Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 663
Technical Paper
2014-04-01
Christopher Craig, Martin A. Passmore
Recent changes to the rules regarding aerodynamics within Formula SAE, combined with faster circuits at the European FSAE events, have made the implementation of aerodynamic devices, to add down-force, a more relevant topic. As with any race series it is essential that a detailed analysis is completed to establish the costs and benefits of including an aerodynamic package on the vehicle. The aim of the work reported here was to create a methodology that would fully evaluate all aspects of the package and conclude with an estimate of the likely gain in points at a typical FSAE event. The paper limits the analysis to a front and rear wing combination, but the approach taken can be applied to more complex aerodynamic packages. An initial wind tunnel investigation of the potential flow interactions between the driver's helmet and rear wing using a multi-hole pressure probe is reported and the data used in a two-dimensional CFD calculation to provide an accurate prediction of the likely down-force from the wing package.
Technical Paper
2014-04-01
Matthew R. James, Simon Watkins, Matthew Watts
Abstract As open-wheeled racing cars frequently race in close proximity, a limiting factor on the ability to overtake is the aerodynamic performance of the vehicle while operating in a leading car's wake. Whilst various studies have examined the effectiveness of wings operating in turbulent flow, there has been limited research undertaken on the aerodynamic effect of such conditions on wheels. This study describes the influence of upstream turbulence on the wake flow features of an isolated wheel, since the flow field of a wheel will generally be turbulent (due to the wakes of upstream cars and/or bodywork). Pressure distributions and velocity vector plots are examined, which were obtained using a four-hole pressure-sensitive Cobra probe on a traverse 2.5 diameters downstream of the wheel axle line, in smooth and turbulent flow. This analysis also compares the effect of upstream turbulence on the wake for the rotating and stationary wheel; as well as investigating the sensitivity of the wake to the wheel-to-road gap in smooth and turbulent flow.
Technical Paper
2014-04-01
John Patalak, Thomas Gideon, Don Krueger
First required in 1970 in NASCAR® (National Association for Stock Car Auto Racing, Inc) the driver's window safety net or driver's window net has continually evolved and improved. The driver's window net has played an important role in protecting race car drivers from injury. Driver's window nets were originally used to help keep the driver's upper torso, head and arms inside the interior of the race vehicle during crashes. As restraint systems were improved, the role of the driver's window net in stock car racing has transitioned to keeping flailing hands inside the interior of the car while also serving as a shield to protect the driver from intruding debris. This paper describes three separate window net and window net mounting tests and the use of these tests to design an improved window net mounting system. Also shown are test results of previously used window net mounting systems and the improved NASCAR system which has been incorporated into the 2013 NASCAR Sprint Cup, Nationwide Series, and Camping World Truck Series vehicles.
Technical Paper
2014-04-01
Matthew Watts, Simon Watkins
For the modern Formula 1 racing car, the degradation in aerodynamic performance when following another car is well documented. The problem can be broken into two parts; firstly the wake flow generated by these vehicles and the subsequent interaction a following car has with this field. Previous research [1, 2 & 3] has focused upon investigating the later without completely characterizing the former. This paper seeks to address this deficiency with initial data from a newly commissioned 30% scale Formula One wind tunnel model built to the 2011 technical regulations. Experimentation was carried out in the Industrial Wind-Tunnel (IWT) at RMIT University. In the absence of a rolling road an elevated ground plane was implemented; the results obtained show good agreement with the limited published material available. Using a high frequency response, four-hole pressure probe the aft body flow was investigated at multiple downstream locations. Time-averaged velocity, turbulence and secondary flow vectors were plotted.
Technical Paper
2014-04-01
Soovadeep Bakshi, Parveen Dhillon, Teja Maruvada
This paper presents the method of designing an optimized light weight, cost effective planetary gearbox for a Formula Student vehicle. The gearbox has a high speed functioning capability, in addition to the compact size and light weight. The iterative optimization procedure used provides a technique for selecting the best possible configuration of the gearbox. Conventional gearboxes used for this purpose are generally two step reduction gearboxes, which are bulkier in terms of weight and volume. Also, a review of the existing market reveals that the planetary gearboxes manufactured in India are not capable of handling high speeds, thus rendering them futile for racing applications. The target reduction ratio for the gearbox is a fixed parameter. The method involves design and optimization of the gear-train with the calculated ratio. A detailed algorithm has been used, which involves developing a mathematically modelled code for deciding gear characteristics, physical modelling using CAD, and structural testing of the same through simulation, with repeated iterations with a target to reduce both weight and volume.
Technical Paper
2014-04-01
Grant Hankins, Kenneth Krajnik, Bradley Galedrige, Shahab Sakha, Peter Hylton, Wendy Otoupal
Abstract A number of performance and safety related aspects of motorsports have begun to receive increased attention in recent years, using the types of engineering analysis common to other industries such as aerospace engineering. As these new engineering approaches have begun to play a larger role in the motorsports industry, there has been an increase in the use of engineering tools in motorsports design and an increase in the inclusion of motorsports in the engineering education process. The design, modeling, and analysis aspects of a recent project examining the design of roll cages for American short-track open-wheel racing cars will be discussed in this paper. Roll cage structures were initially integrated into cars of this type in the 1960s. Countless lives have been saved and serious injuries prevented since the introduction of cages into these types of cars. However, the general configuration of these cages has not seen significant change or improvement in the four decades since their introduction.
Technical Paper
2014-04-01
Atishay Jain
Abstract One of the key aspects of designing a race car chassis is Torsion Stiffness (Roll stiffness). Designers strive to develop a chassis design with a high value of roll stiffness to counter the forces applied by the suspension during cornering while keeping the weight as low as possible. CAD and static analysis techniques are instrumental for virtual testing and validation in the initial stages of a project prior to experimental testing. This paper intends to encapsulate elementary analysis skills and their application in designing and developing tubular frame structures for amateur racing vehicles and simultaneously focusing on reducing the time for the design and development process. The objective of this paper is to calculate, analyze and optimize the torsion stiffness of a Formula SAE/ Formula Student chassis using an analysis model developed and optimized for quicker design iterations and to compare different design proposals based on certain key parameters in the nascent stage of project development.
Technical Paper
2014-04-01
Anthony Barkman, Kelvin Tan, Arin McIntosh, Peter Hylton, Wendy Otoupal-Hylton
This paper discusses a project intended as a design study for a team of college students preparing for careers in motorsports. The project's objective was to conduct a design study on the possible redesign of the suspension for a dirt-track sprint car. The car examined was typical of those which race on one-quarter to one-half mile dirt oval tracks across the United States. The mission of this concept study was to develop a different configuration from the traditional torsion bar spring system, for the front end. The design included moving the dampers inboard with the addition of a rocker to relate the movement through the front suspension system. For the rear end, components were designed to allow the radius rod to be adjustable from the cockpit, thus providing the driver with adjustability to changing track conditions. The project goal was to design functional front end and rear end changes that could provide a positive impact on handling as well as keeping the system easy to replace in a short period of time.
Technical Paper
2014-04-01
Andrea Toso, Alessandro Moroni
Abstract Professional driving simulators can be successfully exploited to shorten the traditional design-prototype testing-production process relative to a new race car. Consider as a real example the Dallara 2014 Super Formula (“SF”) race car; built in 2013 at the Dallara factory in Varano de' Melegari, Parma, Italy and scheduled to race in Japan in 2014. Professional race drivers from the SF series have already been conducting multiple test sessions with the Dallara Simulator (Dec 2012), working together with vehicle dynamicists, aerodynamicists, designers, structural engineers and engine manufacturers, in an effort to evaluate and validate kinematics, steering geometry, aerodynamics, packaging, cooling, engine performance, as well as monocoque stiffness and minor installation details, even before the design had started. Multiple on track test sessions (Jul-Sep 2013), conducted with the real prototypes, have impressed both drivers and their respective engineers and engine representatives.
Technical Paper
2014-04-01
John P. Utley, David K. Irick
Abstract For the EcoCAR 2 collegiate engineering competition, The University of Tennessee is modifying a 2013 Chevrolet Malibu Eco from a mild hybrid into a series-parallel plug-in hybrid electric vehicle. For this design, the team is exchanging the engine for one that is E85 compatible, slightly separating the engine and transmission, and coupling an electric generator to the engine. In the rear of the vehicle, a modified all-wheel drive subframe will be implemented. This subframe will house a traction motor and a single gear electric drive transmission. A custom fuel tank and fuel system will be constructed for the vehicle, in order to use E85 fuel. Furthermore, an energy storage system will be placed in the rear of the vehicle, in the trunk and spare tire space. Modifications for the packaging must be made and analysis must be performed to validate the structural integrity of all modifications. Tennessee's engineering team is made up of five specific groups: mechanical, thermal, electrical, controls, and center stack teams.
Technical Paper
2014-04-01
Jingsi Wu, Owusu Agyeman Badu, Yonchen Tai, Albert R. George
While many composite monocoque and semi-monocoque chassis have been built there is very little open literature on how to design one. This paper considers a variety of issues related to composite monocoque design of an automotive chassis with particular emphasis on designing a Formula SAE or other race car monocoque chassis. The main deformation modes and loads considered are longitudinal torsion, local bending around mounting points, and vertical bending. The paper first considers the design of elements of an isotropic material monocoque that has satisfactory torsional, hardpoint, and vertical bending stiffness. The isotropic analysis is used to gain insight and acquire knowledge about the behavior of shells and monocoque structures when subjected to a vehicle's applied loads. The isotropic modeling is then used to set initial design targets for a full anisotropic composite analysis. The flexibility in composite layout and core design coupled with the superior material properties of carbon fiber composites is used to design and move toward an optimized monocoque composite design and layup to obtain satisfactory torsional, hardpoint and bending stiffnesses with minimal weight.
Technical Paper
2013-11-27
Vaseem Akram Abdul, Ajay Kumar Maddineni, Mohammad Rafiq B Agrewale
An open wheeled open cockpit high speed car with 800 CC MPFI engine was developed validated and run at 105 kmph. The key focus was to build a car with superior aerodynamic characteristics especially in terms of drag. This work discusses in detail about the design and simulation of car using CFD package followed by Wind Tunnel testing. The design of high speed car starts with design of seat according to the ergonomics of the driver followed by the space frame. Based on the space frame designed, the body panels are sketched and CAD model is developed. The CAD model is imported in CFD package for virtual testing and validated through wind tunnel results. For this 1:3 scale model was manufactured using Rapid Prototyping.
Technical Paper
2013-10-15
Tetsuya Fujimoto, Takashi Suzuki
Nowadays, cornering performance of FSAE (Formula SAE) cars are dramatically improved due to less mass, kinematic developments and tires. In such circumstance, under high speed conditions, aerodynamical devices work better. It had been decided to attach aerodynamical devices that consist of front wing, rear wing, diffuser (floor) and deflector for SR11 (Fig. 1, Table 1), a FSAE car developed by Sophia Racing (Japan). Fig. 1 SR11Table 1 Vehicle configuration of SR11 To start with developing aerodynamical devices, it had been assumed that how they work. Lap time simulation had been done with VI-car-realtime, which shows the laptime could be shorten by 2 seconds of 60 seconds for a usual FSAE endurance course with 60kgf at 60km/h downforce. Dragforce had been assumed to work well while once, it had been supposed to have a bad influence for laptime. The reason why it works well is at high speed, it works as extra braking force even without tires doesn't contact with ground or unfavorable load distribution.
Technical Paper
2013-10-15
Yoshiki Fukuhara, Naoya Kimata, Takashi Suzuki
The paper reviews the experimental development of fuel economy of engine powering the 2012 Formula SAE single seat race car of the University of Sophia. The balance of high power and low fuel consumption is biggest challenge of racing engine. It was found that improving the efficiency of engine by supercharging as a way to achieve that. In order to adapt the supercharger for the engine, the important design points are below: It was found that intake air blow-by gas at combustion chamber is increased in low engine speed. To improve that, the valve overlap angle was changed to adopt supercharged engine and improve effective compression ratio. Typically the racing engine demands maximum torque for performance but that does not imply that the air fuel ratio should be rich than theoretical. The point is the maximum torque of the engine is proportional to the amount of air intake. Therefore, supercharged engine is possible to increase the supercharging pressure for bigger torque. But the base engine is not prepared for bigger torque, the damage of the engine was considered.
Technical Paper
2013-10-07
Paulo Bosquiero Zanetti
Data analysis is an important way to validate and optimize engineering's designs. With the development of wireless transmission systems, race cars use telemetry as a solution to measure the car's behavior by the analysis of acquired data. Wireless communication systems provide the possibility to analyze data in real-time situations, allowing tactical decision making based on the vehicle's embedded signals interpretation. This paper intends to describe the design process of a wireless data transmission system applied to a Formula SAE vehicle. Based on the prototyping microcontroller Arduino™ and the radio-transmission module Xbee®, the wireless transmission system here described is capable of transmitting 16 analog and 54 digital embedded signals and can be easily adapted for the user's requirements, through the system's open-source characteristics.
Technical Paper
2013-10-07
Antonio Flavio Aires Rodrigues, Luiz Carlos Gertz, André Cervieri, Lucas Figueiró Berto
The purpose of this study was to develop a body of a competition vehicle, the sports prototype category. This category has the aerodynamics as one of its main features, so much of their good performance depends on your body. The project proposal was generating an initial 3D CAD geometry, based on studies and existing vehicles. After analysis of the initial model, modifications were proposed in order to achieve better results for a competition vehicle. The simulation of the airflow over the 3D model of the body was performed in three steps: generation of geometry in SolidWorks CAD program, discretization of the model and the limited domain around it, using mesh generation program ICEM, and resolution of the flow in program of Computational Fluid Dynamics (CFD), ANSYS (FLUENT). The turbulence model used in this work has two equations, which models the turbulent kinetic energy k and dissipation ε. The studies allowed the observation that modification brought improvements in aerodynamic performance (high negative lift, without significant increase in drag coefficient), and also some proposals which showed no gain or even hurt the features of the model.
Technical Paper
2013-10-07
Paulo César Sigoli, Mauro Moraes de Souza, Juliano Savoy
The main characteristics required when fastening racing cars wheel are the resistance to self-loosening plus high-speed to assembling and disassembling of the wheel. To attend these two contradictory characteristics, it is necessary to develop differentiated fastening solutions. This work presents a new concept of fastening central wheel nuts for racing cars with improved fastening efficiency regard safety and assembly speed in comparison to the current fastening. The new wheel nut was designed and validated through analytical and FEM analysis as well as real tests.
Technical Paper
2013-09-30
David B. Antanaitis
Driving on the race track is an especially grueling situation for the automotive brake system. Temperatures can exceed the phase transition temperature of the disc material, wear rates of friction material can be orders of magnitude higher than during street use, and hydraulic pressures and mechanical stresses on components can approach their design limits. It is a given that friction material under these conditions will wear unevenly - causing taper and cupping wear - and an associated set of performance degradations will occur, including an increase in fluid consumption (pedal travel increase) and loss of mechanical efficiency (pedal force increase). Some high performance vehicles use surface features on brake discs, such as crossdrilling or slotting, to improve apparent friction levels in aggressive use (as well as to add marketing appeal), and generally accept a significant degradation in lining wear characteristics (both in overall wear rates and in the exacerbation of uneven wear behaviors) in order to achieve this.
Technical Paper
2013-04-08
John J. Christopher, Mark R. Sochor, Joseph Pellettiere, Robert Scott Salzar
Monitoring head accelerations as an indicator of possible brain injury may lead to faster identification of injury and treatments. This study investigates the skull-coupling of a tri-axial accelerometer mounted to a back molar and compares it with a tri-axial accelerometer inserted in the boney ear canal. These tri-axial accelerometers were mounted to three post mortem human surrogate (PMHS) skulls, and compared with a rigid, skull-mounted laboratory sensor reference cube. Each specimen was subjected to both a high-g loading from a vertical drop tower and a low frequency cyclic loading from a shaker device. The specimens were subjected to an approximate 150g input acceleration on the drop tower, and up to 10g at a frequency of 9Hz on the shaker device. Each specimen was tested on all three of the anatomical axes on both the drop tower and the cyclic shaker. Both the tooth-mounted accelerometer and the ear-mounted accelerometer were in close agreement with each other, and compared favorably with the rigid reference accelerometers.
Technical Paper
2013-04-08
Yuping He
This paper presents the design of airfoil and briefly introduces a real physical prototype for an actively controlled wing to improve high speed vehicle safety. Conventionally, active safety systems of road vehicles, including active steering and differential braking, mainly manipulate the tire/road forces to enhance the lateral stability of vehicles. However, this active safety technology is hindered by the saturation of tire/road forces at high lateral accelerations and on icy slippery roads. In contrast, the use of controlled aerodynamic forces has received little attention. In this paper, the actively controlled wing is proposed to manipulate the negative lift force (downforce) to enhance handling capabilities of vehicles at high speeds. Various wings are examined in terms of airfoil shapes, coefficient of drag and lift, resulting yaw/roll moments, effect of wing attack angle at different Reynolds numbers using numerical simulations with X-Foil, Gambit and Fluent software packages.
Technical Paper
2013-04-08
L. Daniel Metz
Various mechanical and electromechanical configurations have been proposed for the recapture of vehicle kinetic energy during deceleration. For example, in Formula One racing, a KERS (Kinetic Energy Recovery System) was mandated by the FIA for each racing car during the 2011 World Championship season and beyond, and many passenger car manufacturers are examining the potential for implementation of such systems or have already done so. In this work, we examine the potential energy savings benefits available with a KERS, as well as a few design considerations. Some sample calculations are provided to illustrate the concepts.
Technical Paper
2013-04-08
Forrest Jehlik, Daniel Bocci
Ethanol has received both positive and negative attention as a renewable fuel for spark ignition engines. Studies of ethanol have shown improved volumetric efficiency, knock tolerance, and favorable burn curves[1]. Nevertheless, little research has been published exploring the impact of ethanol blends on race engine performance coupled with the impact on well-to-wheels (WTW) greenhouse gases, emissions, and petroleum reduction. In this work, a circle track race vehicle powered by a GM Performance Parts 6.2L OHV CT-525 engine was tested using 100 octane race fuel and E85 over a matrix of configurations. Carburetion vs. fuel injection configurations were benchmarked with both fuels, with the addition of 100- and 300-cells-per-inch catalytic convertors. Testing involved both dynamometer testing and on-track testing utilizing a portable emissions measurement system. These data were used to determine the WTW greenhouse gas reduction, petroleum displacement, and criteria emission reduction, as well as the performance benefit, of E85 vs. race fuel over a matrix of technologies.
Technical Paper
2013-04-08
Maryam Sadeghi Reineh, Matteo Pelosi
Shock absorbers are crucial components of a vehicle's chassis, responsible for the trade-off between stability, handling, and passenger comfort. Their role is to filter the disturbances imposed to the vehicle body, typically by passive energy dissipation through hydraulic oil. The aim of this research paper is to investigate the physical behavior of an advanced automotive racing shock absorber, known as TTR, developed by Öhlins Racing AB. This goal is achieved by developing a detailed lumped parameter numerical model of the entire TTR suspension in the 1D simulation tool, AMESim. TTR features a through-rod piston design, fully adjustable high and low speed compression and rebound adjusters, and a gas reservoir. The developed numerical model is capable of capturing the physics behind the real shock absorber damping characteristics, under both static and dynamic conditions. In particular, the model is presented in two levels of progressive physical complexity, in order to improve the numerical predictions of dynamic damping characteristics.
Technical Paper
2013-04-08
John Patalak, Thomas Gideon
Since its inception in 1948, NASCAR® (National Association for Stock Car Auto Racing, Inc.) has continually strived to promote and improve driver, crew and spectator safety. As the vehicles used in NASCAR have changed over the years, their windshields have evolved also. The 1948 NASCAR Rulebook specified that all cars must have safety glass. In 2013, the NASCAR Sprint cup Series will use a laminated polycarbonate windshield. This paper describes the ballistic testing of the latest polycarbonate laminated design as well as previous monolithic polycarbonate designs.
Technical Paper
2013-04-08
John Patalak, Thomas Gideon, John Melvin
Throughout the first decade of the twenty first century, large improvements in occupant safety have been made in NASCAR®'s (National Association for Stock Car Auto Racing, Inc.) race series. Enhancements to the occupant restraint system include the implementation and advancement of head and neck restraints (HNR), minimum performance requirements for belts and seats and the introduction of energy-absorbing foam are a few highlights, among others. This paper summarizes three non-injury case studies of actual on-track incidents, including the acceleration pulses, principal direction of force, restraint systems used and driver anthropometry information. Also discussed are the NASCAR personal safety equipment requirements as well as frontal, oblique and side sled testing data of similar input acceleration magnitudes for the Hybrid III (H-III) fiftieth percentile male anthropomorphic test device (ATD).
Technical Paper
2013-04-08
Luz Adriana Mejía, Francisco Valero, Vicente Mata
The main objective of this study is to apply a dynamic parameter identification methodology to a double-wishbone type front suspension of a race car. Two methodologies for identification are presented: the first one is based on the Singular Value Decomposition (SVD) and elimination by means of the relative standard deviation of each parameter, while the second comprises three consecutive steps: the elimination of those less contributive parameters, the application of SVD method and elimination by relative standard deviation. The physical feasibility of the obtained parameters is taken into account. Both methodologies are validated with collected data of virtual simulation in a computational package program.
Technical Paper
2013-04-08
Timo Völkl, Martin Muehlmeier, Hermann Winner
The extended steady state lap time simulation combines a quasi steady state approach with a transient vehicle model. The transient states are treated as distance dependent parameters during the calculation of the optimal lap by the quasi steady state method. The quasi steady state result is used afterwards to calculate a new dynamic behavior, which induces in turn a different quasi steady state solution. This iteration between the two parts is repeated until the dynamic states have settled. An implementation of the extended quasi steady state simulation is built up to determine the capabilities of the approach. In addition to pure steady state simulation abilities, the method is able to judge the influence of the transient or time variant vehicle states on lap time. Sensitivity studies are generated to analyze the influence of basic parameters like mass, but also the influence of parameters with transient interaction like vertical damping or tire temperature. The extended quasi steady state lap time simulation approach provides an accurate possibility to integrate dynamics into the quasi steady state approach.
Technical Paper
2013-04-08
Sven Rehnberg, Lucas Börjesson, Robert Svensson, Jonathan Rice
This paper describes the design process of a full aerodynamic package of a Formula SAE (FSAE) style race car. The meaning of a full aerodynamic package in this context is a front wing, a rear wing and a diffuser; the focus will however be on the wings. The vehicle for which the aerodynamic package is designed is the Chalmers Formula Student (CFS) 2012 FSAE car, but vehicle data logged from the CFS 2011 FSAE car was used during the design phase. This data was used to evaluate how the aerodynamic package will influence the behaviour of the vehicle, both in terms of lateral and longitudinal acceleration as well as fuel consumption, in order to determine whether or not an aerodynamic package can enhance the vehicle performance. The main tool used during the design process was numerical simulations (computational fluid dynamics, CFD) and special attention was paid to post-processing of these simulations. It was concluded that although the resolution of the simulations was relatively low, valuable insights on how the air flows over the vehicle was obtained using CFD.
Technical Paper
2013-04-08
John Patalak, Thomas Gideon
Over the last twenty years, large improvements in occupant safety have been made in NASCAR®'s (National Association for Stock Car Auto Racing, Inc.) racing series. While proper occupant protection requires both occupant restraint and preservation of sufficient occupant survival space, this study is focused mainly on the latter of these two necessities. The NASCAR tubular vehicle chassis has evolved through the years to provide improved protection for the driver in rollover incidents. The chassis has continued to progress over time to improve its strength as unique crashes sometimes highlighted opportunities for advancement. Recent enhancements tested using computer modeling, quasi-static testing, and full scale drop tests have improved the roof structure of the stock car chassis. These improvements have been incorporated into the 2013 NASCAR Sprint Cup and Nationwide Series cars.
Technical Paper
2013-04-08
Leonard Hamilton, Peter Joyce, Chris Forero, Martin McDonald
A carbon-fiber-reinforced plastic (CFRP) monocoque racecar frame was designed and constructed by students for the 2012 Formula SAE (FSAE) collegiate design series competition. FSAE rules require that the monocoque frame have strength equal to or greater than the traditional steel space frames that they replace. The rules also specify minimum values for perimeter shear strength, main roll hoop attachment strength and driver harness attachment (pullout) strength. Overcoming limitations imposed by locally available finite element analysis tools, a variety of tests were devised to determine required laminate thicknesses and layup orientations. These included perimeter shear tests, pin shear tests, three-point bend tests and tensile tests. Based on the results of these tests, a sandwich construction using composite skins fabricated from carbon/epoxy prepreg and aluminum honeycomb core was selected. Starting from the outside, the sandwich consisted of a single layer of bi-directional woven carbon/epoxy, three unidirectional layers of carbon/epoxy, a single layer of bi-directional woven carbon/epoxy, 16-mm-thick aluminum honeycomb core, a layer of bi-directional woven carbon/epoxy, three unidirectional layers of carbon/epoxy and a final layer of bi-directional woven carbon/epoxy (F/0₃/F/core/F/0₃/F).
Viewing 1 to 30 of 663

Filter

Subtopics