Criteria

Display:

Results

Viewing 151 to 180 of 7768
2017-03-28
Technical Paper
2017-01-1130
Shinya Takamatsu, Nobuharu Imai, Koji Tsurumura, Seiji Yamashita, Hiroaki Tashiro
Abstract The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
2017-03-28
Technical Paper
2017-01-1023
Yaqun Jiang, C. Hsieh, Georg Festag, Masood Ahmed, William Jiang
Abstract Large axial displacement at the edge of a flywheel causes a clutch to fail to disengage in high-speed rotation. To find out the root cause, a numerical procedure is proposed to investigate the vibration source and to understand dynamic behavior of the crank-train system. A simulation of the whole engine system including block, crankshaft, piston, and connecting rod was performed with AVL/Excite. The resulting CAE baseline model had good correlation with measurements. A comprehensive study was conducted for a set of flywheel and crankshaft models with different materials and unbalanced masses. The contribution to flywheel wobbling of each vibration order was carefully investigated, and an optimal design was presented.
2017-03-28
Technical Paper
2017-01-0376
Jianyong Liang, Jonathan Powers, Scott Stevens, Behrooz Shahidi
Abstract While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
2017-03-28
Technical Paper
2017-01-0440
Jun Lu, Zhenfei Zhan, Haozhan Song, Xu Liu, Xin Yang, Junqi Yang
Abstract Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
2017-03-28
Technical Paper
2017-01-1229
Ken Yamamoto, Nobuyasu Sadakata, Hidetoshi Okada, Yusuke Fujita
Abstract Electric oil pumps (EOP) for automobiles are used to lubricate and cool moving parts and supply oil pressure to components. Conventional EOPs consist of two separate units including a motor driver and a pump system comprised of a motor and a pump, which impedes layout flexibility for vehicles. To overcome this shortcoming, we have developed an ECU (electronic control unit)-integrated oil pump in which a driver, a motor and a pump are incorporated as a single unit. In the course of the project, we focused on improving vibration resistance and developing a compact design. The first challenge was to improve vibration resistance because of the driver located in close proximity to the powertrain. Since the driver is installed on the motor unit via electrically welded bus bars, the joints of the driver and the bus bar become susceptible to vibration.
2017-03-28
Technical Paper
2017-01-1070
Da Shao, Xu Sichuan, Aimin Du
Abstract The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
2017-03-28
Technical Paper
2017-01-1553
Min Kyoo Kang, Jin Hong Kim, HyuckJin Oh, Wookjin Jang, Sangwoo Lee, Young Hwan Lee
Abstract This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
2017-03-28
Technical Paper
2017-01-1741
Hyerin Choi, JunHo Song, Jae kwang Lee, Jaeyong Ko
Abstract Recently, it is one of the major problems in the automotive industry that grating is occurred form the place that more than two different materials combined. It is the most severe case that the noise generates between automobile seats and other relative parts (or within seat parts). The purpose of this research verifies and suggests the way to reduce squeak noise between two different parts through the stick-slip test which is regulated by VDA. The two materials - the seat trim cover and the plastic - were selected as major factors. We conducted the test with two different types of seat trim cover (authentic and artificial leather) and plastics (PP and ABS) with 4 levels of embossing size (0 to 3, level ‘0’ is non-embossing. Level 1 is the biggest embossing and it goes through smaller. Level 3 is the smallest embossing size). Test results were reported with 1 to 10 Risk Priority Number (RPN) which was proposed by VDA (Verband der Automotilindustrie).
2017-03-28
Technical Paper
2017-01-0172
Suhas Venkatappa, Manfred Koberstein, Zhengyu Liu
Abstract The refrigerant transition from HFC-134a to HFO-1234yf has proven to be more challenging on controlling refrigerant flow-induced noises generated from automotive air-conditioning (A/C) systems than originally anticipated. The objectives of this paper are to describe the noise issues with HFO-1234yf, understand the mechanisms and key factors affecting HFO-1234yf refrigerant flow-induced noise. Finally, the countermeasures and guidelines for attenuating and suppressing the noise are presented.
2017-03-28
Journal Article
2017-01-1634
Hui Sung Lee
Abstract When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
2017-03-28
Journal Article
2017-01-1693
John Huber, Ranjani Rangarajan, An Ji, Francois Charette, Scott Amman, Joshua Wheeler, Brigitte Richardson
Abstract This paper describes a method to validate in-vehicle speech recognition by combining synthetically mixed speech and noise samples with batch speech recognition. Vehicle cabin noises are prerecorded along with the impulse response from the driver's mouth location to the cabin microphone location. These signals are combined with a catalog of speech utterances to generate a noisy speech corpus. Several factors were examined to measure their relative importance on speech recognition robustness. These include road surface and vehicle speed, climate control blower noise, and driver's seat position. A summary of the main effects from these experiments are provided with the most significant factors coming from climate control noise. Additionally, a Signal to Noise Ratio (SNR) experiment was conducted highlighting the inverse relationship with speech recognition performance.
2017-03-28
Technical Paper
2017-01-1051
Hassan Nehme, Abdelkrim Zouani
Abstract EcoBoost engines constitute one of the strategies used by Ford Motor Company to deliver engines with improved fuel economy and performance. However, turbochargers exhibit many inherent NVH challenges that need to be addressed in order to deliver refined engines that meet customer’s expectation. One of these challenges is the turbocharger 1st order synchronous noise due to the interaction between the manufacturing tolerances of the rotating components and the dynamic behavior of the rotor. This paper discusses an MBD/FEA/BEM based method to predict the nonlinear dynamic behavior of the rotor semi floating bearing, its impact on the bearing loads and the resulting powerplant noise due to the interaction with the turbocharger imbalance level.
2017-03-28
Technical Paper
2017-01-1052
Paul Zeng, Vincent Solferino, Mark Stickler
Abstract 1 Engine ticking noise is one of the key failure modes in today’s direct injection (DI) engines. High ticking noise results in high Things Gone Wrong (TGW) index, which negatively affects customer satisfaction. In this paper, the root cause of the ticking noise from DI injector in direct mounting will be presented. Design principle such as injector impact force to cylinder head and DI injector isolator design with 2 stage stiffness is proposed.
2017-03-28
Technical Paper
2017-01-1121
Deb Bonnerjee, Djamel Bouzit, Javed Iqbal
Abstract Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
2017-03-28
Technical Paper
2017-01-1122
Yashodhan V. Joshi
Abstract Vehicle noise has reduced over the years due to the customer demand for quieter vehicles. As the background noises such as combustion noise, pumping noise, etc. have reduced, mechanical noises such as gear noise have become prominent and a major cause of customer complaints. Engine timing gear train uses gears for transferring torque to cam and accessory gears. As engines have become quieter by efforts to reduce the combustion noise, as well as, by moving away from mechanical fuel pumps to common rail fuel pumps, the gear train noise has come under increased scrutiny. Gear whine could be a result of multiple factors. Gear profile distortion is one of the factors. Gear torque variation also has a significant effect on gear whine. Operation of the accessory drives such as hydraulic pumps under variable loads and speeds, is one of the major challenges for resolving a gear whine issue in the engine gear train.
2017-03-28
Technical Paper
2017-01-1062
Abdelkrim Zouani, Gabriela Dziubinschi, Vidya Marri, Simon Antonov
Abstract In modern automotive engines, Variable Displacement Oil Pump (VDOP) is becoming the pump of choice to enable reduction in friction and delivery of stringent fuel economy. However, this pump creates pressure ripples, at the outlet port during oil pump shaft rotation, causing oscillating forces within the system and leading to the generation of tonal noises and vibrations. In order to minimize the level of noise, different porting geometries and vane spacing are used. This paper describes an optimization method intended to identify the best possible spacing of the vanes in the conventional 7-vanes, 9-vanes and 11-vanes oil pumps. The method integrates a Matlab routine with the modeFRONTIER software to create the required design space in order to perform a multi-objective optimization using a genetic algorithm. Results of this optimization method are discussed and a design guideline for the VDOP vane spacing is disclosed.
2017-03-28
Technical Paper
2017-01-1055
Baolin Yu, Zhi Fu, T. Bin Juang
Abstract The automotive industry is experiencing a profound change due to increasing pressure from environmental and energy concerns. This leads many automakers to accelerate hybrid and electric vehicle development. Generally hybrid and electric vehicles create less noise due to their compact engines (or no engine). However, customer satisfaction could be negatively impacted by the peak whine emitted by electric motor. Unlike conventional gas vehicles, the strategy for reducing motor whine is still largely unexplored. This paper presents an analytical study on electric motor whine radiated from the transmission in a hybrid vehicle. The analysis includes two stages. Firstly, a detailed finite element (FE) model of the transmission is constructed, and case surface velocities are calculated utilizing motor electromagnetic force. Then a boundary element model is built for evaluating noise radiated from the transmission surface using acoustic transfer vector (ATV) method.
2017-03-28
Technical Paper
2017-01-1057
Paul Zeng, Debabrata Paul, Vincent Solferino, Mark Stickler
1. Abstract Valvetrain ticking noise is one of the key failure modes in noise vibration harshness (NVH) evaluation at idle. It affects customer satisfaction inversely. In this paper, the root cause of the valvetrain ticking noise and key parameters that impact ticking noise will be presented. A physics based math model has been developed and integrated into a parameterized multi-body dynamic model. The analytical prediction has been correlated with testing data. Valvetrain ticking noise control is discussed.
2017-03-28
Technical Paper
2017-01-1231
Chun Tang, Natee Limsuwan, Nurani Chandrasekhar, Zhichun Ma, Jacob Krizan, Joel Hetrick, Wei Wu
Abstract The current of an electric machine driven by PWM switching inverter is not ideal sinusoidal, containing different levels of harmonics. The current harmonics have important impact on the electrical machine torque ripple which could translate into transmission and vehicle level Noise Vibration and Harshness (NVH). In this work, the current waveforms were measured from dyno test at prescribed torque and speed levels, and the electric machine torque ripple was computed with the measured current. This paper will focus on the investigation of the current harmonics behaviors and features at various torque and speed conditions, the impact on torque ripple, and the possible mitigation method to reduce torque ripple.
2017-03-28
Technical Paper
2017-01-1226
Nurani Chandrasekhar, Chun Tang, Natee Limsuwan, Joel Hetrick, Jacob Krizan, Zhichun Ma, Wei Wu
Abstract Noise and Vibration (NVH) characteristic of an electric machine (e-Machine) is the outcome of complex interaction between source level disturbances and the surrounding structure to which the e-Machine is attached. Key e-Machine metrics that objectively quantify source level disturbance include torque ripple and radial electro-magnetic forces. These disturbances can radiate directly from the e-Machine housing (air-borne component) and also can be transmitted through the structural attachments like stator bolts, stator ring, powertrain mounts etc. (structure-borne component). In the e-machine driven by PWM switching inverter, current is not perfectly sinusoidal but contain different level of harmonics. Current harmonics impact Torque ripple, which in turn would translate into undesirable noise and vibration. There is very limited literature referencing the influence of current harmonics on torque ripple and e-machine NVH.
2017-03-28
Technical Paper
2017-01-0446
Xiao Chuan Xu, Xiuyong Shi, Jimin Ni, Jiaqi Li, Xiaochuan Xu Sr.
Abstract Oil pump is a critical part of engine lubrication system. The performance and efficiency of oil pump are greatly affected by vibration and noise, which would lead to the pump service life decreasing and pump body easily wearing. Hence the vibration and noise of oil pump is of great importance to study. In this paper, a FEA model of the variable displacement oil pump(VDOP) was established to carry on the modal and noise analysis, while the geometric structure was optimized with test verification. The modal analysis of VDOP was carried out by ABAQUS software, the 3-D unsteady flow field in VDOP was simulated by Pumplinx software, and the sound field was analyzed by ACTRAN acoustic module. Using a special oil pump test bench combined with B&K PULSE vibration and noise test equipment, the NVH and comprehensive performance experiment of the VDOP were carried out here.
2017-03-28
Journal Article
2017-01-0403
Guangqiang Wu, Huwei Wu
Abstract Experimental schemes, frequency characteristics, subjective and objective sound quality evaluation and sound quality prediction model establishment of a certain mass-production SUV (Sport Utility Vehicle, SUV) manual transmission gear rattle phenomenon were analyzed in this paper. Firstly, vehicle experiments, including experiment conditions, vibration acceleration sensor and microphone arrangements and especial considerations in experiments, were described in detail. Secondly, through time-frequency analysis, broadband characteristics of manual transmission gear rattle noise were identified and vibro-impact of gear rattle occurs in the frequency range of 450~4000Hz on the vehicle idle condition and the creeping condition. Thirdly, based on bandwidth filtering processing of gear rattle noise, subjective assessment experiments by a paired comparison method were carried out.
2017-03-28
Journal Article
2017-01-0420
Prashant Khapane, Sumiran Lohani
Abstract Vibration Isolation is the key objective of engine mounting systems in the automotive industry. A well-designed, robust engine mount must be capable of isolating the engine assembly from road-based excitations. Owing to high vibration inputs, engine mounts are susceptible to wear and failure. Thus, the durability of engine mounts is a cause for concern. A design validation methodology has been developed at Jaguar Land Rover using Multibody Dynamics (MBD) to enhance the prognosis of engine mount loads during full - vehicle durability test events. This paper describes the development of a virtual multi-axial simulation table rig (MAST Rig) to test virtual engine mount designs. For the particular example considered in this paper, a simple sinusoidal input is applied to the MAST Rig. The development of the virtual MAST Rig has been described including details of the modelling methodology.
2017-03-28
Journal Article
2017-01-0333
Kurt Munson, Frederic Kihm, Andrew Halfpenny
Abstract Finite Element Analysis (FEA)-based structural simulations are typically used to assess the durability of automotive components. Many parts experience vibration in use, and resonance effects are directly linked to many structural problems. In this case, dynamics must be included in the structural analysis. Dynamic FEA can be more realistic than static analysis, but it requires knowledge of additional characteristics such as mass and damping. Damping is an important property when performing dynamic FEA, whether transient or steady state dynamics, as it governs the magnitude of the dynamic stress response and hence durability. Unfortunately the importance of damping is often overlooked; sometimes a default damping value is erroneously assumed for all modes. Errors in damping lead to errors in the stress response, which in turn lead to significant changes in the fatigue life estimates.
2017-03-28
Technical Paper
2017-01-0447
Zhe Li, Mike Dong, Dennis Harrigan, Michael Gardner
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
2017-03-28
Technical Paper
2017-01-1317
Luis Felipe Blas Martinez, Rodolfo Palma, Francisco Gomez, Dhaval Vaishnav, Francisco Canales
Abstract Liquid sloshing is an important issue in ground transportation, aerospace and automotive applications. Effects of sloshing in a moving liquid container can cause various issues related to vehicle stability, safety, component fatigue, audible noise and, liquid level measurement. The sloshing phenomenon is a highly nonlinear oscillatory movement of the free-surface of liquid inside a container under the effect of continuous or momentarily excitation forces. These excitation forces can result from sudden acceleration, braking, sharp turning or pitching motions. The sloshing waves generated by the excitation forces can impact on the tank surface and cause additional vibrations. For the loads with the frequencies between 2 to 200 Hz, the structural fatigue failure is a major concern for automotive applications.
2017-03-28
Journal Article
2017-01-0495
Michael Christian Haverkamp
Abstract The vehicle interior constitutes the multi-sensory environment of driver and passengers. Beside overall design and execution, materials and its surfaces are of specific interest to the customer. They are not only needed to fulfil technical functions, but are in direct focus of the customer’s perception. The perceived quality is based on all sensory data collected by the human perceptual system. Surfaces express design intent and craftsmanship by their visual appearance. Haptic features supervene when materials are touched. And even smell has an influence on the perception of ambience. Although sound is generated nearly every time when fingers slide across a surface, touch-sounds have been disregarded so far. In various cases, these contact sounds are clearly audible. As essential sound responses to haptic activity, they can degrade perceived quality. A method has been developed for a standardized generation of touch-sounds.
2017-03-28
Journal Article
2017-01-1325
U Oh, Kazuya Kusano, Norihiko Nonaka, Hironobu Yamakawa
Abstract Automotive fuel can be efficiently combusted by injecting it into the cylinders at high pressure to atomize it to pass the regulations for exhaust gas and fuel economy. For this reason, automotive companies have developed direct injection engines, which can inject gasoline into the cylinders directly. Furthermore, the demand for lower-noise high pressure pumps is also increasing from the viewpoint of automotive comfort. Since the valve velocity and noise level will increase as the pressure in fuel pumps increases, noise problems need to be solved under the high pressure conditions. Accordingly, the valve motion should be predicted with high accuracy under operating conditions to evaluate the noise caused by valve impingement. In addition, the squeeze film effect phenomenon will occur in the physical fuel pumps affect the prediction of the noise level caused by valve impingement.
2017-03-28
Journal Article
2017-01-1330
Youssef Ziada, Juhchin Yang, David DeGroat-Ives
Abstract Owing to decreased development cycle timing, designing components for manufacturability has never been as important. Assessing manufacturing feasibility has therefore become an increasingly important part of new product engineering. This manufacturing feasibility is conventionally assessed based on static stiffness of components and fixture assemblies. However, in many operations, excess vibration represents the actual limitation on processing a workpiece. Limits on how far into components a tool can reach or the amount of processing time required to machine a feature is commonly decreased significantly due to vibration. Critical time is spent resolving these vibration problems during product launches. Depending on the machining configurations these vibrations can be due to the part & work support structure or due to the tooling & spindle assembly.
2017-03-28
Journal Article
2017-01-1539
Vinh Long Phan, Hiroshi Tanaka, Takaaki Nagatani, Mikio Wakamatsu, Tsuyoshi Yasuki
Abstract High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Viewing 151 to 180 of 7768

Filter