Criteria

Text:
Topic:
Display:

Results

Viewing 121 to 150 of 184
2017-03-28
Technical Paper
2017-01-0387
Deepak Anand Subramanian, Shanmugam Mathaiya, V Srinivasa Chandra
Abstract In today’s commercial vehicle scenario, designing and developing a component which will never fail throughout its lifespan is next to impossible. For a long time especially in the field of automotive, any crack initiation shall deem the component as failed and the design requires further modification. This paper deals with studying the failure of one such component and understanding the effect the crack has on the overall life of the component i.e. understanding the remnant life of the component. The component under study was gear shift lever bracket and is mounted on the engine exhaust manifold. It experiences two types of loads: inertial load due to the engine vibration and gear shift load. Frequent failures were observed in the field and in order to simulate it at lab, an accelerated test approach was adopted. The engine operating speed was used to identify the possible excitation frequency which the component might experience.
2017-03-28
Technical Paper
2017-01-0489
Hyunkwon Jo, Jongsoo Kim, Jaemin Park, Heeseung Yang, Hyunmin Park
Abstract Cost reduction is an important issue in the intense competition automotive industry. Interior parts which are mainly consist of plastic have same issue. The manufacturing main processes of plastic products are injection and assemble and the cost of injection depends on injection cycle time. Therefore many studies for the reduction of injection cycle time have been implemented. However the researches based on engineer's experiences have limits so, nowadays many studies utilize CAE. In this paper, the study for the reduction of cycle time focused on injection molding design. To satisfy appearance quality with the reduction of cycle time, the design of injection molding was optimized by using CAE. The result of CAE showed many causes and effects of problems. The optimization of injection molding design improved the quality with the reduction of cycle time. Finally, the product based on CAE showed good quality and cycle time reduction in comparison with previous products.
2017-03-28
Technical Paper
2017-01-0490
Rodrigo Polkowski, Alper Kiziltas, Marcelo Ueki
Abstract In recent years, a special attention has been given to the environment protection, as evidenced by an increased commitment of governments and industries for a better use of energy and for reducing the levels of vehicle emissions (CO2). The use of renewable and bio-based plastics in the automotive sector is being considered as alternative solution to the conventional petroleum-based polymeric materials. In the present work, biobased polymer blends were formulated using two polyamides made from biorenewable resources. Polyamide 10,10 (PA1010) and polyamide 6,10 (PA610) were melt mixed in different compositions and the mechanical properties of the blends were investigated by tensile evaluations. The mechanical properties of the blends show intermediate values compared to the pure polymers. Significant improvements on these properties could be observed with the incorporation of PA610 in the blends.
2017-03-28
Technical Paper
2017-01-0481
Xian Jun Sun, Patricia Tibbenham, Jin Zhou, Danielle Zeng, Shiyao Huang, Li Lu, Xuming Su
Abstract Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C).
2017-03-28
Technical Paper
2017-01-0482
Cristiano Grings Herbert, Luiz Rogério De Andrade Lima, Cristiane Gonçalves
Abstract Phthalates have been extensively used in rubbers formulation as plasticizer additive for PVC and NBR promoting processing parameters or for cost reduction. The most commonly used plasticizer in PVC compounds was di-2-ethylhexyl phthalate (DEHP) currently not recommend due toxicity. DEHP is listed as prohibited to the Global Automotive Declarable Substance List (GADSL). Phthalates alternatives are already available but the compatibility in automotive fuel system with biodiesel was not extensively understood. This aspect is important since plasticizer may migrate and change rubber properties. Tri-2-ethylhexyl trimellitate (TOTM) and di-2-ethylhexyl terephthalate (DEHT) were selected in this work as alternative additives to a rubber formulation since is not listed to GADSL and have good potential as plasticizer.
2017-03-28
Technical Paper
2017-01-0476
Seiji Furusako, Masatoshi Tokunaga, Masanori Yasuyama
Abstract To reduce the weight of automobile bodies, application of high-strength steel sheets is expanding. Furthermore, middle and high carbon steels are expected to be used to lower the environmental impact and cost in the automobile steel sheet industry. However, it is necessary to enhance the joint strength of the steel sheets. In this study, hat-shaped components were made using resistance spot (RS) welding or arc spot (AS) welding on S45C steel sheets (including 0.44% carbon), 1.4 mm thickness and strength of 1180 MPa grade. A dynamic three-point bending test was conducted on the components and their crashworthiness was compared. Some RS welds fractured (separated) during the three-point bending test even though the diameter of the weld metal was increased to 5√t (t means thickness of the sheet); however, AS welds did not fracture.
2017-03-28
Technical Paper
2017-01-0472
Gyoko Oh
Abstract To prevent corrosion of the inlet part with aqueous ammonia injection, high chromium corrosion-resistant materials have been applied for welded joints of mufflers. Bending fatigue strength of welded joint samples of flange pipes was defined through fatigue experiments, modeling that high fluctuating stresses exist in the inlet and outlet flange pipes of a muffler caused by the vibration of a moving vehicle. Factors that caused fatigue to failure such as welding bead shape and metallographic structure were identified through local stress measurements, FEM stress simulations, microscopic observations, and SEM-EDS composition analyses. By comparing with sample A having a smaller flank angle and sample B having a larger flank angle, the results suggested that the difference of bending fatigue strengths at 200,000 cycles was 24% when based on nominal stress, and the difference was 10% when based on measured maximum stress.
2017-03-28
Technical Paper
2017-01-0473
Satoshi Nakada, Toru Furusawa, Eiichiro Yokoi, R Carbas, M Costa, E Marques, G Viana, LFM da Silva
Abstract In recent years, adhesive bonding is increasingly being applied in the construction of vehicle frames in order to improve body stiffness and crash performance. Regarding crash performance, the behavior of impacted components is affected by the fracture energy value of the adhesive. However, the relationship between the ductility and fracture energy values under mixed-mode loadings has not been sufficiently evaluated. In this paper, the fracture energy of three structural adhesives in a static mixed-mode loading using Double Cantilever Beam (DCB) specimens is presented. To derive the fracture energy values, the Compliance Based Beam Method (CBBM) was used, which allowed for precise determination of fracture energy values. Static mixed-mode loading tests were performed in six configurations of mixed-mode loading, ranging from pure peel mode state to almost pure shear mode state.
2017-03-28
Technical Paper
2017-01-0506
Xueyuan Nie, Jimi Tjong
Abstract Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
2017-03-28
Technical Paper
2017-01-0508
Gabor Kiss, Yuya Ando, Martin Schifko
Abstract Simulation tools are becoming more and more popular in the automotive industry since they can significantly reduce the costs required for development of new models. Currently there are many computational fluid dynamics (CFD) tools available on the market and becoming indispensable tools for R&D in many of the automotive applications. However there are some applications which require much effort by highly skilled engineers to prepare the model and impractical level of computation time even using a cluster computer using the conventional CFD tools due to the nature of physics and complexity of a geometry such like dip painting process. Therefore, corrosion protection engineers are striving to find an alternative solution. Another issue is that the main focus of those available CFD tools are problems occurring during the dip paint simulations and they omit problems occurring after the object dips out from the bath, such as retained water or bake drips.
2017-03-28
Technical Paper
2017-01-0502
Mingde Ding, Jiancai Liu, Jianbo Su, Zhong Su, Bo Liu, Ligang Wang
Abstract Now weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to reduce emission. Various lightweight technologies have been used to vehicles. Because of its heavy weight and complex shape, IP carrier tends to be integration and weight intensive. Therefore lightweight is necessary for IP carrier. This paper lists the fourth lightweight technologies used for IP carrier by now, which are Magnesium alloy part, Aluminum alloy part, Hybrid composite part, Composite material injection part. For magnesium alloy part and aluminum alloy part, they have been mass produced for some years. The hybrid composite part has been researched for some years. Recently, the injection composite part has been researched and some parts have been developed and tested. By outlining the design, manufacturing, weight reduction and cost of these lightweight technologies, this paper fully analyzed these used technologies.
2017-03-28
Technical Paper
2017-01-0503
Ahmad Waqar Tehami, Kamran Asim, Shahzad Sarwar
Abstract Fiber reinforced laminated materials are becoming popular in applications involving protection against impact loading. Laminates offer many advantages over metal plates in these applications. Laminates are normally non-ricochet, thus offering greater protection against projectiles. Laminates are also lighter in weight and less expensive as compared to the metal panels. In this study, laminated materials were fabricated from two different types of fibers which included short fibers and random fibers. Epoxy and polyester were used as the resin materials in the production of different types of laminates. Test samples were tested according to the available standards to investigate the impact toughness and ballistic resistance of these laminates. Experimental results showed that random fibers and polyester resin absorbed more energy as compared to short fibers and epoxy resin, respectively.
2017-03-28
Technical Paper
2017-01-0504
Anthony Berejka, Dan Montoney, Dan Dispenza, Len Poveromo, Rick Galloway, Mark Driscoll, Marshall Cleland
Abstract Having demonstrated the feasibility of using X-rays derived from high current industrial electron beam accelerators (EB) to cure the matrices of carbon fiber composites and then scaled this up to cure large sized, non-structural automobile components, performance car hoods, the New York State Vehicle Composites Program had a chassis designed, a cured epoxy mold made and then the chassis matrix cured using X-rays with a formulated radiation responsive matrix material. A feasibility study had shown how X-rays could cure through materials embedded within the composite layers, such as metal inserts that could be used for mechanical fastening without fracturing the composite. In producing X-ray cured hoods, the power consumption for X-ray curing was found to be more than 20% lower than that needed for autoclave curing the same sized hoods using conventional thermosetting pre-pregs. More significant was the time-to-cure.
2017-03-28
Technical Paper
2017-01-0499
Mingde Ding, Jiancai Liu PhD, Jianbo Su Sr, Zhiyuan He Sr, Benhong Tan Sr, Ligang Wang
Abstract Because of their high specific stiffness and strength, composite materials have been used in the structural of vehicles to provide a competitive advantage of through weight reduction while maintaining or even increasing functionality. Composite materials have been used for IP carrier which forms the skeleton of the cockpit and provides the base architecture off of which IP components are attached and function. Specially, composite materials using injection molding process have been used to develop IP carrier recently, due to high level of styling flexibility by that can achieve high degree integration and simplicity of process. However, for injection part especially for large part would deform largely. Consequently, deformation controlling is very important for large composite part that used injection molding. In this study mold flow analysis was conducted on the composite IP carrier structure which gets from the topology optimization result.
2017-03-28
Technical Paper
2017-01-0286
Amrinder Singh, Abhishek Ramakrishnan, Guru Dinda
Abstract Additive manufacturing (AM) of metals is finding numerous applications in automotive industry. In 21st century, aluminum is second to steel in automotive sector, because of its high strength to weight ratio. Hence developing AM for aluminum alloys become necessary to make sure industry gains maximum benefit from AM. This study specifically deals with the manufacturing of Al 7050 alloy, which is quite hardest alloy to manufacture using AM. The ultimate goal is to optimize the laser deposition parameters to deposit defect free Al 7050 alloy on rolled aluminum alloy substrate. Parameter optimization (laser power, powder flow rate, and scanning speed) gets difficult with the presence of various low melting and boiling point alloying elements such as Zn, Mg etc. Numerous other challenges faced while depositing Al 7050 alloy, are also briefly discussed in this article.
2017-03-28
Technical Paper
2017-01-0283
Mohammad K. Alam, Navid Nazemi, Ruth Jill Urbanic, Syed Saqib, Afsaneh Edrisy
Abstract Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
2017-03-28
Technical Paper
2017-01-0285
Navid Nazemi, Mohammad K. Alam, Ruth Jill Urbanic, Syed Saqib, Afsaneh Edrisy
Abstract Laser cladding is used to coat a surface of a metal to enhance the metallurgical properties at the surface level of a substrate. For surface cladding operations, overlapping bead geometry is required. Single bead analyses do not provide a complete representation of essential properties; hence, this research focuses on overlapping conditions. The research scope targets the coaxial laser cladding process specifically for P420 stainless steel clad powder using a fiber optic laser with a 4.3 mm spot size on a low/medium carbon structural steel plate (AISI 1018). Many process parameters influence the bead geometrical shape, and it is assumed that the complex temperature distributions within the process could cause subsequent large variations in hardness values. The bead overlap configurations experiments are performed with 40%, 50% and 60% bead overlaps for a three-pass bead formation.
2017-03-28
Technical Paper
2017-01-0254
Sudeep Chavare, Kevin Thomson, Nitin Sharma
Abstract Use of parametric approach to optimize CAE models for various objectives is a common practice these days. In addition to load members, the connection entities such as welds and adhesives play an important role in overall performance matrix. Hence adding the connection entities to the pool of design variables during an optimization exercise provide additional opportunity for design exploration. The method presented in this paper offers a unique approach to parameterize adhesive lines by evaluating the possibility of using structural adhesives as intermittent patches rather than continuous lines. The paper discusses two optimization studies 1) structural adhesive patches along with spot weld pitch as design variables, and 2) structural adhesive patches with gage variables. These studies include the Body in White (BiW) and Trimmed Body in White (TBiW) assessments.
2017-03-28
Technical Paper
2017-01-0184
Miyoko Oiwake, Ozeki Yoshiichi, Sogo Obata, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components for hybrid electric vehicles, understanding the effect of their structure and thermal performance on their fuel consumption and cruising distance is essential. However, this essential information is generally not available to suppliers of vehicle parts and components. In this report, following a previous study of electric vehicles, a simple method is proposed as the first step to estimate the algorithm of the energy transmission and then the cruising performance for hybrid electric vehicles. The proposed method estimates the cruising performance using only the published information given to suppliers, who, in general, are not supplied with more detailed information. Further, an actual case study demonstrating application of the proposed method is also discussed.
2017-03-28
Technical Paper
2017-01-0125
Marco Pizzi, Mauro Zorzetto, Alberto Barbano, Piercarlo Merlano, Luca Vercellotti
Abstract The emission reduction in gasoline and diesel engines is driving the introduction of systems implementing additives in liquid form: in particular water for injection systems in gasoline engines and urea solutions (AD-blue) in SCR (Selective Catalytic Reduction) systems in diesel engines. Owing to water and AD-Blue can freeze in the car operative temperature range, the tanks must be equipped with heaters to guarantee a sufficient amount of additives in liquid form. Currently used technologies are ceramic PTC (Positive Temperature Coefficient) elements and distributed metal resistors. Ceramic PTC based heaters concentrate all the power in small volumes. They need thermally conductive elements distributing the power over a wide area. The assembly is complex and the cost of the metal parts and related packaging technologies used to insulate the heater from the environment (water or urea) is typically high. Metal resistors are cheaper but must be controlled in current.
2017-03-28
Technical Paper
2017-01-0224
Zhangxing Chen, Yi Li, Yimin Shao, Tianyu Huang, Hongyi Xu, Yang Li, Wei Chen, Danielle Zeng, Katherine Avery, HongTae Kang, Xuming Su
Abstract To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
2017-03-28
Technical Paper
2017-01-0227
Omar Al-Shebeeb, Bhaskaran Gopalakrishnan
Abstract Process planning, whether generative or variant, can be used effectively as through the incorporation of computer aided tools that enhance the evaluator impact of the dialogue between the design and manufacturing functions. Expert systems and algorithms are inherently incorporated into the software tools used herein. This paper examines the materials related implications that influence design for manufacturing issues. Generative process planning software tools are utilized to analyze the sensitivity of the effectiveness of the process plans with respect to changing attributes of material properties. The shift that occurs with respect to cost and production rates of process plans with respect to variations in specific material properties are explored. The research will be analyzing the effect of changes in material properties with respect to the design of a specific product that is prismatic and is produced exclusively by machining processes.
2017-03-28
Technical Paper
2017-01-0226
Vesna Savic, Louis Hector, Ushnish Basu, Anirban Basudhar, Imtiaz Gandikota, Nielen Stander, Taejoon Park, Farhang Pourboghrat, Kyoo Sil Choi, Xin Sun, Jun Hu, Fadi Abu-Farha, Sharvan Kumar
Abstract This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
2017-03-28
Technical Paper
2017-01-0448
Prakash T. Thawani, Stephen Sinadinos, John Zvonek
Abstract With the advent of EVs/HEVs and implementation of Idle-Stop-Start (ISS) technologies on internal combustion engine (ICE) driven cars/trucks to improve fuel economy and reduce pollution, refrigerant sub-system (RSS) induced noise phenomena like, hissing, gurgling and tones become readily audible and can result in customer complaints and concerns. One of the key components that induce these noise phenomena is the Thermostatic Expansion Valve (TXV). The TXV throttles compressed liquid refrigerant through the evaporator that results in air-conditioning (A/C) or thermal system comfort for occupants and dehumidification for safety, when needed. Under certain operating conditions, the flow of gas and/or liquid/gas refrigerant at high pressure and velocity excites audible acoustical and structural modes inherent in the tubing/evaporator/HVAC case. These modes may often get masked and sometimes enhanced by the engine harmonics and blower noise.
2017-03-28
Technical Paper
2017-01-0396
Guobiao Yang, Changqing Du, Dajun Zhou, Hao Wang, Elizabeth Lekarczyk, Lianxiang Yang
Abstract Vehicle weight reduction is a significant challenge for the modern automotive industry. In recent years, the amount of vehicular components constructed from aluminum alloy has increased due to its light weighting capabilities. Automotive manufacturing processes, predominantly those utilizing various stamping applications, require a thorough understanding of aluminum fracture predictions methods, in order to accurately simulate the process using Finite Element Method (FEM) software or use it in automotive engineering manufacture. This paper presents the strain distribution of A5182 aluminum samples after punch impact under various conditions by Digital Image Correlation (DIC) system, its software also measured the complete strain history, in addition to sample curvature after it was impacted; therefore obtaining the data required to determine the amount of side-wall-curl (Aluminum sheet springback) present after formation.
2017-03-28
Technical Paper
2017-01-0394
Junrui Li, Ruiyan Yang, Zhen Li, Changqing Du, Dajun Zhou, Lianxiang Yang
Abstract Advanced high-strength steel (AHSS) is gaining popularity in the automotive industry due to its higher final part strength with the better formability compares to the conventional steel. However, the edge fracture occurs during the forming procedure for the pre-strained part. To avoid the edge fracture that happens during the manufacturing, the effect of pre-strain on edge cracking limit needs to be studied. In this paper, digital image correlation (DIC), as an accurate optical method, is adopted for the strain measurement to determining the edge cracking limit. Sets of the wide coupons are pre-strained to obtain the samples at different pre-strain level. The pre-strain of each sample is precisely measured during this procedure using DIC. After pre-straining, the half dog bone samples are cut from these wide coupons. The edge of the notch in the half dog bone samples is created by the punch with 10% clearance for the distinct edge condition.
2017-03-28
Technical Paper
2017-01-1666
David Weiss, Orlando Rios
Abstract Aluminum alloys containing cerium have excellent castability and retain a substantial fraction of their room temperature strength at temperatures of 200°C and above. High temperature strength is maintained through a thermodynamically trapped, high surface energy intermetallic. Dynamic load partitioning between the aluminum and the intermetallic increases mechanical response. Complex castings have been produced in both permanent mold and sand castings. This versatile alloy system, using an abundant and inexpensive co-product of rare earth mining, is suitable for parts that need to maintain good properties when exposed to temperatures between 200 and 315°C.
2017-03-28
Technical Paper
2017-01-1665
Qigui Wang, Peggy Jones, Yucong Wang, Dale Gerard
Abstract With the increasing use of aluminum shape castings in structural applications in automobiles, assurance of cast product integrity and performance has become critical in both design and manufacturing. In this paper, the latest understanding of the relationship between casting quality and mechanical properties of aluminum castings is summarized. Examples of newly developed technologies for alloy design, melting and melt treatment, casting and heat treatment processes in aluminum casting are reviewed. Robust design and development of high integrity aluminum castings through an Integrated Computational Materials Engineering (ICME) approach is also discussed.
2017-03-28
Technical Paper
2017-01-1663
Alan Druschitz, Christopher Williams, Erin Connelly, Bob Wood
Abstract Binder jetting of sand molds and cores for metal casting provides a scalable and efficient means of producing metal components with complex geometric features made possible only by Additive Manufacturing. Topology optimization software that can mathematically determine the optimum placement of material for a given set of design requirements has been available for quite some time. However, the optimized designs are often not manufacturable using standard metal casting processes due to undercuts, backdraft and other issues. With the advent of binder-based 3D printing technology, sand molds and cores can be produced to make these optimized designs as metal castings.
2017-03-28
Technical Paper
2017-01-1633
Eiji Kojima, Kazuhiko Kano, Hiroyuki Wado, Noriyuki Iwamori
Abstract In automotive applications, magnetic field sensors are widely used for detecting position and current. However, magnetic field sensors are required to be highly precise with good usability. To satisfy demand, we have developed a graphene Hall sensor that senses magnetic fields by the Hall effect. The sensitivity of a Hall sensor is proportional to the carrier mobility, and graphene has an extremely high carrier mobility compared with conventional materials like Si, GaAs and InSb. Thus, graphene Hall sensors are expected to give high sensitivity that will enable sensing of the Earth’s magnetic field. In addition, graphene has a low temperature dependence on carrier mobility due to its ballistic transport, so good usability in actual use is also anticipated. In this paper, we demonstrate a graphene Hall sensor made using conventional Si process technology.
Viewing 121 to 150 of 184