Criteria

Text:
Topic:
Sector:
Display:

Results

Viewing 1 to 30 of 804
2017-06-05
Technical Paper
2017-01-1880
Guojian Zhou, Xiujie Tian, Keda Zhu, Wei Huang, Richard E. Wentzel, Melvyn J. Care, Kaixuan Mao, Jiu Hui Wu
Abstract A flexible rebound-type acoustic metamaterial with high sound transmission loss (STL) at low frequency is proposed, which is composed of a flexible, light-weight membrane material and a sheet material - Ethylene Vinyl Acetate Copolymer (EVA) with uneven distributed circular holes. STL was analyzed by using both computer aided engineering (CAE) calculations and experimental verifications, which depict good results in the consistency between each other. An obvious sound insulation peak exists in the low frequency band, and the STL peak mechanism is the rebound-effect of the membrane surface, which is proved through finite element analysis (FEA) under single frequency excitation. Then the variation of the STL peak is studied by changing the structure parameters and material parameters of the metamaterial, providing a method to design the metamaterial with high sound insulation in a specified frequency range.
2017-06-05
Journal Article
2017-01-1765
Albert Allen, Noah Schiller, Jerry Rouse
Abstract Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
2017-06-05
Technical Paper
2017-01-1812
Steven Sorenson, Gordon Ebbitt, Scott Smith, Todd Remtema
Abstract In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
2017-06-05
Technical Paper
2017-01-1817
Steven M. Gasworth, Vasudev Nilajkar, Matteo Terragni
Abstract Polycarbonate (PC) glazing as a one-for-one glass replacement offers a 50% weight reduction, but exhibits several dB lower sound transmission loss (STL) in the low frequency range where tire and engine noise are dominant. In the high frequency range where wind noise is dominant, PC glazing offers an STL at least comparable to its glass counterpart, and an STL exceeding glass when this frequency range encompasses the glass coincidence frequency. However, a key value proposition of PC glazing is the opportunity for feature integration afforded by the injection molding process generally used for forming such glazing. Two-component (2K) molding fuses a second shot of plastic material behind, and along the perimeter of, the transparent PC first shot. This second shot can incorporate features and implement functions that require additional components attached or peripheral to a glass version.
2017-06-05
Journal Article
2017-01-1813
James M. Jonza, Thomas Herdtle, Jeffrey Kalish, Ronald Gerdes, Taewook Yoo, Georg Eichhorn
Abstract The aerospace industry has employed sandwich composite panels (stiff skins and lightweight cores) for over fifty years. It is a very efficient structure for rigidity per unit weight. For the automobile industry, we have developed novel thermoplastic composite panels that may be heated and shaped by compression molding or thermoforming with cycle times commensurate with automotive manufacturing line build rates. These panels are also readily recycled at the end of their service life. As vehicles become lighter to meet carbon dioxide emission targets, it becomes more challenging to maintain the same level of quietness in the vehicle interior. Panels with interconnected honeycomb cells and perforations in one skin have been developed to absorb specific noise frequencies. The absorption results from a combination and interaction of Helmholtz and quarter wave resonators.
2017-06-05
Technical Paper
2017-01-1814
Todd Tousignant, Kiran Govindswamy, Vikram Bhatia, Shivani Polasani, W Keith Fisher
Abstract The automotive industry continues to develop technologies for reducing vehicle fuel consumption. Specifically, vehicle lightweighting is expected to be a key enabler for achieving fleet CO2 reduction targets for 2025 and beyond. Hybrid glass laminates that incorporate fusion draw and ion exchange innovations are thinner and thereby, offer more than 30% weight reduction compared to conventional automotive laminates. These lightweight hybrid laminates provide additional benefits, including improved toughness and superior optics. However, glazing weight reduction leads to an increase in transmission of sound through the laminates for certain frequencies. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of lightweight glass.
2017-06-05
Technical Paper
2017-01-1815
Pranab Saha, Satyajeet P. Deshpande
Abstract This paper discusses the importance of a dissipative sound package system in the automotive industry and how it works. Although this is not a new technique at this stage, it is still a challenge to meet the subsystem target levels that were originally developed for parts based on the barrier decoupler concept. This paper reviews the typical construction of a dissipative system and then emphasizes the importance of different layers of materials that are used in the construction, including what they can do and cannot do. The paper also discusses the importance of the proper manufacturing of a part.
2017-06-05
Technical Paper
2017-01-1854
John T. Anton, Jason Ley, Ikpreet S. Grover, David Stotera
Abstract Liquid applied sound deadener (LASD) is a light-weight, targeted vibration damping treatment traditionally used in the automotive market for body-in-white (BIW) panels. Water-based LASDs may cure over a wide range of conditions from room temperature to over 200°C. However, curing conditions commonly affect change in the damping characteristics. A thorough understanding of the relationship between curing conditions and subsequent damping performances will inform the material selection process and may allow pre-manufacturing designs to be adjusted with limited impact during validation. This paper aims to strengthen the quantitative understanding of the role LASD curing conditions have on damping performance by observing the effects of variations in thickness and cure temperature as measured by the Oberst method.
2017-06-05
Technical Paper
2017-01-1852
Satyajeet P. Deshpande, Pranab Saha, Kerry Cone
Abstract Most of NVH related issues start from the vibration of structures where often the vibration near resonance frequencies radiates the energy in terms of sound. This phenomenon is more problematic at lower frequencies by structureborne excitation from powertrain or related components. This paper discusses a laboratory based case study where different visco-elastic materials were evaluated on a bench study and then carried on to a system level evaluation. A body panel with a glazing system was used to study both airborne and structureborne noise radiation. System level studies were carried out using experimental modal analysis to shift and tune the mode shapes of the structure using visco-elastic materials with appropriate damping properties to increase the sound transmission loss. This paper discusses the findings of the study where the mode shapes of the panel were shifted and resulted in an increase in sound transmission loss.
2017-06-05
Technical Paper
2017-01-1851
Taewook Yoo, Ronald W. Gerdes, Seungkyu Lee, Daniel Stanley, Thomas Herdtle, Georg Eichhorn
Abstract Several methods for evaluating damping material performance are commonly used, such as Oberst beam test, power injection method and the long bar test. Among these test methods, the Oberst beam test method has been widely used in the automotive industry and elsewhere as a standard method, allowing for slight bar dimension differences. However, questions have arisen as to whether Oberst test results reflect real applications. Therefore, the long bar test method has been introduced and used in the aerospace industry for some time. In addition to the larger size bar in the long bar test, there are a few differences between Oberst (cantilever) and long bar test (center-driven) methods. In this paper, the differences between Oberst and long bar test methods were explored both experimentally and numerically using finite element analysis plus an analytical method. Furthermore, guidelines for a long bar test method are provided.
2017-06-05
Technical Paper
2017-01-1857
Joshua R. Goossens, William Mars, Guy Smith, Paul Heil, Scott Braddock, Jeanette Pilarski
Abstract Fatigue life prediction of elastomer NVH suspension products has become an operating norm for OEMs and suppliers during the product quoting process and subsequent technical reviews. This paper reviews a critical plane analysis based fatigue simulation methodology for a front lower control arm. Filled natural rubber behaviors were measured and defined for the analysis, including: stress-strain, fatigue crack growth, strain crystallization, fatigue threshold and initial crack precursor size. A series of four distinct single and dual axis bench durability tests were derived from OEM block cycle specifications, and run to end-of-life as determined via a stiffness loss criterion. The tested parts were then sectioned in order to compare developed failure modes with predicted locations of crack initiation. In all cases, failure mode was accurately predicted by the simulation, and predicted fatigue life preceded actual end-of-life by not more than a factor of 1.4 in life.
2017-06-05
Technical Paper
2017-01-1883
Arnaud Duval, Guillaume Crignon, Mickael Goret, Maxime Roux
Abstract The lightweighting research on noise treatments since years tends to prove the efficiency of the combination of good insulation with steep insulation slopes with broadband absorption, even in the context of bad passthroughs management implying strong leakages. The real issue lies more in the industrial capacity to adapt the barrier mass per unit area to the acoustic target from low to high segment or from low petrol to high diesel sources, while remaining easy to manipulate. The hybrid stiff insulator family can realize this easily with hard felts barriers backfoamed weighting from 800 g/m2 to 2000 g/m2 typically with compressions below 10 mm. Above these equivalent barrier weights and traditional compressions of 7 mm for example, the high density of the felts begins to destroy the open porosity and thus the absorption properties (insulation works anyway here, whenever vibration modes do not appear due to too high stiffness…).
2017-06-05
Technical Paper
2017-01-1882
Pravin P. Hujare, Anil D. Sahasrabudhe
Abstract The reduction of vibration and noise is a major requirement for performance of any vibratory system. Due to legislative pressures in terms of external pass by noise limit of vehicles and customer requirements for better noise and ride comfort in vehicle, NVH attribute has become an important parameter. Major sources for vehicle pass-by noise consist of powertrain, tire and wind. Damping treatment is important to reduce vibration and noise radiation. The passive constrained layer dampening (CLD) treatment can be used to reduce structure-borne noise of vibrating structure using viscoelastic damping material. The performance of the passive constrained layer damping treatment can further be enhanced by new segmentation technique. The concept of segmented CLD is based on edge effect. The efficiency of segmenting a constrained layer damping treatment relies on the fact that a high shear region is created in the viscoelastic layer.
2017-06-05
Technical Paper
2017-01-1881
Charles Moritz, Satyajeet Deshpande
Abstract As part of the update process to SAE J1637, Laboratory Measurement of the Composite Vibration Damping Properties of Materials on a Supporting Steel Bar, the Acoustical Materials Committee commissioned a round robin study to determine the current laboratory-to-laboratory variation, and to better understand best practices for composite loss factor measurements. Guidance within the current standard from a previous round robin study indicates a coefficient of variation of 35% for laboratory-to-laboratory measurements. It was hoped that current instrumentation and test practices would yield lower variability. Over the course of 2 years, 8 laboratories tested 4 bars, three damped steel bars and one bare steel bar. These bars were tested at -20°C, -5°C, 10°C, 25°C, 40°C, and 55°C. The damping materials were intentionally selected to provide low damping, moderate damping, and high damping as difficulties in determining the composite loss increase with increased damping.
2017-06-05
Technical Paper
2017-01-1879
Pranab Saha
Abstract Traditionally, the damping performance of a visco-elastic material is measured using the Oberst bar damping test, where a steel bar is excited using a non-contacting transducer. However, in an effort to reduce the weight of the vehicles, serious effort is put in to change the body panels from steel to aluminum and composite panels in many cases. These panels cannot be excited using a non-contacting transducer, although, in some cases, a very thin steel panel (shim) is glued to the vibrating bar to introduce ferrous properties to the bar so it can be excited. In the off highway vehicles, although the panels are made of steel, they are very thick and are difficult to excite using the Oberst bar test method. This paper discusses a measurement methodology based on mechanical impedance measurements and has the potential to be a viable/alternate test method to the Oberst bar testing. In the impedance method, the test bar is mounted to a shaker at the center (Center Point method).
2017-06-05
Technical Paper
2017-01-1878
Kevin Verdiere, Raymond Panneton, Noureddine Atalla, Saïd Elkoun
Abstract A poroelastic characterization of open-cell porous materials using an impedance tube is proposed in this paper. Commonly, porous materials are modeled using Biot’s theory. However, this theory requires several parameters which can be difficult to obtain by different methods (direct, indirect or inverse measurements). The proposed method retrieves all the Biot’s parameters with one absorption measurement in an impedance tube for isotropic poroelastic materials following the Johnson-Champoux-Allard’s model (for the fluid phase). The sample is a cylinder bonded to the rigid termination of the tube with a diameter smaller than the tube’s one. In that case, a lateral air gap is voluntary induced to prevent lateral clamping. Using this setup, the absorption curve exhibits a characteristic elastic resonance (quarter wavelength resonance) and the repeatability is ensured by controlling boundary and mounting conditions.
2017-06-05
Technical Paper
2017-01-1877
Justin Gimbal, Joy Gallagher, John Reffner
Abstract Damping materials are applied to the vehicle body during production to provide passenger comfort by reducing noise and structural vibration through energy dissipation. Noise, Vibration, and Harshness (NVH) Engineers identify critical areas of the vehicle body for material placement. Damping materials, which include liquid applied dampers, are typically applied directly on the structure, covering large areas. These film forming materials can be spray applied using automation and, after baking, result in a cured viscoelastic damping layer on the target substrate. Typical liquid applied dampers contain an aqueous dispersion of film forming polymer which functions to bind inorganic materials together in the coating and provide a composite structure that dissipates energy. Representative damping coatings were prepared from dispersions of polymers with varying viscoelastic properties and chemical compositions.
2017-06-05
Technical Paper
2017-01-1895
Troy Bouman, Andrew Barnard, Joshua Alexander
Abstract Compared to moving coil loudspeakers, carbon nanotube (CNT) loudspeakers are extremely lightweight and are capable of creating sound over a broad frequency range (1 Hz to 100 kHz). The thermoacoustic effect that allows for this non-vibrating sound source is naturally inefficient and nonlinear. Signal processing techniques are one option that may help counteract these concerns. Previous studies have evaluated a hybrid efficiency metric, the ratio of the sound pressure level at a single point to the input electrical power. True efficiency is the ratio of output acoustic power to the input electrical power. True efficiency data are presented for two new drive signal processing techniques borrowed from the hearing aid industry. Spectral envelope decimation of an AC signal operates in the frequency domain (FCAC) and dynamic linear frequency compression of an AC signal operates in the time domain (TCAC). Each type of processing affects the true efficiency differently.
2017-06-05
Technical Paper
2017-01-1884
Ruimeng Wu, David W. Herrin
Abstract Sound absorbing materials are commonly compressed when installed in passenger compartments or underhood applications altering the sound absorption performance of the material. However, most prior work has focused on uncompressed materials and only a few models based on poroelastic properties are available for compressed materials. Empirical models based on flow resistivity are commonly used to characterize the complex wavenumber and characteristic impedance of uncompressed sound absorbing materials from which the sound absorption can be determined. In this work, the sound absorption is measured for both uncompressed and compressed samples of fiber and foam, and the flow resistivity is curve fit using an appropriate empirical model. Following this, the flow resistivity of the material is determined as a function of the compression ratio.
2017-06-05
Technical Paper
2017-01-1885
Kunhee Lee, Sang Kwon Lee, Taejin Shin, Keun Young Kim
Abstract This paper presents a novel method predicting the variation of sound quality of interior noise depending on the change of the proprieties of absorption materials. At the first, the model predicting the interior noise corresponding to the change of the absorption material in engine room is proposed. Secondly the index to estimate the sound quality of the predicted sound is developed. Thirdly the experimental work has been conducted with seven different materials and validated the newly developed index. Finally, this index is applied for the optimization of absorption material to improve the sound quality of interior noise in a passenger car.
2017-06-05
Technical Paper
2017-01-1886
Siwen Zhang, Jian Pang, Jun Zhang, Zhuangzhuang Ma, Xiaoxuan Zhang, Congguang Liu, Lihui Deng
Abstract A subjective evaluation method for the air-borne sound insulation of vehicle body in reverberation room is developed and the correlation between the subjective preference and objective noise reduction level (NRL) is investigated in this paper. The stationary vehicle's interior noise is recorded by using a digital artificial head under a given white noise excitation in the reverberation room, which demonstrates more credible than those in traditional road test methods. The recorded noises of six different vehicles are replayed and evaluated subjectively by 22 appraisers in a sound quality room. The paired comparison scoring method is employed and the check and statistic methods for the subjective scores are introduced. The subjective preference is introduced and calculated by the statistics and normalization of the effective scores, which can indicate an overall preference ranking of all the six vehicles numerically.
2017-06-05
Journal Article
2017-01-1816
Mahsa Asgarisabet, Andrew Barnard
Abstract Carbon Nanotube (CNT) thin film speakers produce sound with the thermoacoustic effect. Alternating current passes through the low heat capacity CNT thin film changing the surface temperature rapidly. CNT thin film does not vibrate; instead it heats and cools the air adjacent to the film, creating sound pressure waves. These speakers are inexpensive, transparent, stretchable, flexible, magnet-free, and lightweight. Because of their novelty, developing a model and better understanding the performance of CNT speakers is useful in technology development in applications that require ultra-lightweight sub-systems. The automotive industry is a prime example of where these speakers can be enabling technology for innovative new component design. Developing a multi-physics (Electrical-Thermal-Acoustical) FEA model, for planar CNT speakers is studied in this paper. The temperature variation on the CNT thin film is obtained by applying alternating electrical current to the CNT film.
2017-04-11
Journal Article
2017-01-9177
N. Obuli Karthikeyan, R. Dinesh Kumar, V. Srinivasa Chandra, Vela Murali
Abstract In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
2017-04-11
Journal Article
2017-01-9452
Wenfeng Zhu, Chunyu LI, Yao Zhong, Peijian Lin
Abstract Automotive window seal has great influence on NVH (Noise-Vibration-Harshness) performance. The aerodynamic effect on ride comfort has attracted increasing research interest recently. A new method for quantifying and transferring aerodynamics-induced load on window seal re-design is proposed. Firstly, by SST (Shear Stress Transport) turbulence model, external turbulent flow field of full scale automotive is established by solving three-dimensional, steady and uncompressible Navier-Stokes equation. With re-exploited mapping algorithm, the aerodynamics pressure on overall auto-body is retrieved and transferred to local glass area to be external loads for seals, thus taking into account the aerodynamics effect of high speed fluid-structure interaction. This method is successfully applied on automotive front window seal design. The re-design header seal decreases the maximum displacements of leeward and windward glass with 9.3% and 34.21%, respectively.
2017-04-11
Journal Article
2017-01-9451
Marouen Hamdi, Drew Manica, Hung-Jue Sue
Abstract Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
2017-03-28
Technical Paper
2017-01-1264
Gregory L. Talbert, Edward John Vinarcik
Abstract 6061-O temper extruded rod may be used as feed stock in forming processes for automotive pressure vessel applications. Key parameters for forming are the strength and hardness of the material. The purpose of this paper was to reduce variation in hardness to achieve a process capability index of 1.33 or greater. Among the process steps affecting hardness, annealing is the most critical. Initially, the process showed unacceptable hardness variation. Initial anneal recipes called for a 4-hour soak at 775°F (413°C). Initial process capability for hardness was a Cpk of 1.12, with tensile strength readings very close to the upper specification limit. Initial temperature uniformity surveys of the anneal oven showed a large variation in temperature distribution, with some areas of the oven staying below 650°F (343°C). Initial improvement efforts focused on soak time.
2017-03-28
Technical Paper
2017-01-1300
Raj Jayachandran, Bhimaraddi Alavandi, Matt Niesluchowski, Erika Low, Yafang Miao, Yi Zhang
Abstract An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler and oil coolers along with engine cooling fan. Typical automotive engine-cooling fan assembly includes an electric motor mounted on a shroud that encloses the radiator core. One of main drivers of fan shroud design is Noise, Vibration, and Harshness (NVH) requirements without compromising the main function of airflow for cooling requirements. In addition, there is also a minimum stiffness requirement of fan shroud which is often overlooked in arriving at optimal design of it. Low Speed Damageability (LSD) assessment of an automotive vehicle is about minimizing the cost of repair of vehicle damages in low speed crashes. In low speed accidents, these fan motors are subjected to sudden decelerations which cause fan motors to swing forward thereby damaging the radiator core. So designing fan shroud for low speed damageability is of importance today.
2017-03-28
Technical Paper
2017-01-1190
Patrick Maguire, Hyung Baek, Stephen Liptak, Olivia Lomax, Rodolfo Palma, Yi Zhang
Abstract As electrified powertrains proliferate through original equipment manufacturer vehicle offerings, the focus on system cost and weight reduction intensifies. This paper describes the development and evaluation of a High Voltage (HV) battery system enclosure molded from High Density Polyethylene (HDPE) to deliver substantial cost and weight opportunities. While previous HV battery system enclosure alternatives to steel and aluminum focus on thermoset composites and glass filled polypropylene, this solution leverages select HDPE design techniques established for fuel tanks and applies them to an HV battery system. The result is a tough, energy absorbing structure, capable of hermetic sealing, which simplifies manufacturing by eliminating nearly all fasteners.
2017-03-28
Technical Paper
2017-01-1230
Cyrille Goldstein, Joel Hetrick
Abstract Mechanical losses in electric machines can contribute significantly to overall system losses in an electric drive [1]. With a permanent magnet synchronous machine (PMSM), measuring mechanical losses is difficult without an un-magnetized rotor. Even with an un-magnetized rotor, physical testing can be time consuming and expensive. This paper presents a simple theoretical model of mechanical drag in an electric machine. The model was built using calculations for bearing, seal, and windage drag and was compared to experimental results from testing with un-magnetized motors. Based on this information, the model was modified to better represent the physical system. The goal of this work is to understand the contributors to mechanical drag, to be able to estimate mechanical losses without physical testing, and to be able to quickly evaluate design choices that could reduce mechanical losses.
2017-03-28
Technical Paper
2017-01-1220
Ahmad Arshan Khan
Abstract In an interior permanent magnet machine, magnet temperature plays a critical role in determining optimal current control trajectory. Monitoring magnet temperature is a challenging task. In lab and various specialized applications, infrared sensors or thermocouples are used to measure the temperature. But it adds cost, maintenance issues and their integration to electric machine drives could be complicated. To tackle issues due to sensor based methods, various sensorless model based approaches are proposed in the literature recently such as flux observer, high-frequency signal injection, and thermal models, etc. Although magnet temperature monitoring received a lot of attention of researchers, very few papers give a detailed overview of the effects of magnet temperature on motor control from a controls perspective. This paper discusses the impact of magnet temperature variation on Maximum Torque per Ampere control and Flux Weakening Control trajectory.
Viewing 1 to 30 of 804