Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 701
2017-09-29
Technical Paper
2017-01-7004
Abhirup Chakraborty, Sagar Polisetti, Jayanthan Jayaseelan, Rajesh Upadhyay
Abstract Vibrational fatigue is a metal fatigue caused by the forced vibrations which are purely random in nature. The phenomenon is predominantly important for the components/systems which are subjected to extreme vibration during its operation. In a vehicle, an engine is the main source of vibration. The vibrational fatigue, therefore, plays a key role in the deterioration of engine mounted components. Multiple test standards and methodologies are available for validating engine mounted parts of an automobile. These might not be appropriate in the case of an off- road vehicle as the vibrational exposure of engine mounted components of an off-road vehicle is entirely different. In the case of an off-road vehicle, the engine mounted components are subjected to a comparatively higher level of vibration for a longer duration of time as compared to the passenger cars.
2017-09-16
Journal Article
2017-01-9183
Tine Christiansen, Johanne Jensen, Andreas Åberg, Jens Abildskov, Jakob Huusom
Abstract A methodology for the development of catalyst models is presented. Also, a methodology of the implementation of such models into a modular simulation tool, which simulates the units in succession, is presented. A case study is presented illustrating how suitable models can be found and used for simulations. Such simulations illustrate the behavior of the individual units and the overall system. It is shown how, by simulating the units in succession, the entire after treatment system can be tested and optimized, because the integration makes it possible to observe the effect of the modules on one another.
2017-09-04
Journal Article
2017-24-0161
Noboru Uchida, Hideaki Osada
Abstract To reduce heat transfer between hot gas and cavity wall, thin Zirconia (ZrO2) layer (0.5mm) on the cavity surface of a forged steel piston was firstly formed by thermal spray coating aiming higher surface temperature swing precisely synchronized with flame temperature near the wall resulting in the reduction of temperature difference. However, no apparent difference in the heat loss was analyzed. To find out the reason why the heat loss was not so improved, direct observation of flame impingement to the cavity wall was carried out with the top view visualization technique, for which one of the exhaust valves was modified to a sapphire window. Local flame behavior very close to the wall was compared by macrophotography. Numerical analysis by utilizing a three-dimensional simulation was also carried out to investigate the effect of several parameters on the heat transfer coefficient.
2017-07-10
Technical Paper
2017-28-1925
Asif Basha Shaik Mohammad, Ravindran Vijayakumar, Nageshwar Rao Panduranga
Abstract The automotive market has seen a steady increase in customer demands for quiet and more comfortable tractors. High noise at Operator Ear Level (OEL) of tractor is the major cause of fatigue to the operator. With growing competition, and upcoming legislative requirement there is ominous need for the agricultural tractor manufacturers to control noise levels. The objective of this study is noise reduction on agricultural tractor by stiffening sheet metal components. The design and analysis plays a major role for determining the root cause for the problem. Once the problem and its root cause were well defined, the solution for addressing the problem would be made clear. The engine excitation frequency and Sheet metal Components such as fender and platform natural frequency were coming closer and are leading to resonance.
2017-07-10
Technical Paper
2017-28-1985
Hemasunder Banka, Radhika Muluka, Vikram Reddy
Abstract Conventional materials like steel, brass, aluminum etc will fail without any indication, cracks initiation, propagation, will takes place with a short span. Now-a-days to overcome these problem, conventional materials are replaced by hybrid composite material. Not only have this conventional material failed to meet the requirement of high technology applications, like space applications and marine applications and structural applications in order to meet the above requirements new materials are being searched. Hybrid composites materials found to the best alternative with its unique capacity of designing the materials to give required properties and light weight. This paper aims to preparing hybrid composite using artificial fibers. Epoxy as resin and glass fiber as fiber for artificial hybrid composite to make a laminate for preparing leaf spring.
2017-04-11
Journal Article
2017-01-9177
N. Obuli Karthikeyan, R. Dinesh Kumar, V. Srinivasa Chandra, Vela Murali
Abstract In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
2017-03-28
Technical Paper
2017-01-1503
Jared Johan Engelbrecht, Tony Russell Martin, Piyush M. Gulve, Nagarjun Chandrashekar, Amol Dwivedi, Peter Thomas Tkacik, Zachary Merrill
Abstract Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
2017-03-28
Technical Paper
2017-01-0455
Harshad Hatekar, Baskar Anthonysamy, V. Saishanker, Lakshmi Pavuluri, Gurdeep Singh Pahwa
Abstract Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
2017-03-28
Technical Paper
2017-01-1495
Srinivas Kurna, Ruchik Tank, Krishna Srikanth Achanta
1. Abstract At the time of invention of road coaches, the vehicle consisted only of an axle with wheels and a body attached. Smooth roads were built for a better ride comfort however they were not consistent. The road coaches were too bumpy and uncomfortable for the passenger along with the driver who was not able to control the vehicle. That's why the engineers had to shift their attention to the suspension system for a better ride comfort and handling. The technology has advanced with time so as the suspension system. Rubber ended type leaf spring is one of the suspension system types available in the industry. The main function of a suspension in order of importance is as below: 1 Acts as a cushioning device ensuring the comfort of the driver and passengers;2 Maximizes the contact between the tires and the road surface to provide steering stability with good handling;3 Protects the vehicle itself and any cargo or luggage from damage and wear.
2017-03-28
Technical Paper
2017-01-0150
Ankit Kumar Shukla, Raj Dhami, Aashish Bhargava, Sanjay Tiwari
Abstract In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
2017-03-28
Technical Paper
2017-01-1333
Sasikumar P, C. Sujatha, Chinnaraj K.
Abstract In commercial vehicles, exhaust system is normally mounted on frame side members (FSM) using hanger brackets. These exhaust system hanger brackets are tested either as part of full vehicle durability testing or as a subsystem in a rig testing. During initial phases of product development cycle, the hanger brackets are validated for their durability in rig level testing using time domain signals acquired from mule vehicle. These signals are then used in uni-axial, bi-axial or tri-axial rig facilities based on their severity and the availability of test rigs. This paper depicts the simulation method employed to replicate the bi-directional rig testing through modal transient analysis. Finite Element Method (FEM) is applied for numerical analysis of exhaust system assembly using MSC/Nastran software with the inclusion of rubber isolator modeling, meshing guidelines etc. Finite Element Analysis (FEA) results are in good agreement with rig level test results.
2017-03-28
Journal Article
2017-01-0342
Benjamin Möller, Alessio Tomasella, Rainer Wagener, Tobias Melz
Abstract The cyclic material behavior is investigated, by strain-controlled testing, of 8 mm thick sheet metal specimens and butt joints, manufactured by manual gas metal arc welding (GMAW). The materials used in this investigation are the high-strength structural steels S960QL, S960M and S1100QL. Trilinear strain-life curves and cyclic stress-strain curves have been derived for the base material and the as-welded state of each steel grade. Due to the cyclic softening in combination with a high load level at the initial load cycle, the cyclic stress-strain curve cannot be applied directly for a fatigue assessment of welded structures. Therefore, the transient effects have been analyzed in order to describe the time-variant material behavior in a more detailed manner. This should be the basis for the enhancement of the fatigue life estimation.
2017-03-28
Journal Article
2017-01-0346
Radwan Hazime, Thomas Seifert, Jeremy Kessens, Frank Ju
Abstract A complete thermomechanical fatigue (TMF) life prediction methodology is developed for predicting the TMF life of cast iron cylinder heads for efficient heavy duty internal combustion engines. The methodology uses transient temperature fields as thermal loads for the non-linear structural finite-element analysis (FEA). To obtain reliable stress and strain histories in the FEA for cast iron materials, a time and temperature dependent plasticity model which accounts for viscous effects, non-linear kinematic hardening and tension-compression asymmetry is required. For this purpose a unified elasto-viscoplastic Chaboche model coupled with damage is developed and implemented as a user material model (USERMAT) in the general purpose FEA program ANSYS. In addition, the mechanism-based DTMF model for TMF life prediction developed in Part I of the paper is extended to three-dimensional stress states under transient non-proportional loading conditions.
2017-03-28
Journal Article
2017-01-0349
Thomas Seifert, Philipp von Hartrott, Kristopher Boss, Paul Wynthein
Abstract Cast iron materials are used as materials for cylinder heads for heavy duty internal combustion engines. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. While high-cycle fatigue (HCF) is dominant for the material in the water jacket region, the combination of thermal transients with mechanical load cycles results in thermomechanical fatigue (TMF) of the material in the fire deck region, even including superimposed TMF and HCF loads. Increasing the efficiency of the engines directly leads to increasing combustion pressure and temperature and, thus, lower safety margins for the currently used cast iron materials or alternatively the need for superior cast iron materials. In this paper (Part I), the TMF properties of the lamellar graphite cast iron GJL250 and the vermicular graphite cast iron GJV450 are characterized in uniaxial tests and a mechanism-based model for TMF life prediction is developed for both materials.
2017-01-10
Technical Paper
2017-26-0310
Vyankatesh Madane, Sameer Shivalkar, Chandrakant Patil, Sanjeev Annigeri
Abstract In rubber industry, different techniques are used to enhance durability. This paper gives complete design, development and testing methodology of rubber bush in which pre-compression of rubber is used to enhance rubber bush life. In bogie suspension, axle to torque rod join is critical as it has to transfer lateral and longitudinal load with flexibility. This makes challenging to design joint which need to carry more than 6 ton load and having flexibility of more than 10 degree articulation. In this torque rod to axle joint called as End bush, compressed rubber is used to carry high load with flexibility. Other possible material for bush can be brass bush which able to carry high load however not able to give high flexibility Design and finite element calculations are done to design pre-compression and rubber volume to get desired strength and stiffness to carry required load with flexibility.
2016-10-25
Technical Paper
2016-36-0168
Lawrence Tack Wen Yan
Abstract This paper focus on some of the fatigue methodologies based on the frequency domain and how they can be used on the heavy vehicle industry. A calculation flow was developed which consist of two steps. At first the stresses on the desired frequency bandwidth are calculated using a finite element software and those are then used as inputs on a Matlab script that estimate the expected life using two different theories, Bendat’s narrow band and Dirlik. The proposed methodology is then compared with more established time domain calculations. At first a plain hand calculation with a simpler input is performed on both domains before evaluating the differences with a more complex random stress signal input. Finally, test data from a rig test is used to validate the frequency domain fatigue methods using real life data.
2016-10-25
Technical Paper
2016-36-0149
Edinilson Alves Costa
Abstract Mainly in the last 30 years so much research has been done on Fe-based calculation of seam welded thin-sheet structures fatigue life. However, available prediction methods have been developed for a limited range of geometries under ideal load conditions. Extrapolating to complex real world geometries and load conditions such those resultant from, for example, ground vehicles dislocation over rough surfaces, are least documented. One example of the application of seam welded thin-sheet structures in the ground vehicle industry is the powertrain installation bracketry. Such brackets are subject to variable amplitude loading sourced from powertrain and road surface irregularities and their fatigue strength is tightly dependent on the strength of their joints. In this paper, a FE-based force/moment method has been used for numerically predicting fatigue life of powertrain installation bracketry of a commercial truck submitted to variable amplitude loading.
2016-10-17
Technical Paper
2016-01-2349
Suresh Kumar Kandreegula, Ram Krishna Kumar Singh, Jham Tikoliya
Abstract To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs. For commercial vehicles, an attempt is made to decrease weight of the current design without compromising its strength & stiffness, considering/bearing all the worst road/engine load cases and severe environmental conditions. The topic was chosen because of interest in higher payloads, lower weight, and higher efficiency. Automotive cylinder head must be lighter in weight, to meet increasingly demanding customer requirements. The design approach for cylinder head has made it difficult to achieve this target. A designer might make some judgment as to where ribs are required to provide stiffness, but this is based on engineering experience and Finite Element Analysis (FEA) of the stand-alone head.
2016-10-17
Technical Paper
2016-01-2315
Xiaobo Shen, Rajiv Taribagil, Stuart Briggs, Isabella Goldmints
Abstract An unprecedented global focus on the environment and greenhouse gases has driven recent government regulations on automotive emissions across the globe. To achieve this improvement, Original Equipment Manufacturers (OEMs) have advocated a progressive move towards the use of low viscosity grade oils. However, the use of lower viscosity grades should not compromise engine durability or wear protection. Viscosity modifiers (VM) - polymeric additive components used to tailor the lubricant’s viscometric properties - have been viewed as a key enabler for achieving the desirable balance between fuel economy and engine durability performance. Self-assembling diblock copolymers represent a unique class of VMs, which deliver superior shear stability due to their tunable association/dissociation in the lubricating oil. Superior shear stability ensures that the oil viscosity and its ability to offer reliable engine protection from wear is retained over the life of the oil in the engine.
2016-09-27
Technical Paper
2016-01-8044
Guoyu Feng, Wenku Shi, Henghai Zhang, Qinghua Zu
Abstract In order to predict the fatigue life of thrust rod heavy duty commercial vehicle balanced suspension, based on the continuum mechanics theory, the fatigue life prediction model of rubber with equivalent effect as damage parameter is established. Based on the equivalent stress and fatigue cumulative damage theory, the fatigue damage evolution equation of rubber material expressed by stress is derived by using the strain energy function. The general fatigue life model is established by using the maximum logarithmic principal strain as the damage parameter. The finite element model of the thrust rod is established, and the stress distribution of the spherical hinge rubber layer and the easy damage area are analyzed. Based on the equivalent stress calculation results and the axial tension stress and strain data of the rubber material, the accuracy of the results of the finite element calculation is verified.
2016-09-27
Technical Paper
2016-01-8027
Stefan Steidel, Thomas Halfmann, Manfred Baecker, Axel Gallrein
Abstract Rolling resistance and tread wear of tires do particularly influence the maintenance costs of commercial vehicles. Although tire labeling is established in Europe, it is meanwhile well-known that, due to the respective test procedures, these labels do not hold in realistic application scenarios in the field. This circumstance arises from the development phase of tires, where the respective performance properties are mainly evaluated in tire/wheel standalone scenarios in which the wide range of usage variability of commercial vehicles cannot be considered adequately. Within this article we address a method to predict indicators for rolling resistance and tread wear of tires in realistic application scenarios considering application-based factors of influence like specific customers, operation circumstances, regional dependencies, fleet specific characteristics etc.
2016-09-27
Technical Paper
2016-01-8082
Kaushik Saha, Ahmed Abdul Moiz, Anita Ramirez, Sibendu Som, Munidhar Biruduganti, Michael Bima, Patrick Powell
Abstract The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
2016-09-27
Technical Paper
2016-01-8138
Pranav Shinde, K Ravi, Nandhini Nehru, Sushant Pawar, Balaji Balakrishnan, Vinit Nair
Abstract Body in white (BIW) forms a major structure in any automobile. It is responsible for safety and structural rigidity of the vehicle. Also, this frame supports the power plant, auxiliary equipments and all body parts of the vehicle. When it comes to judging the performance of the vehicle, BIW is analyzed not only for its strength and shape but also the weight. Light weight BIW structures have grown rapidly in order to fulfill the requirements of the best vehicle performance in dynamic conditions. Since then lot of efforts have been put into computer-aided engineering (CAE), materials research, advanced manufacturing processes and joining methods. Each of them play a critical role in BIW functionality. Constructional designing, development of light materials with improved strength and special manufacturing practices for BIW are few research areas with scope of improvement. This paper attempts to review various factors studied for BIW weight reduction.
2016-09-27
Journal Article
2016-01-8066
Marco Maurizi, Daniel Hrdina
Abstract Total cost of ownership is requiring further improvements to piston friction reduction as well as additional gains in thermal efficiency. A piston compression height reduction in combination with carbon based piston pin coatings is enabling advancements in both demands. MAHLE implemented a new innovative metal joining technology by using laser welding to generate a cooling gallery. The MonoLite concept offers design flexibility which cannot be matched by any other welding process. Especially an optimum design and position of the cooling gallery as well as durability for very high peak cylinder pressures can be matched. This is particularly advantageous for complex combustion bowl geometries that are needed in modern diesel engines to meet fuel economy and emission requirements. The MonoLite steel piston technology offers a superior compression height reduction potential compared to typical friction welded designs.
2016-09-16
Journal Article
2016-01-9017
Janka Cafolla, Derick Smart, Barry Warner
Abstract The lifting and excavating industry are not as advanced as automotive in the use of modern CAE tools in the early stages of design and development of heavy machinery. There is still a lack of confidence in the integrity of the results from FE simulations and optimisation and this becomes a barrier to the adoption of virtual prototyping for vehicle verification. R&D of Tata Steel has performed tests on two forklift truck overhead guards supplied by a major manufacturer. Based on the international standard for Falling Object Protective Structures (FOPS) as an initial input to the method of testing, the main aim of this study was to generate as much test data as possible to correlate the Finite Element (FE) simulations of two tests - a static and a dynamic test. The static test was developed to deform the overhead guard plastically in a slow controlled manner, so it would be easier to correlate the measured data to FE simulation.
2016-05-11
Technical Paper
2016-36-0064
V. R. M. Gonçalves, L. C. F. Canale, V. Leskovšek, B. Podgornik
Abstract Spring steels are the materials most commonly used in suspensions of vehicles and are subject to heavy efforts in terms of load, impact and also under intense fatigue solicitation. Required mechanical performance depends mainly on the chemical composition and heat treatments. Therefore, the aim of the present work was to compare SAE 5160 steel with one Super Clean steel developed in Slovenia. Searches improving mechanical properties of these steels are constantly present in the automotive industry, reducing vehicle weight and maintaining safety. In this scenario, cryogenic treatment in combination with quenching and tempering has shown interesting results in the scientific literature for tool steels and the best results for cryogenics are achieved when the treatment occurs for long duration as 24 hours.
2016-04-05
Technical Paper
2016-01-1575
Federico Ballo, Roberto Frizzi, Gianpiero Mastinu, Donato Mastroberti, Giorgio Previati, Claudio Sorlini
Abstract In this paper the lightweight design and construction of road vehicle aluminum wheels is dealt with, referring particularly to safety. Dedicated experimental tests aimed at assessing the fatigue life behavior of aluminum alloy A356 - T6 have been performed. Cylindrical specimens have been extracted from three different locations in the wheel. Fully reversed strain-controlled and load-controlled fatigue tests have been performed and the stress/strain-life curves on the three areas of the wheel have been computed and compared. The constant amplitude rotary bending fatigue test of the wheel has been simulated by means of Finite Element method. The FE model has been validated by measuring the strain at several points of the wheel during the actual test. From the FE model, the stress tensor time history on the whole wheel over a loading cycle has been extracted.
2016-04-05
Technical Paper
2016-01-0141
Prasanna Vasudevan, Sreegururaj Jayachander
Abstract Several studies in the field of hedonics using subjective responses to gauge the nature and influence of odors have attempted to explain the complex psychological and chemical processes. Work on the effect of odors in alleviating driver fatigue is limited. The potential to improve road safety through non-pharmacological means such as stimulating odors is the impetus behind this paper. This is especially relevant in developing countries today with burgeoning economies such as India. Longer road trips by commercial transport vehicles with increasingly fatigued drivers and risk of accidents are being fuelled by distant producer - consumer connections. This work describes a two stage comparative study on the effects of different odors typically obtainable in India. The stages involve administration of odorants orthonsally and retronasally after the onset of circadian fatigue in test subjects. This is followed by a small cognitive exercise to evaluate hand-eye coordination.
2016-04-05
Technical Paper
2016-01-0412
Mathialgan Balaji, B. Jaiganesh, Selvakumar Palani, K. Somasundaram, Srinivasa Rao
Abstract Tractors are the self-propelled vehicle which finds its major application in agriculture, haulage and construction equipment. The product development cycle time of a tractor is more as compared to automobiles since it has to undergo rigorous field testing. Bringing more realistic component and system level validation in the test lab will drastically reduce the product development cycle time. Non-availability of standard usage pattern and customer-correlated proving ground pose a bigger challenge for bringing the field conditions to the lab. As a result, the tractor has to be instrumented with sensors and load-time history needs to be acquired as per real world usage pattern. Raw data from the field cannot be used directly for lab testing since the number of load cycles will be very high. Raw data have to be edited based on damage calculation and fatigue sensitivity analysis technique.
2016-04-05
Journal Article
2016-01-0354
Ryoji Suzuki, Yukihide Yokoyama, Takeo Shibano, Tatsuki Sugiura, Noriaki Katori
Abstract 1 One issue raised by the use of austenitic stainless steels in commercial vehicles is the increase in material costs. To reduce those material costs, a nitric acid electropolishing treatment was applied to SUS436L (18 Cr - 1.5 Mo - 0.4 Nb) and corrosion tests were conducted to compare its corrosion resistance to that of SUS316L(16 Cr - 12 Ni - 2 Mo). Compared to SUS316L, SUS436L subjected to nitric acid electropolishing indicated superior corrosion resistance. In addition, XPS and TEM analyses showed that while the SUS436L passivation film layer contained approximately twice as much chromium, its thickness was also generally reduced by approximately half, to 2 nm. These results suggest that electropolishing with nitric acid, which is highly oxidative, formed a fine passivation film.
Viewing 1 to 30 of 701