Display:

Results

Viewing 1 to 30 of 611
2017-06-05
Technical Paper
2017-01-1808
Francis Nardella
Abstract In a previous report, it was shown that power transmission through the camshaft reduced the first mode natural frequency of the power train and translated its convergence with dominant engine excitatory harmonics to a lower engine speed resulting in a marked reduction in torsional vibration while achieving 2/1 gear reduction for a 4-stroke 6-cylinder compression ignition (CI) engine for aviation. This report describes a sweep though 2 and 4-stroke engines with differing numbers of cylinders configured as standard gear reduction (SGRE) and with power transmission through the camshaft (CDSE) or an equivalent dedicated internal driveshaft (DISE). Four and 6-cylinder 4-stroke engines were modeled as opposed boxer engines. Four and 6-cylinder 2-stroke engines and 8, 10 and 12-cylinder 2-stroke and 4-stroke engines were modeled as 180° V-engines. All 2-stroke engines were considered to be piston ported and configured as SGRE or DISE.
2017-06-05
Technical Paper
2017-01-1764
Himanshu Amol Dande, Tongan Wang, John Maxon, Joffrey Bouriez
Abstract The demand for quieter interior cabin spaces among business jet customers has created an increased need for more accurate prediction tools. In this paper, the authors will discuss a collaborative effort between Jet Aviation and Gulfstream Aerospace Corporation to develop a Statistical Energy Analysis (SEA) model of a large commercial business jet. To have an accurate prediction, it is critical to accurately model the structural and acoustic subsystems, critical noise transmission paths, and dominant noise sources for the aircraft. The geometry in the SEA model was developed using 3D CAD models of major airframe and interior cabin components. The noise transmission path was characterized through extensive testing of various aircraft components in the Gulfstream Acoustic Test Facility. Material definitions developed from these tests became input parameters in the SEA model.
2017-06-05
Journal Article
2017-01-1765
Albert Allen, Noah Schiller, Jerry Rouse
Abstract Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Abstract A methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply with the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on layer analytical and empirical expressions from literature. This includes various types of engine noise - fan, jet, and propeller noise - as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin.
2017-03-28
Technical Paper
2017-01-1311
Suman Mishra, Nagesh Gummadi, Lloyd Bozzi, Neil Vaughn, Rob Higley
Abstract Air rush noise is exhaust gas driven flow-induced noise in the frequency range of 500-6500 Hz. It is essential to understand the flow physics of exhaust gases within the mufflers in order to identify any counter measures that can attenuate this error state. This study is aimed at predicting the flow physics and air rush noise of exhaust mufflers in the aforementioned frequency range at a typical exhaust flow rate and temperature. The study is performed on two different muffler designs which show a significant air rush noise level difference when tested on the vehicle. The transient computational study was performed using DES with 2nd order spatial discretization and 2nd order implicit scheme for temporal discretization in StarCCM+. To compare with test data, a special flow test stand is designed so that all high and low frequency contents emanating from the engine are attenuated before the flow enters the test part.
2016-09-27
Technical Paper
2016-01-8143
Jerry Syms, Theresia Manns, Björn Bergqvist
Abstract The noise generated by the flow of air past a transport truck is a key design factor for the manufacturers of these vehicles as the sound levels in the cabin are a significant component of driver comfort. This paper describes a collaboration between Volvo GTT and the National Research Council Canada to measure the in-cabin aeroacoustics of a full-scale cab-over tractor in the NRC 9 m Wind Tunnel. Acoustic instrumentation was installed inside the tractor to record cabin noise levels and externally to acquire tunnel background noise data. Using a microphone mounted on the driver’s-side tunnel wall as a reference to remove variations in background noise levels between data points, differences in cabin noise levels were able to be detected when comparing the tractor with different configurations. The good repeatability of the data allowed for differences of as little as 0.5 dB to be measured.
2016-09-27
Technical Paper
2016-01-2096
Simon Schnieders, Dirk Eickhorst
Abstract Drilling of high-strength titan material and composites in combination creates complex challenges in order to achieve required productivity and quality. Long spiral chips are characteristically for the titan drilling process, which leads to e.g. chip accumulation, high thermomechanical load, surface damages and excessive tool wear. The basic approach is the substitution of today’s peck drilling as current solution to this problem and the implementation of a vibration assisted drilling, so called micro-peck-drilling-process, to generate a kinematic chip breakage in a significant more efficient way. To meet perfectly the requirements regarding rates, quality and automation level, Broetje-Automation as system integrator has investigated and developed the implementation of different alternative high-performance systems and methods to approach the optimal oscillation movement of the tool.
2016-09-27
Technical Paper
2016-01-2097
Sylvain Laporte, Cosme De Castelbajac, Mathieu Ladonne
Abstract The Vibration Assisted Drilling (VAD) process has been implemented in Automated Drilling Equipment (ADE) on an industrial scale since 2011. Today more than 11000 ADEs are currently used on aircraft assembly lines. As well as drawing up a short report on the use of this new process, the authors make an assessment on new challenges that VAD has to face up. Indeed production rates are increasing and ADE manufacturers improve their technologies, one of the most recent and major development concerning the electrical motorization of the machines. These evolutions are as many opportunities for the VAD provided you have a clever understanding as well as an expert knowledge of the process. Thus the authors propose a new dynamic model of the whole VAD system which integrates the behavior of the part, cutting tool/material pair and the machine. The confrontation of model results and experimental validation tests demonstrates the relevance of the works.
2016-09-27
Technical Paper
2016-01-2136
Oliver Pecat, Tebbe Paulsen, Philipp Katthöfer, Ekkard Brinksmeier, Sascha Fangmann
Abstract Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
2016-09-20
Technical Paper
2016-01-2009
Natasha Barbely, Narayanan Komerath
Abstract Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor forward flight speeds. In addition, coaxial rotorcraft systems do not need a tail rotor, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possible aerodynamic interactions between rotor blades, blades and vortices, and between vortices. With two rotors, the parameter design space is very large, and requires efficient computations as well as basic experiments to explore aerodynamics of a coaxial rotor and the effects on performance, loads, and acoustics.
2016-06-15
Technical Paper
2016-01-1822
Drasko Masovic, Franz Zotter, Eugene Nijman, Jan Rejlek, Robert Höldrich
Abstract Radiation of sound from an open pipe with a hot mean flow presents one of the classic problems of acoustics in inhomogeneous media. The problem has been especially brought into focus in the last several decades, in the context of noise control of vehicle exhaust systems and jet engines. However, the reports on the measurements of the radiated sound field are still rare and scattered over different values of subsonic and supersonic flow speeds, cold and hot jets, as well as different sound frequency ranges. This paper focuses on low Mach number values of the mean flow speed and low frequencies of the incident (plane) sound waves inside an unflanged cylindrical pipe with a straight cut. It presents the results of the far-field radiation pattern measurements and compares them with an existing analytical model from the literature. The mean flow inside the pipe reached Mach number values up to 0.25 and temperature up to 300°C.
2016-06-15
Technical Paper
2016-01-1850
Christian Thomas, Nouredine Atalla
In passenger aircraft the most important noise control treatment is the primary insulation attached to the fuselage. Next to its acoustic properties the primary insulation main purpose is the thermal insulation and the minimization of condensed water. In general it consists of fibrous materials like glass wool wrapped in a thin foil. Due to stringent flame, smoke and toxicity requirements the amount of available materials is limited. Furthermore the amount of material installed in aircraft per year is much smaller compared to needs in the automotive industry. Therefore the best lay-up of the available materials is needed in terms of acoustics. This paper presents a tool for numerical optimization of the sound insulation package. To find an improved insulation the simulation tool is used in interaction with a measurement database. The databank is constructed from aircraft grade materials such as fibrous materials, foams, resistive screens and impervious heavy layers.
2016-06-15
Technical Paper
2016-01-1805
Florian Zenger, Clemens Junger, Manfred Kaltenbacher, Stefan Becker
Abstract A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
2015-09-15
Technical Paper
2015-01-2605
Jamnie Yazmín Achem Calahorra, Hilda E. Esparza Ponce, Patricia Zambrano Robledo, Facundo Almeraya Calderón, Citlalli Gaona Tiburcio
Abstract Thin films deposited by magnetron sputtering are review in terms of their potential and present uses in the aircraft industry. The aircraft alloys substrates were Ti-6Al-4V and Incoloy 800HT, using a target of yttrium stabilized zirconia (YSZ) with nominal composition of 8% Y2O3 (wt%) and the remainder of ZrO2. The chemical composition of the films was determined by X-ray energy dispersion (EDS). The electrochemical noise behavior show that the coatings decreased propagation of pitting, leading to a state of passivation or uniform corrosion, and also possess superior corrosion resistance over the individually substrates.
2015-09-15
Technical Paper
2015-01-2620
Philip Van Baren
Abstract Random vibration control systems produce a PSD plot by averaging FFTs. Modern controllers can set the degrees of freedom (DOF), which is a measure of the amount of averaging to use to estimate the PSD. The PSD is a way to present a random signal-which by nature “bounces” about the mean, at times making high excursions from the mean-in a format that makes it easy to determine the validity of a test. This process takes time as many frames of data are collected in order to generate the PSD estimate and a test can appear to be out of tolerance until the controller has enough data to estimate the PSD with a sufficient level of confidence. Something is awry with a PSD estimate that achieves total in-tolerance immediately after the test begins or immediately after a change in level, and this can hide dangerous over or under test conditions within specific frequency bands, and should be avoided.
2015-09-15
Technical Paper
2015-01-2586
Bradley Michael, Rani Warsi Sullivan, Dulip Samaratunga, Ratneshwar Jha
Abstract The vibration response from undamaged and damaged polymer matrix composite beams at elevated temperatures is analyzed using the Hilbert-Huang Transform (HHT) technique. The HHT shows potential in identifying the nonlinear damaged response of the beams. Using empirical mode decomposition to separate superposed modes of signals, several intrinsic mode functions can be determined which can reveal more information about complex nonlinear signals than traditional data analysis techniques such as the Fourier Transform. The composite beams are fabricated from an out-of-autoclave uniaxial carbon/epoxy prepreg (CYCOM™-5320-1/T650). Delamination damage in the composite layups is introduced by insertion of mold release wax films during fabrication. A shaker-table fixture was used for the vibration testing of all beams in a vertical cantilever configuration. High temperature piezoelectric accelerometers were used to obtain the vibration data for a frequency range of 1-61 Hz.
2015-09-15
Technical Paper
2015-01-2435
Ramakrishnan Murthy
Abstract One major problem that any product (say Motor, engines etc.) which converts electrical energy into a mechanical energy would have is resonance. It has tendency to damage any material when the products operating frequency matches the resonant frequency. The major consequences of this resonant frequency in Flight at run-time could be catastrophic. Generally it is a practice to avoid running at the resonant frequency. This is done as a fixed method where the systems are designed not to run on resonant frequency, i.e. a subsystem in a system is now being designed for that system alone which will not match the resonant frequency. But the same subsystem may not be suitable for some other system. Hence this requires multiple designs. However this idea is to make a design generic where any subsystem can be used in any system irrespective of its resonant frequency. The technique uses the PID algorithm. This method will be helpful is having a single design for different systems
2015-09-15
Technical Paper
2015-01-2453
Danilo Andreoli, Mario Cassaro, Manuela Battipede, Goodarz Ahmadi, Piergiovanni Marzocca
Abstract Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement.
2015-09-15
Technical Paper
2015-01-2477
Alessandro Gardi, Roberto Sabatini
Abstract This paper presents the conceptual design of a new low-cost measurement system for the determination of pollutant concentrations associated with aircraft operations. The proposed system employs Light Detection and Ranging (LIDAR) and passive electro-optics equipment installed in two non-collocated components. The source component consists of a tuneable small-size and low-cost/weight LIDAR emitter, which can be installed either on airborne or ground-based autonomous vehicles, or in fixed surface installations. The sensor component includes a target surface calibrated for reflectance and passive electro-optics equipment calibrated for radiance, both installed on an adjustable support. The proposed bistatic system determines the column-averaged molecular and aerosol pollutant concentrations along the LIDAR beam by measuring the cumulative absorption and scattering phenomena along the optical slant range.
2015-09-15
Technical Paper
2015-01-2475
Francesco Cappello, Roberto Sabatini, Subramanian Ramasamy
Abstract Accurate and robust tracking of objects is of growing interest amongst the computer vision scientific community. The ability of a multi-sensor system to detect and track objects, and accurately predict their future trajectory is critical in the context of mission- and safety-critical applications. Remotely Piloted Aircraft System (RPAS) are currently not equipped to routinely access all classes of airspace since certified Detect-and-Avoid (DAA) systems are yet to be developed. Such capabilities can be achieved by incorporating both cooperative and non-cooperative DAA functions, as well as providing enhanced communications, navigation and surveillance (CNS) services. DAA is highly dependent on the performance of CNS systems for Detection, Tacking and avoiding (DTA) tasks and maneuvers.
2015-09-15
Journal Article
2015-01-2485
Mark Benjamin Geiger, John Michael Ster
Abstract A joint US Department of Defense (DOD), General Services Administration (GSA) and National Institute for Occupational Safety and Health (NIOSH) project initially addressing procurement criteria for powered hand tools stimulated involvement of the SAE EG1-B Hand Tools committee and affiliated industry participants, producers of powered hand tools. It became apparent of the need to develop a standard that addresses occupational disease, productivity, life-cycle cost in the selection of Hand Power Tools. Committee efforts focused upon development of an SAE International Standard that considers productivity hand-arm vibration, noise, other safety and health factors and life-cycle costs in procurement criteria for powered hand tools. Aerospace Standard, AS 6228 Safety Requirements for Procurement, Maintenance and Use of Hand-held Powered Tools, was published in September 2014.
2015-09-15
Journal Article
2015-01-2501
Cosme de Castelbajac, Sylvain Laporte, Julian Lonfier, Emmanuel Puviland
Abstract Over the last few years, many aircraft production lines have seen their production rate increase. In some cases, to avoid bottlenecks in the assembly lines, the productivity of processes needs to be improved while keeping existing machine-tools. In this context, the case of drilling machine-tools tends to require particular attention, especially when multi-material parts are drilled. In such instances, the Vibration Assisted Drilling (VAD) process can be a way to improve productivity and reliability while keeping quality standards. This article presents a case of a drilling/countersinking process for stainless steel and titanium stack parts. Firstly, the article assesses the feasibility and benefits of using Vibration Assisted Drilling and Countersinking with the current cutting-tools.
2015-06-15
Technical Paper
2015-01-2081
Hossein Habibi, Graham Edwards, Liang Cheng, Haitao Zheng, Adam Marks, Vassilios Kappatos, Cem Selcuk, Tat-Hean Gan
Abstract Icing conditions in cold regions of the world may cause problems for wind turbine operations, since accreted ice can reduce the efficiency of power generation and create concerns regarding ice-shedding. This paper covers modelling studies and some experimental development for an ongoing ice protection system that provides both deicing and anti-icing actions for wind turbine blades. The modelling process contained two main sections. The first part involved simulation of vibrations with very short wavelength or ultrasonic guided waves (UGW) on the blade to determine optimal excitation frequency and transducer configuration. This excitation creates horizontal shear stress at the interface between ice and blade and focuses energy at the leading edge for de-bonding ice layers.
2015-06-15
Technical Paper
2015-01-2249
Saad Bennouna, Said Naji, Olivier Cheriaux, Solene Moreau, Boureima Ouedraogo, Jean Michel Ville
Abstract Passengers' thermal comfort inside a car cabin is mainly provided by the Heating, Ventilation and Air Conditioning (HVAC) module. Air provided by HVAC is blown via a blower, passing through different components: flaps, thermal exchangers, ducts… and then distributed to car cabin areas. Interaction between airflow and HVAC components generates noises that emerge in car cabin. Due to this fact, noise is naturally created and its level is linked to flow rate. Valeo is aiming, though CEVAS project, to develop a prediction tool which will provide HVAC spectrum and sound quality data. This tool will be based, in particular, on aeroacoustic measurements using 2N-ports model and Particle Image Velocimetry methods to provide characteristics of HVAC components.
2015-06-15
Journal Article
2015-01-2330
Christian Y. Glandier, Mark Eiselt, Oskar Prill, Eric Bauer
Abstract With the reduction of engine and road noise, wind has become an important source of interior noise when cruising at highway speed. The challenges of weight reduction, performance improvement and reduced development time call for stronger support of the development process by numerical methods. Computational Fluid Dynamics (CFD) and finite element (FE) vibroacoustic computations have reached a level of maturity that makes it possible and meaningful to combine these methods for wind noise prediction. This paper presents a method used for coupling time domain CFD computations with a finite element vibroacoustic model of a vehicle for the prediction of low-frequency wind noise below 500 Hz. The procedure is based on time segmentation of the excitation load and transformation into the frequency domain for the vibroacoustic computations. It requires simple signal processing and preserves the random character as well as the spatial correlation of the excitation signal.
2015-04-14
Technical Paper
2015-01-1360
Sajjad Beigmoradi
Abstract Improvements of aerodynamics and wind noise are two important objectives for automotive engineers. Improvement of aerodynamics behavior and the reduction of wind noise have been always greatly concerned by automotive engineers since they negatively affect passengers comfort, fuel consumption, car performance and, stability. In this paper, optimum levels of four dominant rear shape parameters for a simplified car model are investigated considering drag coefficient and aerodynamic noise objectives. C-Pillar angle, trunk angle, boat tail angle and rear box length are considered as variable parameters. Taguchi method is used for finding aerodynamic and acoustic optimum levels. Numerical simulation for base case is compared with experimental results in the literature. Numerical results show good agreement with experimental test. Afterwards, optimum levels for parameters regarding objectives are calculated using Taguchi method.
2015-04-14
Journal Article
2015-01-1657
Ahsanul Karim, Meisam Mehravaran, Brian Lizotte, Keith Miazgowicz, Yi Zhang
Flow bench and engine testing can be used to detect flow induced noise, but understanding the fundamental mechanisms of such noise generation is necessary for developing an effective design. This paper describes Computational Aero-Acoustic (CAA) analyses performed to obtain the broad-band and BPF noise sources A computational aero-acoustics simulation on the aerodynamic noise generation of an automotive radiator fan assembly is carried out. Three-dimensional Computational Fluid Dynamics (CFD) simulation of the unsteady flow field was performed including the entire impeller and shroud to obtain the source of an audible broad-band flow noise between 2 to 4 kHz. Static pressure probes placed around the outer-periphery and at the center of the impeller inlet side and, at the shroud cavities to capture the noise sources. The static pressure at all probe locations were FFT (Fast Fourier Transform) processed and sound pressure level (SPL) was calculated.
2014-11-04
Technical Paper
2014-36-0785
Augusto Amador Medeiros, Zargos Neves Masson, Pablo Giordani, Julio Cordioli
Abstract With the increase in aircraft transportation and, consequently, aircraft noise in the last decades, measurement of acoustic liner impedance under grazing flow has become a point of interest. Different indirect methodologies have been developed by independent research groups to solve this problem. The Mode-Matching technique and, more recently, the Two-Port method are examples of developed methodologies that use acoustic pressure measurements in a test rig where a liner sample is subject to grazing mean flow to educe its impedance. In this paper, both methods are explained, implemented and used to educe the acoustic impedance of different liner samples in a recently developed grazing flow impedance eduction test rig. Additionally, both methods are compared based on their computational cost and limitations.
2014-11-04
Technical Paper
2014-36-0789
Oscar Acosta, Augusto Medeiros, André Spillere, Julio A. Cordioli, Danillo Reis
Abstract This article presents a comparative analysis of the influence of different types of flows over fan noise propagation and scattering within the nacelle intake of aircraft turbofan engines. The methodology for the noise simulation is explained. First, the fan noise source is modeled using a boundary condition that represents all the uncorrelated cut-on modes in the interior of the nacelle duct. Then different types of flows and flight conditions are considered in order to determine the influence of the aerodynamic phenomenon in the noise emitted by the nacelle intake. The liner attenuation is also simulated by mean of Myers boundary condition. Finally the results for far field noise are validated against numerical data obtained from the literature for hard and lined wall conditions.
2014-09-01
Journal Article
2014-01-9003
Ahmed Onsy, Mohamed Fouad, Brian Shaw, Richard M. Dansereau
In this paper, we present an image registration approach to cope with inter-image illumination changes of arbitrary shape in order to monitor the development of micro-pitting in transmission gears. Traditional image registration approaches do not typically account for inter-image illumination variations that negatively affect the geometric registration precision. Given a set of captured images of gear surface degradation with different exposure times and geometric deformations, the correlation between the resulting aligned images is compared to a reference one. The presented image registration approach is used with an online health monitoring system involving the analysis of vibration, acoustic emission and oil debris to follow the development of micro-pitting in transmission gears. The proposed monitoring system achieves more registration precision compared to competing systems.
Viewing 1 to 30 of 611

Filter