Display:

Results

Viewing 1 to 30 of 7744
2017-03-28
Technical Paper
2017-01-1052
Paul Zeng, Vincent Solferino, Mark Stickler
Engine ticking noise is one of the key failure modes in today’s direct injection (DI) engines. High ticking noise results in high Things Gone Wrong (TGW) index, which negatively affects customer satisfaction. In this paper, the root cause of the ticking noise from DI injector in direct mounting will be presented. Design principle such as injector impact force to cylinder head and DI injector isolator design with 2 stage stiffness is proposed.
2017-03-28
Technical Paper
2017-01-0443
Yong Hyun Nam, Gwansik Yoon
The sound induced by a closing door is determined by the various components like door latch, door module, door glass installed within the door area. The key components vibrate due to the force from the closing door, and the combined vibration caused by the components determines the sound from the door. In particular, when the door is closed with the door glass down, the vibration and noise of the door glass are louder than those of any other component; this is called door glass rattle - attributed to the loss of the door glass support point. This study not only evaluates the rattle influence level of a door glass support but also introduces an approach to reduce glass rattle noise by using sealing components. 1. Study on Minimization of Vibration A jig was constructed to evaluate the level of influence of the rattle of a door glass support.
2017-03-28
Technical Paper
2017-01-1311
Suman Mishra, Nagesh Gummadi, Lloyd Bozzi, Neil Vaughn, Rob Higley
Air rush noise is exhaust gas driven flow induced noise in the frequency range of 500-6500 Hz. It is very essential to understand the flow physics of exhaust gases with in the mufflers in order to identify any counter measures that can attenuate this error state. This study is aimed at predicting the flow physics and hence of air rush noise of exhaust mufflers in the aforementioned frequency range at a typical exhaust flow rate and temperature. The study is performed on 2 different muffler designs which show a significant air rush noise level difference when tested on the vehicle. The transient computational study was performed using DES with 2nd order spatial discretization and 2nd order implicit scheme for temporal discretization in StarCCM+. To compare with test data, a special flow test stand is designed so that all high and low frequency contents emanating from the engine are attenuated before the flow enters the test part.
2017-03-28
Technical Paper
2017-01-0566
Ramachandra Diwakar, Vicent Domenech-Llopis
Historically stating, combustion noise from the passenger car diesel engines has been a major drawback for customer acceptance. The present modern automotive diesel engines operate quietly due to advancements in diesel injector technology and noise abatement strategies applied to the engine compartment of the vehicle itself. In the literature, recent experimental and analytical research work with a single cylinder direct-injection diesel engine has shown that the injection dwell time between the main injection pulse and the one preceding to it, is primarily responsible for the noise reduction The objective of the current analytical research work is to bring out the fundamental physics behind the experimentally observed noise reduction phenomena. The computational study was conducted at a key part-load operation of a direct-injection diesel engine (engine speed of 2000RPM and 5Bar BMEP) with five injection pulses.
2017-03-28
Technical Paper
2017-01-1057
Paul Zeng, Debabrata Paul, Vincent Solferino, Mark Stickler
Valvetrain ticking noise is one of the key failure modes in noise vibration harshness (NVH) evaluation at idle. It affects customer satisfaction inversely. In this paper, the root cause of the valvetrain ticking noise and key parameters that impact ticking noise will be presented. A physics based math model has been developed and integrated into a parameterized multi-body dynamic model. The analytical prediction has been correlated with testing data. Valvetrain ticking noise control is discussed.
2017-03-28
Technical Paper
2017-01-1055
Baolin Yu, Zhi Fu, T. Bin Juang
The automotive industry is experiencing a profound change due to increasing pressure from environmental and energy concerns. This leads many auto makers to accelerate hybrid and electric vehicle development. Generally smaller engines utilized by hybrid and electric vehicles lend themselves to quieter operation. However, customer satisfaction could be negatively impacted by the peak whine emitted by electric motor. Unlike conventional gas vehicles, the strategy for reducing motor whine is still largely unexplored. This paper presents an analytical study on electric motor whine radiated from a hybrid vehicle transmission. The analysis includes two stages. Firstly a detailed finite element (FE) model of transmission is constructed, and case surface velocities are calculated utilizing electromagnetic force. Then a boundary element model is built for evaluating noise radiated from the transmission surface using acoustic transfer vector (ATV) method.
2017-03-28
Technical Paper
2017-01-1051
Hassan Nehme, Abdelkrim Zouani
Turbocharged engines constitute one of the strategies used by Ford Motor Company to deliver engines with improved fuel economy and performance. However, turbochargers exhibit many inherent NVH challenges that need to be addressed in order to deliver refined engines that meet customers’ expectations. One of these challenges is the turbocharger 1st order synchronous noise due to the interaction between the manufacturing tolerances of the rotating components and the dynamics of the rotor. This paper presents an analytical method to compute the turbocharger bearing forces and predict the 1st order synchronous noise and vibrations. The method consists of a fully coupled turbocharger rotor dynamic analysis in a flexible turbocharger housing structure; it predicts housing vibrations under various manufacturing tolerance conditions. The predicted vibrations of the turbocharger housing are compared to measured test data to demonstrate the validity of the analytical method.
2017-03-28
Technical Paper
2017-01-0442
Harchetan Singh Aneja, Manas Tripathi, Harmeet Singh, Aashish Parmar
Abstract With the increasing expectation of customer for a quiet and comfortable ride, automobile manufacturers need to continuously work upon to improve automobile powertrain NVH. Today’s customer has become so aware of vehicle related noises that in-tank fuel pump noise is no exception to the checklist of evaluating cabin NVH. In-tank fuel pump, that is responsible for delivering the fuel from fuel storage tank to delivery rail, uses an electric driven motor. The rotating parts such as rotor, etc. produce vibrations that may traverse to tank body & subsequently vehicle body. Since noise is essentially an audible vibration at its root, these structure borne vibrations may be perceived as noise inside passenger cabin. Additionally, the noise may also be produced by fuel flow pulsations if transferred through piping to vehicle body. This paper focuses on various approaches to reduce the fuel pump generated noise heard inside passenger cabin.
2017-03-28
Journal Article
2017-01-0441
Zhenyu Wang, Mei Zhuang
Abstract A numerical study on sunroof noise reduction is carried out. One of the strategies to suppress the noise is to break down the strong vortices impinging upon the trailing edge of the sunroof into smaller eddies. In the current study, a serrated sunroof trailing edge with sinusoidal profiles of wavelengths is investigated for the buffeting noise reduction. A number of combinations of wavelengths and amplitudes of sinusoidal profiles is employed to examine the effects of trailing edge serrations on the noise reduction. A generic vehicle model is used in the study and a straight trailing edge is considered as a baseline. The results indicate that the trailing edge serration has a significant impact on the sound pressure level (SPL) in the vehicle cabin and it can reduce the SPL by up to 10~15 dB for the buffeting frequency.
2017-03-28
Journal Article
2017-01-1507
Prashanta Gautam, Yousof Azizi, Abhilash Chandy
The tire noise is caused due to the complex interactions between the rotating tire and the road surface at the tire/road interface. It is usually caused due to a combination of individually complex noise generation mechanisms, which can be either structural or air related. The influence of each of these noise generation mechanisms may vary, depending on various conditions such as tire design, road surface and operating conditions. Due to the many variables that affect the many noise generation mechanisms in tires, it is usually a very complex task to isolate and categorize those that are present in the overall tire/road noise spectrum. Various approaches are used to categorize noise generation mechanisms in tires. In this paper, a statistical model is used, under the assumption that the tire noise acoustic pressure at a specific frequency band is related to the vehicle speed, in order to study tire noise at different speeds.
2017-03-28
Technical Paper
2017-01-0446
Xiao Chuan Xu, Xiuyong Shi, Jimin Ni, Jiaqi Li, Xiaochuan Xu Sr.
Abstract Oil pump is a critical part of engine lubrication system. The performance and efficiency of oil pump are greatly affected by vibration and noise, which would lead to the pump service life decreasing and pump body easily wearing. Hence the vibration and noise of oil pump is of great importance to study. In this paper, a FEA model of the variable displacement oil pump(VDOP) was established to carry on the modal and noise analysis, while the geometric structure was optimized with test verification. The modal analysis of VDOP was carried out by ABAQUS software, the 3-D unsteady flow field in VDOP was simulated by Pumplinx software, and the sound field was analyzed by ACTRAN acoustic module. Using a special oil pump test bench combined with B&K PULSE vibration and noise test equipment, the NVH and comprehensive performance experiment of the VDOP were carried out here.
2017-03-28
Technical Paper
2017-01-0448
Prakash T. Thawani, Stephen Sinadinos, John Zvonek
Abstract With the advent of EVs/HEVs and implementation of Idle-Stop-Start (ISS) technologies on internal combustion engine (ICE) driven cars/trucks to improve fuel economy and reduce pollution, refrigerant sub-system (RSS) induced noise phenomena like, hissing, gurgling and tones become readily audible and can result in customer complaints and concerns. One of the key components that induce these noise phenomena is the Thermostatic Expansion Valve (TXV). The TXV throttles compressed liquid refrigerant through the evaporator that results in air-conditioning (A/C) or thermal system comfort for occupants and dehumidification for safety, when needed. Under certain operating conditions, the flow of gas and/or liquid/gas refrigerant at high pressure and velocity excites audible acoustical and structural modes inherent in the tubing/evaporator/HVAC case. These modes may often get masked and sometimes enhanced by the engine harmonics and blower noise.
2017-03-28
Technical Paper
2017-01-0449
Yinzhi He, Bin Wang, Zhe Shen, Zhigang Yang, Gunnar Heilmann, Tao Zhang, Guoxu Dong
Abstract Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
2017-03-28
Technical Paper
2017-01-1070
Da Shao, Xu Sichuan, Aimin Du
Abstract The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
2017-03-28
Journal Article
2017-01-1120
Kenji Tsutsumi, Yoshitaka Miura, Yusuke Kageyama, Arata Miyauchi
Abstract A CVT variator chain system is superior in transmission efficiency to a belt system because of its lower internal friction. However, a chain produces more noise than a belt due to the long pitch length of contact between the pulleys and rocker pins. This study focuses on optimization of the pitch sequence for reducing chain noise. The previous pitch sequence was suitably combined of links of different lengths to improve noise dispersibility for reducing chain noise. First, the object function was defined as the reduction of the peak level of 1st-order chain noise combined with a well-balanced the levels on the low and high frequency sides. Interior background noise consisting of road noise and wind noise have the characteristic that they increase as the frequency decreases.
2017-03-28
Technical Paper
2017-01-1061
Jiachen Zhai, Ma Conggan
Electric vehicle driving permanent magnet synchronous motor has a wide speed range and load changes, with abundant harmonic currents, and its eccentric form is complex, which all result in poor sound quality and abnormal noise problems becoming increasingly prominent. To make a systematic and thorough study of the centralized drive permanent magnet synchronous motor (PMSM) is significant to ameliorate the sound quality and solve noise problems. MATLAB-based modeling technology, SPSS software, and the establishment of sound quality evaluation model for the centralized drive PMSM has a crucial reference value on the research and development of the electric vehicle driving permanent magnet synchronous motor. As for the sound quality of centralized drive PMSM, firstly, in order to get objective parameter values, evaluation models of objective parameters based on psychological acoustics should be established after the collection of the sound samples.
2017-03-28
Technical Paper
2017-01-1122
Yashodhan V. Joshi
Vehicle noise has reduced over the years due to the customer demand for quieter vehicles. As engines have become quieter by efforts to reduce the combustion noise, as well as, by moving away from mechanical fuel pumps to common rail fuel pumps, the geartrain noise has come under increased scrutiny. Gear whine could be a result of multiple factors, and gear profile distortion is one of those factors. ISO 10064 provides guidance on the distortion due to temperature effects, but does not describe other influences in detail. There is not much published literature about gear whine due to profile distortion. The work attempts to fill that gap by describing a gear whine problem due to profile distortion and load change and it’s resolution by changing the gear design.
2017-03-28
Technical Paper
2017-01-1130
Shinya Takamatsu, Nobuharu Imai, Koji Tsurumura, Seiji Yamashita, Hiroaki Tashiro
Abstract The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
2017-03-28
Technical Paper
2017-01-1062
Abdelkrim Zouani, Gabriela Dziubinschi, Vidya Marri, Simon Antonov
In modern automotive engines, Variable Displacement Oil Pump (VDOP) is becoming the pump of choice to reduce friction and deliver stringent fuel economy. However, this pump creates pressure ripples, at the outlet port during a complete shaft rotation, causing oscillating forces within the system and leading to the generation of tonal noises and vibrations. In order to minimize the level of noise different porting geometries and vane spacing are used. This paper presents an optimization method intended to identify the best possible spacing for the conventional 7-vanes and 9-vanes oil pumps. The method integrates a Matlab based oil pressure trace model into Mode Frontier computation platform. Bench tests are performed on several pumps with different vane spacing to measure the harmonics of the pressure ripples at the pump outlet in order to validate the results of the optimization study.
2017-03-28
Technical Paper
2017-01-1125
Victor Baumhardt, Valdinei Sczibor
Halfshafts are very important components from vehicle powertrain. They are the element responsible to transmit torque and rotation from transmission to wheels. Its most basic design consist of a solid bar with joints at each extreme, however, Depending of its length, the natural frequency of first bending mode might have a modal alignment with engine second order, resulting in undesired noise on vehicle interior. Many design alternatives are available to overpass this particular situation, like adding dampers, use tube shafts or use link-shafts, however, all of them are cost affected. The aim of this study is to propose an optimal halfshaft profile for a solid shaft to be machined from a rough bar, pursuing the lowest frequency the possible for the first bending mode by changing its diameter and, as a consequence, the mass and bending stiffness at appropriate regions.
2017-03-28
Technical Paper
2017-01-1121
Deb Bonnerjee, Djamel Bouzit, Javed Iqbal
Ting noise has a significant contribution to the driver’s perceivable transient NVH during acceleration from a stop or while driving. This metallic noise can be present in vehicles with any variant of the driveline architecture (FWD, AWD, RWD and 4X4). This paper details the generation mechanism of the noise excitation and defines the physical and design parameters that influence it. This paper will focus on the noise generated between halfshaft to wheel hub interface. Same phenomena apply to all other torque transferring components that use axial splines assembled with specified nut torque. Bench tests were conducted measuring the transient noise generated when powertrain torque is applied to the halfshaft which moves relative to wheel hub after overcoming the frictional torque. The properties of two interfacing surfaces (halfshaft joint tulip and wheel hub) are studied; including coefficient of friction and design features.
2017-03-28
Technical Paper
2017-01-0447
Zhe Li, Mike Dong, Dennis Harrigan, Michael Gardner
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
2017-03-28
Journal Article
2017-01-1465
William R. Bussone, Joseph Olberding, Michael Prange
At present, SAE J211 provides no definitive guidance as to the appropriate procedures for filtering angular rate sensor data prior to differentiation into angular acceleration data, especially for very short duration or impact data. Accordingly, a 3-2-2-2 array of linear accelerometers and a triaxial angular rate sensor were mounted into a Hybrid III 50th percentile male ATD headform and compared in a variety of impact events. An appropriate low-pass digital filter cutoff frequency for differentiating the angular rate sensor data into angular accelerations was sought via residual analysis in accordance with current SAE J211 guidelines to find appropriate cutoff frequencies which would best match the angular acceleration data measured by the 3-2-2-2 array, which is the present gold standard.
2017-03-28
Journal Article
2017-01-0444
Weiguo Zhang, Mark Likich, Brian Butler, John White
Abstract Engine air induction shell noise is a structure borne noise that radiates from the surface of the air induction system. The noise is driven by pulsating engine induction air and is perceived as annoying by vehicle passengers. The problem is aggravated by the vehicle design demands for low weight components packaged in an increasingly tight under hood environment. Shell noise problems are often not discovered until production intent parts are available and tested on the vehicle. Part changes are often necessary which threatens program timing. Shell noise should be analyzed in the air induction system design phase and a good shell noise analytical process and targets must be defined. Several air induction clean side ducts are selected for this study. The ducts shell noise is assessed in terms of material strength and structural stiffness. A measurement process is developed to evaluate shell noise of the air induction components.
2017-03-28
Journal Article
2017-01-1539
Vinh Long Phan, Hiroshi Tanaka, Takaaki Nagatani, Mikio Wakamatsu, Tsuyoshi Yasuki
Abstract High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
2017-03-28
Journal Article
2017-01-1325
U Oh, Kazuya Kusano, Norihiko Nonaka, Hironobu Yamakawa
The automotive fuel could be efficiently combusted by injecting it into the cylinders with high pressure to atomize it to pass the regulations of exhaust gas and fuel economy. For this reason, automotive companies have developed DI (Direct Injection) engines, which can inject gasoline into the cylinders directly and compress the pressure of the cylinder highly. Furthermore, the demand for lower-noise high pressure pumps is also increasing from the viewpoint of automotive comfort. Since the valve velocity and noise level will increase with the increase of the pressure in fuel pumps, noise issues need to be solved under the high pressure condition. Accordingly, the valve motion should be predicted with high accuracy under operating conditions for evaluating the noise caused by valve impingement. In addition, the squeeze film effect phenomenon, which is pressure increasing between two plates when the two plates become close enough, will occur in the physical fuel pumps.
2017-03-28
Journal Article
2017-01-1693
John Huber, Ranjani Rangarajan, An Ji, Francois Charette, Scott Amman, Joshua Wheeler, Brigitte Richardson
In-Vehicle speech recognition robustness is a challenge to the automotive industry. Factors such as background noise level and microphone placement affect how well the system performs. Live hardware validation using on-road testing with subjects of varying accent and cultural background can be both costly and time consuming. In addition, it is arguably impractical to collect a statistically significant amount of data to draw proper conclusions on the results. This paper describes a method to validate in-vehicle speech recognition by combining synthetically mixed speech and noise samples with batch speech recognition. Vehicle cabin noises are pre-recorded along with the impulse response from the driver's mouth location to the cabin microphone location. These signals are combined with a catalog of speech utterances to generate a noisy speech corpus. Speech scaling to simulate the Lombard effect of raising ones voice in a noisy environment is a critical piece.
2017-03-01
Book
Jay Meldrum
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using the EPA test procedure and standard for off-road vehicles, along with more stringent U.S. National Park Best Available Technology (BAT) standards that are likened to those of the California Air Resourced Board (CARB). Innovative technology solutions include: • Standard application for diesel engine designs • Applications to address and test both engine and track noise • Benefits of the Miller cycle and turbocharging The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise.
CURRENT
2017-02-09
Standard
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Viewing 1 to 30 of 7744

Filter