Criteria

Display:

Results

Viewing 181 to 210 of 7768
2017-03-28
Journal Article
2017-01-0444
Weiguo Zhang, Mark Likich, Brian Butler, John White
Abstract Engine air induction shell noise is a structure borne noise that radiates from the surface of the air induction system. The noise is driven by pulsating engine induction air and is perceived as annoying by vehicle passengers. The problem is aggravated by the vehicle design demands for low weight components packaged in an increasingly tight under hood environment. Shell noise problems are often not discovered until production intent parts are available and tested on the vehicle. Part changes are often necessary which threatens program timing. Shell noise should be analyzed in the air induction system design phase and a good shell noise analytical process and targets must be defined. Several air induction clean side ducts are selected for this study. The ducts shell noise is assessed in terms of material strength and structural stiffness. A measurement process is developed to evaluate shell noise of the air induction components.
2017-03-28
Journal Article
2017-01-0441
Zhenyu Wang, Mei Zhuang
Abstract A numerical study on sunroof noise reduction is carried out. One of the strategies to suppress the noise is to break down the strong vortices impinging upon the trailing edge of the sunroof into smaller eddies. In the current study, a serrated sunroof trailing edge with sinusoidal profiles of wavelengths is investigated for the buffeting noise reduction. A number of combinations of wavelengths and amplitudes of sinusoidal profiles is employed to examine the effects of trailing edge serrations on the noise reduction. A generic vehicle model is used in the study and a straight trailing edge is considered as a baseline. The results indicate that the trailing edge serration has a significant impact on the sound pressure level (SPL) in the vehicle cabin and it can reduce the SPL by up to 10~15 dB for the buffeting frequency.
2017-03-28
Journal Article
2017-01-1054
Imad M. Khan, Makrand Datar, Wulong Sun, Georg Festag, T Bin Juang, Natalie Remisoski
Abstract At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
2017-03-28
Journal Article
2017-01-1053
Satoshi Watanabe, Yuji Miyata, Yosuke Ogata, Vincent Ivosic
Abstract Idling stop systems are being increasingly adopted in conventional engine vehicles as well as hybrid electric vehicles to increase fuel efficiency. When the engine starts, body vibration occurs that is caused by the rigid body eigenvalues of the power plant during initial combustion. Engine restart vibration after an idling stop is caused by the input force from the transmission, and the reaction force from the drive shaft as well as the input force from the engine. This phenomenon occurs frequently when the engine is restarted from the idling stop, the vibration is increasingly annoying to passengers. Usually, the vehicle development process is carried out in accordance with the V process. The V process divides the vehicle development process into two stages. The first stage is called the vehicle design stage to determine the characteristic. The second stage is called the vehicle verification stage to verify the performance.
2017-03-28
Journal Article
2017-01-1120
Kenji Tsutsumi, Yoshitaka Miura, Yusuke Kageyama, Arata Miyauchi
Abstract A CVT variator chain system is superior in transmission efficiency to a belt system because of its lower internal friction. However, a chain produces more noise than a belt due to the long pitch length of contact between the pulleys and rocker pins. This study focuses on optimization of the pitch sequence for reducing chain noise. The previous pitch sequence was suitably combined of links of different lengths to improve noise dispersibility for reducing chain noise. First, the object function was defined as the reduction of the peak level of 1st-order chain noise combined with a well-balanced the levels on the low and high frequency sides. Interior background noise consisting of road noise and wind noise have the characteristic that they increase as the frequency decreases.
2017-03-28
Journal Article
2017-01-1126
Yu Mao, Shuguang Zuo, Xudong Wu
Abstract Due to coupling of in-wheel motor and wheel/tire, the electric wheel system of in-wheel motor driven vehicle is different from tire suspension system of internal combustion engine vehicle both in the excitation source and structural dynamics. Therefore emerging dynamic issues of electric wheel arouse attention. Longitudinal vibration problem of electric wheel system in starting condition is studied in this paper. Vector control system of permanent magnet synchronous hub motor considering dead-time effect of the inverter is primarily built. Then coupled longitudinal-torsional vibration model of electric wheel system is established based on rigid ring model and dynamic tire/road interface. Inherent characteristics of this model are further analyzed. The vibration responses of electric wheel system are simulated by combining electromagnetic torque and the vibration model.
2017-03-28
Journal Article
2017-01-1507
Prashanta Gautam, Yousof Azizi, Abhilash Chandy
Abstract Tire noise is caused due to the complex interactions between the rotating tire and the road surface at the tire/road interface. It is usually caused due to a combination of individual noise generation mechanisms, which can either be structural or air-borne. The influence of each of these noise generation mechanism may vary, depending on various conditions such as tire design, road surface and operating conditions. Due to the many variables that affect the noise generation mechanisms in tires, it is usually a very complex task to isolate and categorize those that are present in the overall tire/road noise spectrum. Various approaches are used to categorize noise generation mechanisms in tires. In this paper, a statistical model based on the assumption that the tire noise acoustic pressure at a specific frequency band is related to the vehicle speed, is used, in order to study tire noise at different speeds.
2017-03-14
Journal Article
2017-01-9277
Stefano D'Ambrosio, Alessandro Ferrari
Abstract The present paper illustrates an investigation about the potentialities of injection rate shaping coupled with an after injection. A pilot shot can either be absent or present before the rate-shaped boot injection. The experimental tests have been performed on a partial PCCI Euro 5 diesel engine endowed with direct-acting piezoelectric injectors. Starting from optimized triple pilot-main-after injection strategies, boot injection was implemented by maintaining the direct-acting piezo injector needle open at part lift. The results of two steady state working conditions have been presented in terms of engine-out emissions, combustion noise and brake specific fuel consumption. In addition, in-cylinder analyses of the pressure, heat-release rate, temperature and emissions have been evaluated. Considering the in-cylinder pressure traces and the heat release rate curves, the injection rate shaping proved to influence combustion in the absence of a pilot injection to a great extent.
2017-03-14
Journal Article
2017-01-9677
Chengwu Duan, Jian Yao, Ying Huang
Abstract A toothed chain continuously variable transmission concept is studied. By designing positive engagement at top overdrive ratio, we explored the potential to improve CVT mechanical efficiency. The low cost solution could improve fuel economy by 0.7% in FTP composite cycle. Preliminary multi-body dynamic simulation is also completed using VL-Motion to concept-proof the technical feasibility of disengagement and engagement. To address the noise issue resulted from abandoning the random pitch design in production chain, we proposed an alternate chain pitch sequence but more experimental data is required to validate the design.
2017-01-10
Technical Paper
2017-26-0198
Chandrakant Parmar, Sashikant Tiwari, Apoorv Chauhan, Shourya Srivastava, Sarvanu Gangopadhyay
Abstract The present work focuses on optimization of gear shift pattern of an AMT vehicle to improve its NVH performance without causing any adverse effect on any other vehicle performance attribute. The vehicle which was identified with the structural body resonance at low frequency had discomforting boom noise in a particular engine rpm zone and at corresponding vehicle speed. With the initial shift pattern (will be referred as V1 gear shift schedule), the gear shifts were calibrated such that when vehicle is driven in the city with 20 to 60 kmph speed, the vehicle operated mostly in the best fuel economy zone but it used to pass through structural resonance frequency. This resulted in the presence of continuous boom leading to an unpleasant driving experience. In order to avoid the presence of boom noise during city driving, the gear shift points were optimized (will be referred as V2 gear shift schedule) such that the vehicle did not operate in affected engine speed range.
2017-01-10
Technical Paper
2017-26-0206
Muthukumar Arunachalam, Sankarasubramanian Thirukkotti, S Arunkumar, Abdul Haiyum
Abstract Modern day customer awareness on noise and comfort is extremely increasing, which demands OEM manufacturers to focus on NVH attributes and to meet environmental legislative requirements. Noise generation mechanism in Air Intake System (AIS) is one of the major sources for vehicle interior noise and it occurs mainly because of air column oscillation by sharp pressure pulsation from opening and closing of valves in engine cylinders. Air intake system designer has immense challenges to attenuate intake noise during design stage, in order to meet the vehicle interior noise requirements by using multiple resonators to tune the desired broad band frequencies and to choose the optimum number of resonators. The placement of resonator on both the clean duct and dirty sides is also a key challenge for better noise reduction from air intake system.
2017-01-10
Technical Paper
2017-26-0191
Mayur Birari, Arvind Yadav, Vilas Bijwe, Dayanand Billade
Abstract As automotive technology has evolved, gear rattle has become a prominent contributor for cabin noise as the masking from the engine noise has decreased. The market and customer expectation make the rattle noise a question to be addressed as early as possible in the vehicle development process. However, to simulate rattle, it calls for a detailed modeling of different complex subsystems of driveline to represent their true characteristics. Thus, the paper adopts an FE based elastic multi body dynamics model to predict gear rattle. The approach involves modeling of a complete flexible driveline using condensed FE models from Nastran in AVL Excite Powerunit/Transmission module. It includes combustion pressure as input excitations to crankshaft and then predicts parameters like gear teeth impacts, gear normal meshing force, dynamic mesh stiffness & overall contact state in transient and frequency domain. The output parameters are then analyzed to evaluate the rattle index.
2017-01-10
Technical Paper
2017-26-0195
Sachin Kumar Jain, Manasi Joshi, Harshal Bankar, Prashant Kamble, Prasad Yadav, Nagesh Karanth
Abstract The paper discusses the methodology for measuring the sound absorption of sound package materials in a different sizes of reverberation chambers. The large reverberation chamber is based on test methods and requirements as per ASTM C423 and ISO 354 standards. Both the test standards are similar and recommend a reverberation chamber volume of at least 125 m3 and 200 m3 respectively for sound absorption measurements from 100 Hz to 5000 Hz. The test sample size requirements are from 5.5 to 6.7 m2 as per ASTM C423 and 10 to 12 m2 as per ISO 354. In the automotive sector passenger car, heavy truck, and commercial vehicle, the parts that are used are much smaller in size than the size prescribed in both the standards. The requirement is to study the critical parameters such as the chamber volume, sample size, reverberation time and cut-off frequency etc. which are affecting the sound absorption property of acoustic material.
2017-01-10
Technical Paper
2017-26-0183
Kedar Tare, Uttiya Mukherjee, Rohit J Vaidya
Abstract An automotive radiator cooling fan has been observed to be an important noise source in a vehicle and with increasing noise refinements, the need for a quieter but effective fan is of utmost importance. Although some empirical prediction techniques are present in literature, they are not sufficiently accurate and cannot give a detailed view of the entire noise spectrum and the various noise prone zones. Hence the need for highly accurate Computational Fluid Dynamics (CFD) study is essential to be able to resolve the minute acoustic stress. Large Eddy Simulation technique in CFD is used to resolve the minute scales of motion in the flow as the sound pressures simulated are very small compared to system level pressures and require immense accuracy. Detailed mesh dependency and Y+ studies are conducted to implement higher accuracy as well as keep mesh requirements within computationally feasible zone.
2017-01-10
Technical Paper
2017-26-0188
Prasad Yadav, Harshal Bankar, Nagesh Voderahobli Karanth
Abstract Diesel powered electric generators are used in a variety of applications, such as emergency back-up power, temporary primary power at industrial facilities, etc. As regulatory and customer requirements demand quieter designs, special attention is given to the design of acoustic enclosures to balance the need of noise control with other performance criteria like ventilation and physical protection. In the present work, Statistical Energy Analysis (SEA) approach augmented by experimental inputs is used to carry out Vibro-acoustic analysis of an enclosure for higher capacity Diesel generator set. The exterior sound radiated from an enclosed generator is predicted and further enclosure is optimized for an improved sound-suppression. The airborne sources such as engine, alternator, radiator fan and exhaust are modelled explicitly using experimental noise source characterization. Structure borne inputs are also captured in the test for improving modelling accuracy.
2017-01-10
Technical Paper
2017-26-0189
Keshav Mutalik, Atul A Gaikwad, Nagesh Voderahobli Karanth, Shriniwas Chivate
Abstract The parameters such as lower noise levels, quietness, etc. of a vehicle has no longer remained the only driving features since the passenger car buyers are greatly influenced by the perception of the sound. In a scenario like this, the sound quality becomes of great importance especially for smaller diesel powertrains as they are more annoying than their gasoline counterparts. The idling noise is critical as its noise creates the first impression of the vehicle on the buyer. The Indian passenger car market is dominated by diesel cars equipped with smaller engines less than 2 liter capacity. Present work describes the methodology to formulate the equation for annoyance/pleasantness for the diesel powertrains used in Indian passenger cars. The index, Sound Annoyance Rating (SAR) developed through this work is significant for powertrain level target setting and benchmarking purposes.
2017-01-10
Technical Paper
2017-26-0221
Swamy Mukkera, Aditya Pandey, Kodali Ajay Krishna, Sanjeev Patil, P L N Prasad
Abstract Wind noise is becoming important for automotive development due to significant reductions in road and engine noise. This aerodynamic noise is dominant at highway speeds and contributes towards higher frequency noise (>250Hz). In automotive industry accurate prediction and control of noise sources results in improved customer satisfaction. The aerodynamic noise prediction and vehicle component design optimization is generally executed through very expensive wind tunnel testing. Even with the recent advances in the computational power, predicting the flow induced noise sources is still a challenging and computationally expensive problem. A typical case of fluid-solid interaction at higher speeds results into broadband noise and it is inherently an unsteady phenomenon. To capture such a broad range of frequency, Detached Eddy Simulation (DES) has been proven to be the most practical and fairly accurate technique as sighted in literature.
2017-01-10
Technical Paper
2017-26-0220
Ashutosh Dubey, Palish Raja, Nitin Chopra, Ashok Patidar, Manu Kaushik
Abstract With the increase in the sensitivity of power steering system in the competitive environment, it becomes essential to provide a trouble free steering system to the customer. Usually major concerns faced in the performance of steering system are related to noise like vane pump whining noise and steering gearbox erratic rubbing noise. Even though selected steering pump and reservoir are quite compatible to the steering gearbox. With the series of Computational Fluid Dynamics (CFD) simulations and field tests, it is found that the cavitation phenomena in steering oil routing lines is responsible for the steering turning noise. In this paper, a developed systematic approach for problem detection to implementation of design solution is discussed.
2017-01-10
Technical Paper
2017-26-0219
S Nataraja Moorthy, Manchi Rao, Prasath Raghavendran
Abstract Globally the customers are demanding more powerful yet silent vehicles to enhance their daily commuting and goods transportation needs. The current trend in the design is to enhance the engine power without major change in the physical configurations of the engine systems. Increasing the power and torque of the powertrain will have an undesirable and adverse effect on NVH levels. In this research work, a light weight rear wheel drive vehicle was investigated from torsional vibration perspective. The vehicle is powered by a two cylinder engine with turbo charger. The power and torque of the vehicle was increased approximately two times with the help of turbocharger which resulted in increasing the powertrain torsional vibration. This increased vibration was further amplified through inevitable driveline resonances which causes severe vibration at the passenger seat location and steering. Also, the noise levels are above the comfortable zone.
2017-01-10
Technical Paper
2017-26-0218
Chaitanya Chilbule, S B Phadke, R N Kulkarni, M P Raajha
Abstract As an automobile brake manufacturer, brake noise always been a prime concern as it define the degree of customer satisfaction and warranty claim. Brake squeal is a concern in the automotive industry that has challenged many researchers and engineers for years. In case of disc brake, brake-squeal (1 to 16 kHz) occurrence is predominant than the any other types of brake-noise (i.e. moan, grown, judder etc.), since squeal is a friction induced, self-excited, and self-sustained phenomenon from a nonlinear dynamics viewpoint. Due to the complexities involve squeal mechanism is not well understood yet, hence makes it one of the unresolved brake Noise, Vibration, and Harshness (NVH) problem till this date. Since squeal is a high-pitched and tonal noise, therefore it is very annoying and getting more attention by occupants. Brake squeal can occur at any temperature and with or without the presence of humid condition and therefore highly unpredictable.
2017-01-10
Technical Paper
2017-26-0215
Kodali Ajay Krishna, Sanjeev Patil
Abstract In today's competitive automobile marketplace with reduced vehicle development time and fewer prototypes/tests, CAE is playing very crucial role in vehicle development. Automobile environment demands ever improving levels of vehicle refinement. Performance and refinement are the key factors which can influence the market acceptance of vehicle. Driveline is one of the key systems whose refinement plays critical role in improved customer satisfaction. Because of the virtue of the driveline functionality, driveline induced noise and vibration are the most common issues in the AWD vehicle development programs. Refinement of the drive line needs complicated nonlinear full vehicle CAE MBD models for the evaluation of driveline induced noise and vibration responses at different operating conditions [1]. In this paper a simplified approach is adapted for solving the Noise & Vibration issue which has been identified at the prototype testing level of an AWD vehicle development.
2017-01-10
Technical Paper
2017-26-0213
Michael Thivant, Pascal Bouvet
Abstract In the context of the upcoming reduction of Pass-By-Noise limits in the EU regulations, automotive manufacturers need to implement new concepts of shielding package. ECOBEX is a French funded research project aiming at reducing the powertrain noise contribution of the vehicle, whilst restricting additional mass and cost. Bringing together OEM, raw materials suppliers, shielding manufacturers, universities and specialized consultants in this research program enabled innovations in materials, design, tests and computational methods. This paper will focus on a new procedure for the optimization of the shielding package, based on a precise 3D localization and quantification of the acoustic sources of the powertrain and on their implementation in an Energy Boundary Element model, computing the acoustic propagation. Intensity maps emphasized the dominant acoustic paths and highlighted mitigation opportunities in terms of absorption and insulation.
2017-01-10
Technical Paper
2017-26-0211
Shriram K. Kulkarni, B Venkatakiran, Omprakash Sahu, Vilas Bijwe, Manoj Joshi, Dhanaji Kalsule
Abstract Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
2017-01-10
Technical Paper
2017-26-0209
Gaurav Jeevanrao Shinde, Ramkumar Rajamanickam, Nagesh Voderahobli Karanth, D W Pande
Abstract With growing demand of comfort of cars, number of small electric motors used for adjustment of different functional units is steadily increasing. Due to the various rotational components and the forces they accord, electric motors radiate significant amount of noise at high frequencies with tonal components that can be annoying. Motor noise comprises three sources namely: electromagnetic, aerodynamic and mechanical. This study considers mechanical and electromagnetic sources of Electric Power Assisted Steering (EPAS) motor used in passenger cars. This paper describes an approach to assess noise and vibration parameters between field motors and fresh motors. Noise and vibration spectrums are analyzed in terms of frequency contents and dominancy of mechanical sources in sound power radiated by motor is discussed. FE modal analysis of motor is performed and correlated with impact hammer measurements to quantify structure borne energy contribution.
2017-01-10
Technical Paper
2017-26-0207
Dayal Mirthinti, Dinesh Sahrawat, Rohit Dang
Abstract In automobile, NVH has been playing an important role in defining the overall quality of the vehicle. Continuous efforts are being put in globally by engineers to make the travel experience as comfortable as possible for both commercial and passenger segment vehicles. The front wiping system being a critical safety feature in an automobile is one of the sources of structural vibrations/noise due to numerous moving child parts. Therefore, the layout of the wiper motor in the vehicle is an important aspect of Vehicle NVH. These vibrations and noise levels become more pronounced if the wiper motor is mounted inside the passenger compartment, a layout that is commonly seen in commercial vehicles. This paper focuses on measures to improve the NVH while having the layout of the wiping system inside the passenger compartment of the vehicle.
2017-01-10
Technical Paper
2017-26-0254
Ganesh Krishna Babar
Abstract Canopy design is governed by CPCB regulations. The regulations explicitly tells about noise levels. It’s very important to have the proper ventilation of canopy to ensure the proper working at all climatic conditions. Mostly it is installed at commercial locations & hence the ownership cost matters. Reducing the footprint without affecting the power output is challenging. It implies the need of the CFD simulation to predict the cooling performance of the canopy. The baseline canopy is tested to estimate the performance parameters. It is modelled in CFD with all the minute details. All the parts including engine, alternator, fan, fuel tank are modelled. MRF(Moving Reference Frame) model used to simulate fan performance. The cooling systems like radiator & oil cooler is modelled as porous region. The total flow across canopy & the air velocity across critical regions is used to define the performance.
2017-01-10
Technical Paper
2017-26-0327
Onkar Deshpande, Shrikant Rangire
Abstract Increase in customer awareness for better vehicle noise together with strict pass-by noise limits have compelled the automotive industry to improve the overall vehicle noise performance. Out of various contributors to the overall vehicle noise, tail pipe noise is the major contributor. There is a need of efficient tail pipe noise measurement process for tuning the exhaust system. Modified methodology was proposed as conventional methodologies have limitations considering Indian scenario. In modified methodology tail pipe noise is measured during pass by noise test. This paper describes the comparative study of both methodologies with measurement results. Advantages and disadvantages of both measurement methodologies are also discussed.
2017-01-10
Technical Paper
2017-26-0270
Rahul Gurav, Kishor D Udawant, Ramkumar Rajamanickam, N V Karanth, S R Marathe
Abstract With emission norms getting more and more stringent, the trend is shifting towards electric and hybrid vehicles. Electric motor replaces engine as the prime mover in these vehicles. Though these vehicles are quieter compared to their engine counterpart, they exhibit certain annoying sound quality perception. There is no standard methodology to predict the noise levels of these motors. Electric motor noise comprises of mainly three sources viz., Aerodynamic, Electromagnetic and Mechanical. A methodology has been developed to predict two major noise sources of electric motor out of the three above viz. Mechanical and Aerodynamic noise. These two noise sources are responsible for the tonal noise in an electric motor. Aerodynamic noise arises most often around the fan, or in the vicinity of the machine that behaves like a fan. This noise is predominant at higher motor speed and also in electric vehicle due to higher speed fluctuation.
2017-01-10
Technical Paper
2017-26-0194
Ramkumar Rajamanickam, Shriniwas Chivate, Gaurav Shinde, Nagesh Voderahobli Karanth, Shalil Akre, Kishor Desale
Abstract Sound Quality (SQ) of brake and clutch pedal assembly plays an important role in contributing to vehicle interior noise and perception of sound. Quiet operation of brake and clutch units also reflects the vehicle built and material quality. Noise emitted from these sub-assemblies has to meet certain acceptance criteria as per different OEM requirements. Not much work has been carried on this over the years to characterize and quantify the same. An attempt has been made in this paper to study the sound quality of brake and clutch pedal assemblies at component level and validate the same by identifying the parameters affecting SQ. Effect on noise at different environmental conditions was studied with typical operating cycles in a hemi-anechoic chamber. The effect of sensor switches integrated within the clutch and brake pedal on sound quality is analyzed. It is found that the operating characteristics of switches drives the noise and SQ.
2017-01-10
Technical Paper
2017-26-0217
Arvind Kumar Yadav, Mayur Birari, Vilas Bijwe, Dayanand Billade
Abstract Crank train torsional vibration is an important aspect for design and development of Powertrain for NVH refinement and durability. Crank train torsional vibration parameters like angular acceleration of flywheel or twist, depends upon various design parameters like geometry of crankshaft, mass of flywheel, stiffness of clutch, mass of pulley etc. It also depends upon engine operating conditions like engine speed, engine load, combustion peak pressure and combustion pressure variation etc. Most of these parameters are decided by engine power, torque, engine architecture and packaging constraints. Addition of torsional vibration damper (TVD), which works on the principle of tuned dynamic absorber, is commonly deployed design solution to control the torsional vibrations as well as stresses (to improve durability of crank train) induced in crank train assembly at specified modal frequency.
Viewing 181 to 210 of 7768

Filter