic damping layer on the target substrate. Typical liquid applied dampers contain an aqueous dispersion of film forming polymer which functions to bind inorganic materials together in the coating and provide a composite structure that dissipates energy. Representative damping coatings were prepared from dispersions of polymers with varying viscoelastic properties and chemical compositions.
Viewing 1 to 30 of 7836

Filter