Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3900
2017-11-05
Technical Paper
2017-32-0052
Katsunori Tasaki
Misfire is the condition where the engine does not fire correctly due to an ignition miss or poor combustion of the air fuel mixture, resulting in serious deterioration of tailpipe emissions due to the discharge of unburned gas. In order to prevent further exacerbating environmental problems, misfire detection is obligatory in On Board Diagnosis (OBD) II systems. OBD II technology for passenger cars cannot be easily adopted to motorcycles for several reasons. However, very little research has been reported on misfire detection for an unevenly firing engine in which the degree of contribution to engine output and the variation pattern of angular velocity show a large difference between cylinders, an aspect that is unique to motorcycles. This research focuses on uneven firing V-twin motorcycle engines, to explore misfire detection techniques using variation characters in crank angular velocity.
2017-10-08
Technical Paper
2017-01-2407
Michael Bardon, Greg Pucher, David Gardiner, Javier Ariztegui, Roger Cracknell, Heather Hamje, Leonardo Pellegrini, David Rickeard
Abstract Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this, but a practical concern is the flammability of the headspace vapours in the vehicle fuel tank. Gasoline is much more volatile than diesel so, at most ambient temperatures, the headspace vapours in the tank are too rich to burn. A gasoline/diesel mixture in a fuel tank therefore can result in a flammable headspace, particularly at cold ambient temperatures. A mathematical model is presented that predicts the flammability of the headspace vapours in a tank containing mixtures of gasoline and diesel fuel. Fourteen hydrocarbons and ethanol represent the volatile components. Heavier components are treated as non-volatile diluents in the liquid phase.
2017-10-08
Technical Paper
2017-01-2457
Rickard Arvidsson, Tomas McKelvey
Abstract A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
2017-10-08
Technical Paper
2017-01-2316
Yuhan Huang, Guang Hong, John Zhou
Abstract Ethanol direct injection (EDI) has great potential in facilitating the downsizing technologies in spark ignition engines due to its strong anti-knock ability. The fuel temperature may vary widely from non-evaporating to flash-boiling sprays in real engine conditions. In this study, a CFD spray model was developed in the ANSYS Fluent environment, which was capable to simulate the EDI spray and evaporation characteristics under non-evaporating, transition and flash-boiling conditions. The turbulence was modelled by the realizable k-ε model. The Rinzic heterogeneous nucleation model was applied to simulate the primary breakup droplet size at the nozzle exit. The secondary breakup process was modelled by the Taylor Analogy Breakup model. The evaporation process was modelled by the Convection/Diffusion Controlled Model. The droplet distortion and drag, collision and droplet-wall interaction were also included.
2017-09-23
Technical Paper
2017-01-1951
Lingfei Wu, Hongshan Zha, Caijing Xiu, Qiaojun He
Abstract Local path planning for obstacle avoidance is one of the core topics of intelligent vehicle. A novel method based on dubins curve and tentacle algorithm is proposed in this article, with the consideration of obstacle avoidance and vehicle motion constraints. First, the preview distance of the vehicle is given according to the current speed, so that the preview point can be found with the information of global path. Then dubins curve is adopted to find a path with appropriate turning radius, between the current position and preview point, satisfying the constraints of current direction and target direction, considering handling and ride comfort of the vehicle. In order to avoid obstacle, tentacle algorithm is adopted. 20 tentacle points are given by moving the original preview point, and then 21 local paths can be given by using dubins curve. Cost function is used to find out the best option of the 21 paths.
2017-09-23
Technical Paper
2017-01-1953
Manfei Bai, Lu Xiong, Zhiqiang Fu, Renxie Zhang
Abstract In this paper, a speed tracking controller is designed for the All-terrain vehicles. The method of feedforward with state variable feedback based on conditional integrators is adopted by the proposed control algorithm. The feedforward is designed considering the influence of the road slope on the longitudinal dynamics, which makes the All-terrain vehicles satisfy the acceleration demand of the upper controller when it tracks the desired speed on the road with slope varying greatly. The road slope is estimated based on a combined kinematic and dynamic model. This method solves the problem that road slope estimation requires an accurate vehicle dynamic model and are susceptible to acceleration sensor bias. Based on the vehicle dynamic model and the nonlinear tire model, the method of conditional integration is used in the state variable feedback, which considers the saturation constraint of the actuator with the intention of preventing the divergent integral operation.
2017-09-23
Technical Paper
2017-01-1954
Peng Hang, Xinbo Chen, Fengmei Luo
Abstract Path tracking is the rudimentary capability and primary task for autonomous ground vehicles (AGVs). In this paper, a novel four-wheel-independent-steering (4WIS) and four-wheel-independent-drive (4WID) electric vehicle (EV) is proposed which is equipped with steer-by-wire (SBW) system. For path-tracking controller design, the nonlinear vehicle model with 2 degrees of freedom (DOF) is built utilizing the nonlinear Dugoff tire model. The nonlinear dynamic model of SBW system is conducted as well considering the external disturbances. As to the path-tracking controller design, an integrated four-wheel steering (4WS) and direct yaw-moment control (DYC) system is designed based on the model predictive control (MPC) algorithm to track the target path described by desired yaw angle and lateral displacement. Then, the fast terminal sliding mode controller (FTSMC) is proposed for the SBW system to suppress disturbances.
2017-09-23
Technical Paper
2017-01-1955
Yandong Ruan, Hui Chen, Jiancong Li
Abstract An integrated automatic driving system consists of perception, planning and control. As one of the key components of an autonomous driving system, the longitudinal planning module guides the vehicle to accelerate or decelerate automatically on the roads. A complete longitudinal planning module is supposed to consider the flexibility to various scenarios and multi-objective optimization including safety, comfort and efficiency. However, most of the current longitudinal planning methods can not meet all the requirements above. In order to satisfy the demands mentioned above, a new Potential Field (PF) based longitudinal planning method is presented in this paper. Firstly, a PF model is constructed to depict the potential risk of surrounding traffic entities, including obstacles and roads. The shape of each potential field is closely related to the property of the corresponding traffic entity.
2017-09-23
Journal Article
2017-01-1970
Guizhen Yu, Zhangyu Wang, Xinkai Wu, Yalong Ma, Yunpeng Wang
Abstract: In this paper, an efficient lane detection using deep feature extraction method is proposed to achieve real-time lane detection in diverse road environment. The method contains three main stages: 1) pre-processing, 2) deep lane feature extraction and 3) lane fitting. In pre-processing stage, the inverse perspective mapping (IPM) is used to obtain a bird's eye view of the road image, and then an edge image is generated using the canny operator. In deep lane feature extraction stage, an advanced lane extraction method is proposed. Firstly, line segment detector (LSD) is applied to achieve the fast line segment detection in the IPM image. After that, a proposed adaptive lane clustering algorithm is employed to gather the adjacent line segments generated by the LSD method. Finally, a proposed local gray value maximum cascaded spatial correlation filter (GMSF) algorithm is used to extract the target lane lines among the multiple lines.
2017-09-23
Technical Paper
2017-01-1958
Dongfang Dang
Abstract With the increasing complexity, dynamicity and uncertainty of traffic, motion planning of automatic driving is getting more difficult and challenging. This paper focuses on the real-time motion planning problem of CAVs (connected and automated vehicles) in complex traffic scenarios. To effectively solve this problem, a general driving risk model is presented, which contains the following two essential parts: i) collision risk, i.e., the collision risk between the SV (subject vehicle) and other surrounding vehicles, pedestrians, buildings etc.; ii) non-collision risk, such as violation of traffic regulations, the deviation from the intention of driver, etc. To achieve the real time collision detection, the SV is approximated to a point and its shape is considered by extending the dimension of obstacles considering their relative position and velocity.
2017-09-23
Technical Paper
2017-01-1952
ChengJun Ma, Fang Li, Chenglin Liao, Lifang Wang
Abstract With the load of urban traffic system becomes more serious, the Automatic Parking System (APS) plays an important role in alleviating the burden of drivers and improving vehicle safety. The APS is consisted of environmental perception, path planning and path following. The path following controls the lateral movement of vehicle during the parking process, and requires the trajectory tracking error to be as small as possible. At present, some control algorithms are used including PID control, pure pursuit control, etc. However, these algorithms relying heavily on parameters and environment, have some problems such as slow response and low precision. To solve this problem, a path following control method based on Model Predictive Control (MPC) algorithm is proposed in this paper. Firstly, Kinematic vehicle model and path tracker based on MPC algorithm are built. Secondly, a test bench that composed of CANoe hardware in the loop (HIL) system and steering wheel system is built.
2017-06-22
Technical Paper
2017-36-0044
Felipe Heuer, Roberson Oliveira, Guilherme Reksiedler, Vilson R. Mognon, Thiago Greboge, Laerte C. da Rosa, Rafael R. de Carvalho, Giordano B. Wolaniuk, Ricardo M. Schmal
Abstract The focus of this study was to develop and validate a steering system assistance based on precise geolocation. The initial analysis was carried out using a mathematical model of a generic vehicle, to perform Matlab® simulations aiming to generate an algorithm capable of controlling the vehicle steering autonomously. Based on the results of those simulations it was possible to determinate that a RTK (Real Time Kinematic) would be a suitable technology for the geolocation system, meeting precision and control requirements. In order to validate the system in a real environment, a scale model RC car was equipped with a specific embedded electronic capable of recording the path driven and reproducing it autonomously. A HMI was developed making possible to visualize the vehicle during its operation. Coordinated with the vehicle, a remote cockpit with telemetry system emulates the steering wheel rotation.
2017-06-05
Technical Paper
2017-01-1878
Kevin Verdiere, Raymond Panneton, Noureddine Atalla, Saïd Elkoun
Abstract A poroelastic characterization of open-cell porous materials using an impedance tube is proposed in this paper. Commonly, porous materials are modeled using Biot’s theory. However, this theory requires several parameters which can be difficult to obtain by different methods (direct, indirect or inverse measurements). The proposed method retrieves all the Biot’s parameters with one absorption measurement in an impedance tube for isotropic poroelastic materials following the Johnson-Champoux-Allard’s model (for the fluid phase). The sample is a cylinder bonded to the rigid termination of the tube with a diameter smaller than the tube’s one. In that case, a lateral air gap is voluntary induced to prevent lateral clamping. Using this setup, the absorption curve exhibits a characteristic elastic resonance (quarter wavelength resonance) and the repeatability is ensured by controlling boundary and mounting conditions.
2017-06-05
Technical Paper
2017-01-1819
Cyril Nerubenko, George Nerubenko
Abstract The problem of crankshaft torsional vibrations for heavy car engines is important for the V8 engines. The paper describes the results of the dynamical study of the new patented Torsional Vibration Dampers mounted on a crankshaft in V8 engines. Design and structure of Torsional Vibration Damper is based on author’s US Patent 7,438,165 having the control system with instantaneous frequencies tuner for all frequencies of running engine. Analysis and disadvantages of conventional rubber and viscous Crank Dampers are shown. The focus of the study is on Torsional Vibration Damper having the mechanical self-tuning structure applicable for V8 engines. Mathematical model based on the system of ordinary differential equations describing the rotation and vibration of mechanical components has been used for the analysis of the dynamic behavior of V8 engine crankshaft system having proposed Torsional Vibration Damper.
2017-06-05
Technical Paper
2017-01-1831
Longchen Li, Wei Huang, Hailin Ruan, Xiujie Tian, Keda Zhu, Melvyn Care, Richard Wentzel, Xiaojun Chen, Changwei Zheng
Abstract The control strategy design of vehicle active noise control (ANC) relies too much on experiment experience, which costs a lot to gather mass data and the experimental results lack representation. To solve these problems, a new control strategy optimization method based on the genetic algorithm is proposed. First, a vehicle cabin sound field simulation model is built by sound transfer function. Based on the filtered-X Least Mean Squares (FX-LMS) algorithm and the vehicle cabin sound field simulation model, a vehicle ANC simulation model is proposed and verified by a vehicle field test. Furthermore, the genetic algorithm is used as a strategy optimization tool to optimize an ANC control strategy parameter set based on the vehicle ANC simulation model. The optimized results provide a reference for the ANC control strategy design of the vehicle.
2017-06-05
Technical Paper
2017-01-1833
Bonan Qin, Jue Yang, Xinxin Zhao
Abstract Articulated engineering vehicle travels on complex road, its working condition is bad and because of the non-rigid connection between the front and rear body, additional DOF is brought in and the transverse stiffness is relatively weak. When the articulated vehicle runs in a high speed along a straight line, it is easy to cause the transverse swing and the poor handling stability. If it is serious enough, it will lead to "snakelike" instability phenomenon. This kind of instability will increase driving resistance and tire wear, the lateral dynamic load and aggravate the damage of the parts. The vehicle will have a lateral migration of center of gravity (CG) when steering, which will lead a higher probability of rollover accident. A dynamic mathematical model for a 35t articulated truck with four motor-driven wheels was established in this paper, to study the condition for its stable driving and the influence of the vehicle structural parameters.
2017-06-05
Journal Article
2017-01-1765
Albert Allen, Noah Schiller, Jerry Rouse
Abstract Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
2017-04-11
Journal Article
2017-01-9075
Rami Abousleiman, Osamah Rawashdeh, Romi Boimer
Abstract Growing concerns about the environment, energy dependency, and the unstable fuel prices have increased the sales of electric vehicles. Energy-efficient routing for electric vehicles requires novel algorithmic challenges because traditional routing algorithms are designed for fossil-fueled vehicles. Negative edge costs, battery power and capacity limits, vehicle parameters that are only available at query time, alongside the uncertainty make the task of electric vehicle routing a challenging problem. In this paper, we present a solution to the energy-efficient routing problem for electric vehicles using ant colony optimization. Simulation and real-world test results demonstrate savings in the energy consumption of electric vehicles when driven on the generated routes. Real-world test results revealed more than 9% improvements in the energy consumption of the electric vehicle when driven on the recommended route rather than the routes proposed by Google Maps and MapQuest.
2017-03-28
Technical Paper
2017-01-1140
Yang Xu, Yuji Fujii, Edward Dai, James McCallum, Gregory Pietron, Guang Wu, Hong Jiang
Abstract A transmission system model is developed at various complexities in order to capture the transient behaviors in drivability and fuel economy simulations. A large number of model parameters bring more degree of freedom to correlate with vehicular test data. However, in practice, it requires extensive time and effort to tune the parameters to satisfy the model performance requirements. Among the transmission model, a hydraulic clutch actuator plays a critical role in transient shift simulations. It is particularly difficult to tune the actuator model when it is over-parameterized. Therefore, it is of great importance to develop a hydraulic actuator model that is easy to adjust while retaining sufficient complexity for replicating realistic transient behaviors. This paper describes a systematic approach for reducing the hydraulic actuator model into a piecewise 1st order representation based on piston movement.
2017-03-28
Technical Paper
2017-01-1141
Bashar Alzuwayer, Robert Prucka, Imtiaz Haque, Paul Venhovens
Abstract Fuel economy regulations have forced the automotive industry to implement transmissions with an increased number of gears and reduced parasitic losses. The objective of this research is to develop a high fidelity and a computationally efficient model of an automatic transmission, this model should be suitable for controller development purposes. The transmission under investigation features a combination of positive clutches (interlocking dog clutches) and conventional wet clutches. Simulation models for the torque converter, lock-up clutch, transmission gear train, interlocking dog clutches, wet clutches, hydraulic control valves and circuits were developed and integrated with a 1-D vehicle road load model. The integrated powertrain system model was calibrated using measurements from real-world driving conditions. Unknown model parameters, such as clutch pack clearances, compliances, hydraulic orifice diameters and clutch preloads were estimated and calibrated.
2017-03-28
Technical Paper
2017-01-0085
Wanyang Xia, Yahui Wu, Gangfeng Tan, Xianyao Ping, Benlong Liu
Abstract Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
2017-03-28
Technical Paper
2017-01-0544
Philipp Mayr, Gerhard Pirker, Andreas Wimmer, Markus Krenn
Abstract It is critical for gas and dual fuel engines to have improved transient characteristics in order that they can successfully compete with diesel engines. Testing of transient behavior as well as of different control strategies for the multi-cylinder engine (MCE) should already be done on the single cylinder engine (SCE) test bed during the development process. This paper presents tools and algorithms that simulate transient MCE behavior on a SCE test bed. A methodology that includes both simulation and measurements is developed for a large two-stage turbocharged gas engine. Simple and fast models and algorithms are created that are able to provide the boundary conditions (e.g., boost pressure and exhaust back pressure) of a multi-cylinder engine in transient operation in real-time for use on the SCE test bed. The main models of the methodology are discussed in detail.
2017-03-28
Technical Paper
2017-01-0338
Jeong Kyun Hong, Andrew Cox
Abstract Even under uniaxial loading, seemingly simple welded joint types can develop multi-axial stress states, which must be considered when evaluating both the fatigue strength and failure location. Based on the investigation of fatigue behavior for the multi-axial stress state, a procedure for fatigue behavior of welded joints with multi-axial stress states was proposed using an effective equivalent structural stress range parameter combined normal and in-plane shear equivalent structural stress ranges and the master S-N curve approach. In automotive structures, fatigue failure is often observed at weld end, which often show a complex stress state. Due to simplified weld end representation having a sharp right-angled weld corner, the fatigue failure prediction at the weld end tends to be overly conservative due to the excessive stress concentration at the right-angled weld termination.
2017-03-28
Technical Paper
2017-01-1237
Ahmad Arshan Khan, Michael J. Kress
Abstract For high performance motor controls applications such as electric vehicles, accurate motor parameter knowledge is required. Motor parameters like d-axis inductance, q-axis inductance, resistance and permanent magnet flux linkage are difficult to obtain and measure directly. These four parameters can be reduced to three parameters resistance, d-axis and q axis flux linkage. In this paper, a new scheme is proposed to approximate d-axis and q-axis flux linkage using measured torque, dq-axis measured current, and dq-axis voltage commands to the inverter. d-axis and q-axis flux linkages are estimated over a range of d-axis and q-axis currents that fully map the desired motor operation region.
2017-03-28
Technical Paper
2017-01-1230
Cyrille Goldstein, Joel Hetrick
Abstract Mechanical losses in electric machines can contribute significantly to overall system losses in an electric drive [1]. With a permanent magnet synchronous machine (PMSM), measuring mechanical losses is difficult without an un-magnetized rotor. Even with an un-magnetized rotor, physical testing can be time consuming and expensive. This paper presents a simple theoretical model of mechanical drag in an electric machine. The model was built using calculations for bearing, seal, and windage drag and was compared to experimental results from testing with un-magnetized motors. Based on this information, the model was modified to better represent the physical system. The goal of this work is to understand the contributors to mechanical drag, to be able to estimate mechanical losses without physical testing, and to be able to quickly evaluate design choices that could reduce mechanical losses.
2017-03-28
Technical Paper
2017-01-1214
Jujun Xia, Haifeng Dai, Zechang Sun, Massimo Venturi
Abstract Lithium-ion batteries have been applied in the new energy vehicles more and more widely. The inconsistency of battery cells imposes a lot of difficulties in parameter and state estimations. This paper proposes a new algorithm which can online identify the parameters of each individual battery cell accurately with limited increase of computational cost. An equivalent circuit battery model is founded and based on the RLS (recursive least squares) algorithm, an optimization algorithm with the construction of weight vectors is proposed which can identify the parameters of lithium battery pack considering inconsistency of single battery cell. Firstly, the average value of the parameters of the battery pack is identified with the traditional RLS algorithm. Then the ratios between the parameters of each battery cell can be deduced from the mathematical model of battery. These ratios are used to determine the weight vector of each parameter of individual battery cells.
2017-03-28
Technical Paper
2017-01-1326
Santhoji Katare, Ravichandran S, Gokul Ram, Giri Nammalwar
Abstract Model based computer-aided processes offer an economical and accelerated alternative to traditional build-and-test "Edisonian" approaches in engineering design. Typically, a CAE based design problem is formulated in two parts, viz. (1) the inverse design problem which involves identification of the appropriate geometry with desired properties, and (2) the forward problem which is the prediction of performance from the product geometry. Solution to the forward problem requires development of an accurate model correlated to physical data. This validated model could then be used for Virtual Verification of engineering systems efficiently and for solving the inverse problem. This paper demonstrates the rigorous process of model development, calibration, validation/verification, and use of the calibrated model in the design process with practical examples from automotive chassis and powertrain systems.
2017-03-28
Technical Paper
2017-01-1169
Ahmed M. Ali, Alhossein Mostafa Sharaf, Hesham Kamel, Shawky Hegazy
Abstract This paper presents an integrated experimental and simulation investigation which is conducted on a series hybrid electric vehicle. The mathematical model is simulated in two distinct environments; MATLAB/Simulink and GT-Suite. An experimental test rig is devised in order to measure the vehicle performance including wheeled-chassis dynamometer. Components consumed powers, vehicle speed, engine revolution, fuel consumption and consumed energies are all measured in real time and the results are used to verify the numerical modelling work. For optimizing the performance of the vehicle, a rule based control algorithm is proposed and applied to the model using Stateflow environment. Many sequential-decision logic-based rules are graphical coded to operate the internal combustions engine at its most fuel efficient modes.
2017-03-28
Technical Paper
2017-01-0975
Pankaj Kumar, Imad Makki
Abstract A three-way catalytic converter (TWC) is an emissions control device, used to treat the exhaust gases in a gasoline engine. The conversion efficiency of the catalyst, however, drops with age or customer usage and needs to be monitored on-line to meet the on board diagnostics (OBD II) regulations. In this work, a non-intrusive catalyst monitor is developed to diagnose the track the remaining useful life of the catalyst based on measured in-vehicle signals. Using air mass and the air-fuel ratio (A/F) at the front (upstream) and rear (downstream) of the catalyst, the catalyst oxygen storage capacity is estimated. The catalyst capacity and operating exhaust temperature are used as an input features for developing a Support Vector Machine (SVM) algorithm based classifier to identify a threshold catalyst. In addition, the distance of the data points in hyperspace from the calibrated threshold plane is used to compute the remaining useful life left.
2017-03-28
Technical Paper
2017-01-0129
Sinya Miura, Takashi YASUDA
Abstract In general, CFD analysis with porous media is precise enough to simulate airflow behavior in a heat exchanger core, placed in the vehicle. In a case when the airflow behavior is complex, however, the precision lowers according to our study. Therefore, we developed a new modeling method to keep high-precision and applied it to analysis of airflow in the vehicle. The concept is at first that the shape of tubes and the distance between the tubes are as the actual product so that the airflow with an oblique angle is to pass through a core. With this concept, airflow with an oblique angle hits the surface of tubes and passes through a core with changing the direction. Next, the concept is to reproduce the air pressure loss in actually-shaped fins, and therefore, we use a porous medium for the modeling of the fins instead of the product shape modeling to combine with the the tubes.
Viewing 1 to 30 of 3900

Filter