Criteria

Display:

Results

Viewing 31 to 60 of 7786
2017-06-05
Journal Article
2017-01-1772
Yawen Wang, Xuan Li, Guan Qiao, Teik Lim
Abstract The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error (TE) and system dynamic responses. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing on TE as well as the contribution of flexible bearings on the dynamic responses. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions.
2017-06-05
Journal Article
2017-01-1771
Mohamed El morsy, Gabriela Achtenova
Abstract Gear fault diagnosis is important in the vibration monitoring of any rotating machine. When a localized fault occurs in gears, the vibration signals always display non-stationary behavior. In early stage of gear failure, the gear mesh frequency (GMF) contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. This paper presents the value of optimal wavelet function for early detection of faulty gear. The Envelope Detection (ED) and the Energy Operator are used for gear fault diagnosis as common techniques with and without the proposed optimal wavelet to verify the effectiveness of the optimal wavelet function. Kurtosis values are determined for the previous techniques as an indicator parameter for the ability of early gear fault detection. The comparative study is applied to real vibration signals.
2017-06-05
Journal Article
2017-01-1774
Fabio Luis Marques dos Santos, Tristan Enault, Jan Deleener, Tom Van Houcke
Abstract The increasing pressure on fuel economy has brought car manufacturers to implement solutions that improve vehicle efficiency, such as downsized engines, cylinder deactivation and advanced torque lock-up strategies. However, these solutions have a major drawback in terms of noise and vibration comfort. Downsized engines and lock-up strategies lead to the use of the engine at lower RPMs, and the reduced number of cylinders generates higher torque irregularities. Since the torque generated by the engine is transferred through flexible elements (clutch, torsional damper, gearbox, transmission, tire), these also impact the energy that is transferred to the vehicle body and perceived by the driver. This phenomenon leads to low frequency behavior, for instance booming noise and vibration. This paper presents a combined test and CAE modelling approach (1D/3D) to reverse engineer a vehicle equipped with a CPVA (centrifugal pendulum vibration absorber).
2017-06-05
Technical Paper
2017-01-1773
Jing Yuan
Abstract The dual phase twin synchronous drive has been developed for belt noise reduction. Two identical synchronous belts are arranged parallel side by side with one tooth staggered against other by the half pitch offset. The noise cancellation effect is achieved as one belt tooth engagement coincides with the other belt tooth dis-engagement. A center flange is used as a divider to prevent the belts contacting each other along the axial direction during their entrance and exit of the sprocket. An overall 20 [dBA] noise reduction has been achieved with the dual phase twin belt drive compared to an equal width single belt counterpart. The vibration amplitude of the hub load is also reduced which is directly correlated to the structural borne noise. Comparing to the related dual phase helical tooth belt, the dual phase twin belt is superior in torque carrying capability; and is on par with noise mitigation.
2017-06-05
Journal Article
2017-01-1776
Mohsen Kolivand, Glen Steyer, Clifford Krieger, Max-Ferdinand Stroh
Abstract Hypoid gears transmission error (TE) is a metric that is usually used to evaluate their NVH performance in component level. The test is usually done at nominal position as well as out of positions where the pinion and gear are moved along their own axis and also along offset direction to evaluate sensitivity of the measured TE to positional errors. Such practice is crucial in practical applications where the gear sets are inevitably exposed to off position conditions due to a) housing machining and building errors, b) deflections of housing, bearings, etc. under load and c) thermal expansions or contractions of housing due to ambient temperature variations. From initial design to development stage, efforts should be made to design the gear sets to be robust enough to all combinations of misalignments emanated from all three mentioned categories.
2017-06-05
Technical Paper
2017-01-1775
Mark A. Gehringer, Robert Considine, David Schankin
Abstract This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
Abstract This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
2017-06-05
Journal Article
2017-01-1777
Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
Abstract The automotive industry continues to develop new technologies aimed at reducing overall vehicle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of technologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital towards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is imperative that these NVH challenges be understood and solved.
2017-06-05
Technical Paper
2017-01-1780
Yong Xu
Abstract In the design or match process of vehicle powertrain system, gearbox rattle is a common NVH problem which directly affects passengers’ judgment on the quality and performance of vehicle. During the development process of a passenger car, prototype vehicles have serious gear rattle problem. In order to efficiently and fundamentally control this problem, this work first studied the characteristics and mechanisms of the gearbox rattle. The study results revealed that the torsional vibration of powertrain system was the root cause of gearbox rattle. Then a simulation model of the full vehicle was built with the aid of Simulink® toolbox, which is a graphical extension to MATLAB® for modeling and simulation of variety of systems. With this model, the sensitivity analysis and parametrical optimization were performed, and the simulation results indicated that the dual-mass flywheel (DMF) was the best measure to control the rattle.
2017-06-05
Technical Paper
2017-01-1779
Xianwu Yang, Jian Pang, Lanjun Wang, Xiong Tian, Yu Tang
Abstract With drastically reduction of engine noise, the gear rattle noise generated by the impact between neutral gears inside transmission can be much easily perceived. It is well known that the torsional mode has a direct relationship with the transmission gear rattle noise. This paper establishes a torsional model of a front wheel drive automotive drivetrain, including clutch system, transmission box and equivalent load of a full vehicle, in AMESim software. The experimental engine speed fluctuations at different gears are used to excite the torsional model. The influences of several parameters, including flywheel inertia, clutch stiffness, clutch hysteresis and drive shaft stiffness, on the 2nd order (major engine firing order for a 4-cylinder-4-stroke engine) torsional resonant frequency and the 2nd order torsional resonant peak of the transmission input shaft are analyzed by changing them alternatively.
2017-06-05
Technical Paper
2017-01-1783
Chris Todter, Olivier Robin, Paul Bremner, Christophe Marchetto, Alain Berry
Abstract Surface pressure measurements using microphone arrays are still challenging, especially in an automotive context with cruising speeds around Mach 0.1. The separated turbulent boundary layer excitation and the side mirror wake flow generate both acoustic and aerodynamic components, which have wavenumbers that differ by a factor of approximately 10. This calls for high spatial resolution measurements to fully resolve the wavenumber-frequency spectrum. In a previous publication [1], the authors reported a micro-electro-mechanical (MEMS) surface microphone array that successfully used wavenumber analysis to quantify acoustic versus turbulence loading. It was shown that the measured surface pressure at each microphone could be strongly influenced by self-noise induced by the microphone “packaging”, which can be attenuated with a suitable windscreen.
2017-06-05
Technical Paper
2017-01-1784
Guillaume Baudet
Abstract Wind noise in automobile is becoming more and more important as customer requirements increase. On the other hand great progress has been made on engine and road noises. Thus, for many vehicles, wind noise is the major acoustic source during road and motorway driving. As for other noises, automobile manufacturers must be able for a new car project to specify, calculate and measure each step of the acoustic cascading: Source Transfers, both solid and air borne In the case of automotive wind noise, the excitation source is the dynamic pressure on the vehicle’s panels. This part of the cascading is the one influenced by the exterior design. Even if many others components (panels, seals, cabin trims) have a big influence, the exterior design is a major issue for the wind noise. The wind noise level in the cabin can sometimes change significantly with only a small modification of the exterior design.
2017-06-05
Technical Paper
2017-01-1781
Joshua Wheeler
Abstract The design and operation of a vehicle’s heating, ventilation, and air conditioning (HVAC) system has great impact on the performance of the vehicle’s Automatic Speech Recognition (ASR) and Hands-Free Communication (HFC) system. HVAC noise provides high amplitudes of broadband frequency content that affects the signal to noise ratio (SNR) within the vehicle cabin, and works to mask the user’s speech. But what’s less obvious is that when the airflow from the panel vents or defroster openings can be directed toward the vehicle microphone, a mechanical “buffeting” phenomenon occurs on the microphone’s diaphragm that distresses the ASR system beyond its ability to interpret the user’s voice. The airflow velocity can be strong enough that a simple windscreen on the microphone is not enough to eliminate the problem. Minimizing this buffeting effect is a vital key to building a vehicle that meets the customer’s expectations for ASR and HFC performance.
2017-06-05
Technical Paper
2017-01-1782
Jobin Puthuparampil, Henry Pong, Pierre Sullivan
Abstract Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
2017-06-05
Technical Paper
2017-01-1787
Jan Biermann, Adrien Mann, Barbara Neuhierl, Min-Suk Kim
Abstract Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
2017-06-05
Technical Paper
2017-01-1788
Kishore Chand Ulli, Upender Rao Gade
Abstract Automotive window buffeting is a source of vehicle occupant’s discomfort and annoyance. Original equipment manufacturers (OEM) are using both experimental and numerical methods to address this issue. With major advances in computational power and numerical modelling, it is now possible to model complex aero acoustic problems using numerical tools like CFD. Although the direct turbulence model LES is preferred to simulate aero-acoustic problems, it is computationally expensive for many industrial applications. Hybrid turbulence models can be used to model aero acoustic problems for industrial applications. In this paper, the numerical modelling of side window buffeting in a generic passenger car is presented. The numerical modelling is performed with the hybrid turbulence model Scale Adaptive Simulation (SAS) using a commercial CFD code.
2017-06-05
Technical Paper
2017-01-1785
Paul Bremner, Scott Clifton, Chris Todter
Abstract Measurements of interior wind noise sound pressure level have shown that dBA and Loudness are not adequate metrics of wind noise sound quality due to non-stationary characteristics such as temporal modulation and impulse. A surface microphone array with high spatio-temporal resolution has been used to measure and analyze the corresponding non-stationary characteristics of the exterior aero-acoustic loading. Wavenumber filtering is used to observe the unsteady character of the low wavenumber aero-acoustic loading components most likely to be exciting glass vibration and transmitting sound.
2017-06-05
Technical Paper
2017-01-1791
David Neihguk, Shreyas Fulkar
Abstract Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
2017-06-05
Technical Paper
2017-01-1792
Magnus Knutsson, Erik Kjellson, Rodney Glover, Hans Boden
Abstract Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
2017-06-05
Technical Paper
2017-01-1789
Rafael Veloso, Robert Fairbrother, Yasser Elnemr
Abstract The acoustics of automotive intake and exhaust systems is typically modeled using linear acoustics or gas-dynamics simulation. These approaches are preferred during basic sound design in the early development stages due to their computational efficiency compared to complex 3D CFD and FEM solutions. The linear acoustic method reduces the component being modelled to an equivalent acoustic two-port transfer matrix which describes the acoustic characteristic of the muffler. Recently this method was used to create more detailed and more accurate models based on a network of 3D cells. As the typical automotive muffler includes perforated elements and sound absorptive material, this paper demonstrates the extension of the 3D linear acoustic network description of a muffler to include the aforementioned elements. The proposed method was then validated against experimental results from muffler systems with perforated elements and sound absorptive material.
2017-06-05
Technical Paper
2017-01-1790
Vinayak H. Patil, Ravi Kumar Sara, T. R. Milind, Rodney C. Glover
Abstract Vehicle noise emission requirements are becoming more stringent each passing year. Pass-by noise requirement for passenger vehicles is now 74 dB (A) in some parts of the world. The common focus areas for noise treatment in the vehicle are primarily on three sub-systems i.e., engine compartment, exhaust systems and power train systems. Down- sizing and down- speeding of engines, without compromising on power output, has meant use of boosting technologies that have produced challenges in order to design low-noise intake systems which minimize losses and also meet today’s vehicle emission regulations. In a boosted system, there are a variety of potential noise sources in the intake system. Thus an understanding of the noise source strength in each component of the intake system is needed. One such boosting system consists of Turbo-Super configuration with various components, including an air box, supercharger, an outlet manifold, and an intercooler.
2017-06-05
Journal Article
2017-01-1796
Rick D. Dehner, Ahmet Selamet, Michael Steiger, Keith Miazgowicz, Ahsanul Karim
Abstract Ported shroud compressor covers recirculate low momentum air near the inducer blade tips, and the use of these devices has traditionally been confined to extending the low-flow operating region at elevated rotational speeds for compressors on compression-ignition (CI) engines. Implementation of ported shrouds on compressors for spark-ignition (SI) engines has been generally avoided due to operation at pressure ratios below the region where ported shrouds improve low-flow range, the slight efficiency penalty, and the perception of increased noise. The present study provides an experimental investigation of performance and acoustics for a SI engine turbocharger compressor both with a ported shroud and without (baseline). The objective of implementing the ported shroud was to reduce mid-flow range broadband whoosh noise of the baseline compressor over 4-12 kHz.
2017-06-05
Technical Paper
2017-01-1795
Ahmad Abosrea, Tamer Elnady
Abstract Flow-generated noise has recently received a lot of attention within the process of designing exhaust and intake systems. Flow-generated noise can limit the amount of sound reduction a muffler can introduce inside ducts. This is more important in the modern system design where mufflers are compact and the flow speeds become higher in different sections inside the muffler. In this paper, three measurement techniques are used to measure the flow-generated noise from a duct element. The first is based on calculating the sound power levels inside a reverberation room according to ISO 3741. The radiated noise is measured from the muffler body as a source of noise, then from the tail pipe as an active one-port source. The second is based on sound power measurements inside the ducts using the active two-port theory. The third is measuring the sound pressure radiation inside an anechoic room.
2017-06-05
Technical Paper
2017-01-1794
William Seldon, Jamie Hamilton, Jared Cromas, Daniel Schimmel
Abstract As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of induction system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of a 1-D GT-power engine and induction model and to update internal best practices for modeling. The paper will explore the details of an induction focused correlation project that was performed on a spark ignition turbocharged inline four-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem. This paper compares 1D GT-Power engine air induction system (AIS) sound predictions with chassis dyno experimental measurements during a fixed gear, full-load speed sweep.
2017-06-05
Technical Paper
2017-01-1793
William Seldon, Amer Shoeb, Daniel Schimmel, Jared Cromas
Abstract As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of exhaust system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of the GT-power engine and exhaust model and to update internal best practices for modeling. This paper will explore the details of an exhaust focused correlation project that was performed on a naturally aspirated spark ignition eight-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem.
2017-06-05
Technical Paper
2017-01-1800
Robert White
Abstract Several analytical tools exist for estimating a driveshaft’s critical speed, from simple elementary beam theory to sophisticated FEA models. Ultimately, nothing is better than a test, because no one will argue with the outcome from a well-designed measurement. Impact response measurements are easy, but they tend to over predict the critical speed. A test which sweeps the shaft speed up until failure is telling, but the speed causing failure is strongly dependent on even small amounts of variation in rotor unbalance. Waterfall plots of shaft displacement measurements offer the best indication of critical speed, however sometimes the resonance isn’t unmistakable or multiple resonances exist, making the critical speed unclear. A method less susceptible to system variation is offered here, fitting shaft orbit measurements to the theoretical single degree of freedom equation.
2017-06-05
Technical Paper
2017-01-1799
Nagasuresh Inavolu, Jaganmohan Rao Medisetti, S. Nanda Kumar, J Lingeshkumar, Akshay Loya, Mvgprasad MV
Abstract Engine noise reduction is one of the highest priorities in vehicle development from the viewpoint of meeting stringent noise regulations. Engine noise reduction involves identification of noise sources and suppression of noise by changing the response of sources to input excitations. Noise can originate from several mechanical sources in engine. The present work focuses on systematic study of the behavior or response of engine structure and its ancillaries to engine excitation and thereby assess their contribution to overall engine noise. The approach includes engine noise and vibration measurement and component ranking using engine noise and vibration measurement in a non-anechoic environment, structural analysis of engine including experimental modal testing of engine and its components, etc. Correlation of the above obtained results is performed to identify the noise sources. Later, ranking of critical components was performed based on results of cladding exercise.
2017-06-05
Technical Paper
2017-01-1798
Jiri Navratil, Warren Seeley, Peng Wang, Shriram Siravara
Abstract The ability to accurately predict exhaust system acoustics, including transmission loss (TL) and tailpipe noise, based on CAD geometry has long been a requirement of most OEM’s and Tier 1 exhaust suppliers. Correlation to measurement data has been problematic under various operating conditions, including flow. This study was undertaken to develop robust modelling technique, ensuring sensible correlation between the 1-D models and test data. Ford use Ricardo WAVE as one of their 1-D NVH tools, which was chosen for the purpose of this benchmark study. The most commonly used metrics for evaluating the acoustical performance of mufflers are insertion loss (IL), TL, and noise reduction (NR). TL is often the first step of analysis, since it represents the inherent capability of the muffler to attenuate sound if both the source and termination are assumed to be anechoic. It can also be reliably measured and numerically simulated without having to connect to an engine.
2017-06-05
Technical Paper
2017-01-1804
Chulwoo Jung, Hyeon Seok Kim, Hyuckjin Oh, Kwang Hyeon Hwang, Hun Park
Abstract An efficient method to determine optimal bushing stiffness for improving noise and vibration of passenger cars is developed. In general, a passenger vehicle includes various bushings to connect body and chassis systems. These bushings control forces transferred between the systems. Noise and vibration of a vehicle are mainly caused by the forces from powertrain (engine and transmission) and road excitation. If bushings transfer less force to the body, levels of noise and vibration will be decreased. In order to manage the forces, bushing stiffness plays an important role. Therefore, it is required to properly design bushing stiffness when developing passenger vehicles. In the development process of a vehicle, bushing stiffness is decided in the early stage (before the test of an actual vehicle) and it is not validated until the test is performed.
2017-06-05
Journal Article
2017-01-1797
Adrien Mann, Raj Nair, Jaspreet Singh Gill, Brett Birschbach, Patrick Crowley
Abstract Exhaust systems including mufflers are commonly mounted on engines to reduce the firing cycle noise originating from the combustion process. However, mufflers also produce flow-induced self-noise, originating from the complex flow path throughout the muffler. As an engine prototype is not available in the early stages of a development program, it is challenging to assess the acoustic performance of the full system when only experiment is available. It is also difficult to pinpoint the design features of a muffler generating noise, as a portion of the noise is generated internally. Numerical approaches are a possible alternative. However, capturing non-linear dissipation mechanisms and thermal fluctuations of exhaust flows is challenging, while necessary to accurately predict flow noise.
Viewing 31 to 60 of 7786

Filter