Criteria

Text:
Topic:
Display:

Results

Viewing 91 to 120 of 15907
2017-03-28
Technical Paper
2017-01-1304
Alejandro Rosas Vazquez, Fernando Paisano, Diego Santillan Gutierrez
Abstract For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
2017-03-28
Technical Paper
2017-01-1303
Nobuhisa Yasuda, Shinichi Nishizawa, Maiko Ikeda, Tadashi Sakai
Abstract The purpose of this study is to validate a reverse engineering based design method for automotive trunk lid torsion bars (TLTB) in order to determine a free, or unloaded, shape that meets a target closed shape as well as a specified torque. A TLTB is a trunk lid component that uses torsional restoring force to facilitate the lifting open of a trunk lid, as well as to maintain the open position. Bend points and torque of a TLTB at a closed trunk position are specified by a car maker. Conventionally, a TLTB supplier determines bend points of the free shape by rotating the given bend points from a closed position around a certain axis to satisfy the specified torque at the closed position. Bend points of a deformed TLTB shape in the closed position often do not match the target bend points given by a car maker when designed by the conventional method, which can potentially cause interference issues with surrounding components.
2017-03-28
Technical Paper
2017-01-1301
Deepak A. Patil, Hrishikesh Buddhe
Abstract Frontal collisions account for majority of car accidents. Various measures have been taken by the automotive OEMs’ with regards to passive safety. Honeycomb meso-structural inserts in the front bumper have been suggested to enhance the energy absorption of the front structure which is favorable for passive safety. This paper presents the changes in energy absorption capacity of hexagonal honeycomb structures with varying cellular geometries; under frontal impact simulations. Honeycomb cellular metamaterial structure offers many distinct advantages over homogenous materials since their effective material properties depend on both, their constituent material properties and their cell geometric configurations. The effective static mechanical properties such as; the modulus of elasticity, modulus of rigidity and Poisson’s ratio of the honeycomb cellular meso-structures are controlled by variations in their cellular geometry.
2017-03-28
Technical Paper
2017-01-1308
Abhishek Softa, Anuj Shami, Rajdeep Singh Khurana
Abstract The fuel efficiency of a vehicle depends on multiple factors such as engine efficiency, type of fuel, aerodynamic drag, and tire friction and vehicle weight. Analysis of weight and functionality was done, to develop a lightweight and low-cost Roof rack rail. The Roof rack rail is made up of a lightweight material with thin cross section and has the design that allows the fitment of luggage carrier or luggage rack on the car roof. In starting this paper describes the design and weight contribution by standard Roof rack rail and its related parts. Secondly, the selection of material within different proposed options studied and a comparison of manufacturing and design-related factors. Thirdly, it has a description of the design of Roof rack rail to accommodate the luggage carrier fitment on the car roof. Moreover, optimizations of Roof rack rail design by continuous change in position, shape, and parts used.
2017-03-28
Technical Paper
2017-01-1309
S. M. Akbar Berry, Hoda ElMaraghy, Johnathan Line, Marc Kondrad
Abstract Modularity in product architecture and its significance in product development have become an important product design topics in the last few decades. Several Product Modularity definitions and methodologies were developed by many researchers; however, most of the definitions and concepts have proliferated to the extent that it is difficult to apply one universal definition for modular product architecture and in product development. Automotive seat modular strategy and key factors for consideration towards modular seat design and assemblies are the main focus of this work. The primary objectives are focused on the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
2017-03-28
Technical Paper
2017-01-1234
Srikanthan Sridharan, Joseph Kimmel, Jun Kikuchi
Abstract Dc-link capacitor sizing considerations are discussed for HEV/EV e-Drive systems. The capacitance value of the dc-link in HEV/EV e-Drive systems affects numerous factors. Some of the most significant are the system stability and the maximum tolerable dc-bus transient voltage with operating point change or with worst-case energy dump into the capacitor. Also requiring attention is the equivalent series resistance and inductance of the capacitor module. The former affects thermal behavior of the capacitor module and the latter affects voltage spikes occurring at every turn-off of a power semiconductor switch. In addition, these factors are dependent on other power-stage component parameters, control structures and controller gains. Also such effects and cross-couplings are operating-point dependent.
2017-03-28
Technical Paper
2017-01-0174
Ravi Rungta, Noori Pandit
Abstract A simple and rapid immersion type corrosion test has been successfully developed that discriminates corrosion performance in condensers from various suppliers and with differing manufacturing processes. The goal is to develop a test specification that will be included in the Ford corrosion specification for condensers so that condensers received from various suppliers may be evaluated rapidly for their relative corrosion performance to each other. Sections from condensers from Supplier A (tube is silfluxed), Supplier B (tube is zinc arc sprayed), and Supplier C (bare folded tube with no zinc for corrosion protection) were tested in 2% v/v hydrochloric acid for 16, 24 and 48 hours. The results showed that in terms of corrosion performance, zinc arc sprayed Supplier B condenser performed the worst while Supplier C condenser performed the best with Supplier A in between.
2017-03-28
Technical Paper
2017-01-0125
Marco Pizzi, Mauro Zorzetto, Alberto Barbano, Piercarlo Merlano, Luca Vercellotti
Abstract The emission reduction in gasoline and diesel engines is driving the introduction of systems implementing additives in liquid form: in particular water for injection systems in gasoline engines and urea solutions (AD-blue) in SCR (Selective Catalytic Reduction) systems in diesel engines. Owing to water and AD-Blue can freeze in the car operative temperature range, the tanks must be equipped with heaters to guarantee a sufficient amount of additives in liquid form. Currently used technologies are ceramic PTC (Positive Temperature Coefficient) elements and distributed metal resistors. Ceramic PTC based heaters concentrate all the power in small volumes. They need thermally conductive elements distributing the power over a wide area. The assembly is complex and the cost of the metal parts and related packaging technologies used to insulate the heater from the environment (water or urea) is typically high. Metal resistors are cheaper but must be controlled in current.
2017-03-28
Technical Paper
2017-01-0254
Sudeep Chavare, Kevin Thomson, Nitin Sharma
Abstract Use of parametric approach to optimize CAE models for various objectives is a common practice these days. In addition to load members, the connection entities such as welds and adhesives play an important role in overall performance matrix. Hence adding the connection entities to the pool of design variables during an optimization exercise provide additional opportunity for design exploration. The method presented in this paper offers a unique approach to parameterize adhesive lines by evaluating the possibility of using structural adhesives as intermittent patches rather than continuous lines. The paper discusses two optimization studies 1) structural adhesive patches along with spot weld pitch as design variables, and 2) structural adhesive patches with gage variables. These studies include the Body in White (BiW) and Trimmed Body in White (TBiW) assessments.
2017-03-28
Technical Paper
2017-01-0345
SungChul Cha, Seung-Hyun Hong, Shahriar Sharifimehr
Abstract Fatigue behavior of two types of automotive steel, quenched and tempered SUJ2 and carburized SCM820PRH, which are applied as powertrain parts are studied. These two types of steel are different in their hardness distribution from surface to core. The hardness of quenched and tempered SUJ2 is homogenous, in contrast to that of carburized SCM820PRH (SCM) which decreases from surface to core. These steels are investigated in terms of their monotonic tensile properties and fatigue behavior. A number of predictive methods were used to describe the fatigue behavior of these steels. A simple predictive method is based on approximation of S-N curve from ultimate tensile strength. The well-known Murakami’s defect area method was also applied for the prediction of the high cycle fatigue strength.
2017-03-28
Technical Paper
2017-01-0337
Kalyan S. Nadella, Yi Zhang
Abstract Ensuring durability is one of the key requirements while developing cooling modules for various powertrains. Typically, road surface induced loads are the main driving force behind mechanical failures. While developing the components, road load accelerations are utilized in CAE simulations to predict the high-stress regions and estimate the fatigue life of the components mounted on the body. In certain scenarios where components are mounted to the body and attached to the engine with hoses, the components can experience additional loads associated with engine vibration. This attachment scheme requires a different analysis methodology to determine fatigue life. In the proposed paper, we look at the effect of engine motion (EM) on the fatigue life of internal transmission oil cooler (ITOC) which is mounted on the body through radiator and is simultaneously connected to the engine using a steel pipe.
2017-03-28
Technical Paper
2017-01-0340
Li Lu, Jane Zhou, Ram Iyer, Jeffrey Webb, Derren Woods, Thomas Pietila
Abstract Injection molding tools are expensive and the fatigue failure during production would result in very costly rework on the tool and downtime. Currently, mold designs are mostly based on expert experience without a careful stress analysis and the mold tool life cycle relies largely on rough estimates. The industry state of the art applies averaged temperature change and peak pressure load on the mold tool. The static analysis is then performed. Mold temperature history and thermal shock are not considered in the durability analysis. In this paper, a transient thermal analysis of the tool is performed in conjunction with the injection molding process simulation. The spatial and temporal variation of temperature, pressure and clamping forces are exported from Moldflow simulation. These histories of temperature and pressure are converted to appropriate loading curves and mapped into Abaqus FEA model.
2017-03-28
Technical Paper
2017-01-0343
Xiao Wu, Zhigang Wei, HongTae Kang, Abolhassan Khosrovaneh
Abstract Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
2017-03-28
Technical Paper
2017-01-0472
Gyoko Oh
Abstract To prevent corrosion of the inlet part with aqueous ammonia injection, high chromium corrosion-resistant materials have been applied for welded joints of mufflers. Bending fatigue strength of welded joint samples of flange pipes was defined through fatigue experiments, modeling that high fluctuating stresses exist in the inlet and outlet flange pipes of a muffler caused by the vibration of a moving vehicle. Factors that caused fatigue to failure such as welding bead shape and metallographic structure were identified through local stress measurements, FEM stress simulations, microscopic observations, and SEM-EDS composition analyses. By comparing with sample A having a smaller flank angle and sample B having a larger flank angle, the results suggested that the difference of bending fatigue strengths at 200,000 cycles was 24% when based on nominal stress, and the difference was 10% when based on measured maximum stress.
2017-03-28
Technical Paper
2017-01-0453
Zane Yang
Considered in this study by the use of finite element model is a unit of assembled stator and one-way clutch (OWC) housed in a test setup, where the inner chamber is maintained at a given elevated temperature while its exterior housing surfaces are exposed to the room temperature. The two key components of dissimilar metals are assembled through the conventional interference fitting at their interface surfaces to form a friction joint at the room temperature. Due to the difference in the thermal expansion coefficients of two dissimilar materials, the outer component of aluminum from this joint tends to expand more than the inner component of steel when the temperature rises, thus leading to a possible relaxation in joining connection at their interface.
2017-03-28
Technical Paper
2017-01-0460
Erina Yasuda, Hiroki Kobayakawa, Seiji Amano, Yuto Otsuki, Tomohiro Ukai
Abstract The number of vehicles with engines using idling stop systems and hybrid systems to improve fuel consumption has recently been increasing. However, with such systems the frequent starts and stops of the engine, where the oil film between the bearings and shaft is squeezed out and direct contact between the components is more likely, can result in increased wear of the engine bearings, particularly in the main bearing. Bearings with resin overlays have been shown to display superior resistance to wear from such start-stop cycles. Moreover, cast iron shafts without quenching treatment have also been used in engines for cost reduction. Because the cast shaft has low hardness and unstable surface graphite after abrasive finishing, increase in the wear amount cannot be suppressed by conventional resin overlay in comparison with steel shaft. Therefore, the resin overlay with improved wear resistance achieved by adding hard particles was developed.
2017-03-28
Technical Paper
2017-01-1074
Xingfu Chen, Todd Brewer, Cagri Sever, Eben Prabhu, Reda Adimi, Carlos Engler-Pinto
Abstract Cylinder head design is a highly challenging task for modern engines, especially for the proliferation of boosted, gasoline direct injection engines (branded EcoBoost® engines by Ford Motor Company). The high power density of these engines results in higher cylinder firing pressures and higher operating temperatures throughout the engine. In addition to the high operating stresses, cylinder heads are normally heat treated to optimize their mechanical properties; residual stresses are generated during heat treatment, which can be detrimental for high-cycle fatigue performance. In this paper, a complete cylinder head high cycle fatigue CAE analysis procedure is demonstrated. First, the heat treatment process is simulated. The transient temperature histories during the quenching process are used to calculate the distribution of the residual stresses, followed by machining simulation, which results in a redistribution of stress.
2017-03-28
Technical Paper
2017-01-1248
Ming Su, Chingchi Chen, Krishna Prasad Bhat, Jun Kikuchi, Shrivatsal Sharma, Thomas Lei
Abstract Due to global trends and government regulations for CO2 emission reduction, the automotive industry is actively working toward vehicle electrification to improve fuel efficiency and minimize tail-pipe pollutions. Silicon IGBTs and power diodes used in today’s HEV inverter systems are mature and reliable components, but have their limitation on energy losses. SiC, on the other hand, has potential to offer additional boost of efficiency for the HEV drive system. In recent years, commercial SiC MOSFETs have improved significantly in performance. However, reliability concerns and high prices still limit their overall competitiveness against silicon. Ford Motor Company has partnered with semiconductor manufacturers to evaluate SiC products for automotive applications. In this study, 900V SiC MOSFET modules from Wolfspeed are tested and compared with an 800V silicon IGBT module of similar power handling capability.
2017-03-28
Technical Paper
2017-01-1665
Qigui Wang, Peggy Jones, Yucong Wang, Dale Gerard
Abstract With the increasing use of aluminum shape castings in structural applications in automobiles, assurance of cast product integrity and performance has become critical in both design and manufacturing. In this paper, the latest understanding of the relationship between casting quality and mechanical properties of aluminum castings is summarized. Examples of newly developed technologies for alloy design, melting and melt treatment, casting and heat treatment processes in aluminum casting are reviewed. Robust design and development of high integrity aluminum castings through an Integrated Computational Materials Engineering (ICME) approach is also discussed.
2017-03-28
Technical Paper
2017-01-0121
Zhijia Yang, Jesus PradoGonjal, Matthew Phillips, Song Lan, Anthony Powell, Paz Vaqueiro, Min Gao, Richard Stobart, Rui Chen
Abstract Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit.
2017-03-28
Technical Paper
2017-01-0173
Stephen Andersen, Sourav Chowdhury, Timothy Craig, Sangeet Kapoor, Jagvendra Meena, Prasanna Nagarhalli, Melinda Soffer, Lindsey Leitzel, James Baker
Abstract This paper quantifies and compares the cooling performance and refrigerant and fuel cost savings to automobile manufacturers and owners of secondary-loop mobile air conditioners (SL-MACs) using refrigerants hydrofluorocarbon (HFC)-134a and the available alternatives HFC-152a and HFO-1234yf. HFC-152a and HFO-1234yf are approved for use by the United States Environmental Protection Agency (US EPA) and satisfy the requirements of the European Union (EU) F-Gas Regulations. HFC-152a is inherently more energy efficient than HFC-134a and HFO-1234yf and in SL-MAC systems can generate cooling during deceleration, prolong comfort during idle stop (stop/start), and allow powered cooling at times when the engine can supply additional power with the lowest incremental fuel use. SL-MAC systems can also reduce the refrigerant charge, emissions, and service costs of HFO-1234yf.
2017-03-28
Technical Paper
2017-01-1461
Sanketh Gowda, Anindya Deb, Goutham Kurnool, Clifford Chou
Abstract Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
2017-03-28
Technical Paper
2017-01-0465
HaiYan Yu, Siji Chen
Abstract Carbon Fiber Reinforced Plastic (CFRP) tube is an important material for the lightweight design of automotive structures. Simulation method of CFRP thin-walled tubes subjected to axial compression using MAT54 in LS-DYNA was investigated. Based on the two-layer shell model combined with MAT54, failure strategy and the parameters sensitivity of the model were discussed in detail. Then the simulation model was verified by using duplicate specimens comprised of carbon fiber/epoxy unidirectional prepreg tape. Furthermore, the modeling methods of crush trigger and different types of loading speed were analyzed. In addition, based on the method of equal energy absorption, energy absorption performance of thin-walled circular and square tubes made from four materials including mild steel, high strength steel, aluminum alloy and CFRP were also compared.
2017-03-28
Technical Paper
2017-01-0489
Hyunkwon Jo, Jongsoo Kim, Jaemin Park, Heeseung Yang, Hyunmin Park
Abstract Cost reduction is an important issue in the intense competition automotive industry. Interior parts which are mainly consist of plastic have same issue. The manufacturing main processes of plastic products are injection and assemble and the cost of injection depends on injection cycle time. Therefore many studies for the reduction of injection cycle time have been implemented. However the researches based on engineer's experiences have limits so, nowadays many studies utilize CAE. In this paper, the study for the reduction of cycle time focused on injection molding design. To satisfy appearance quality with the reduction of cycle time, the design of injection molding was optimized by using CAE. The result of CAE showed many causes and effects of problems. The optimization of injection molding design improved the quality with the reduction of cycle time. Finally, the product based on CAE showed good quality and cycle time reduction in comparison with previous products.
2017-03-28
Technical Paper
2017-01-1265
Nia R. Harrison, S. George Luckey, Breana Cappuccilli, Ghassan Kridli
Abstract The typical paint bake cycle includes multiple ramps and dwells of temperature through e-coat, paint, and clear coat with exposure equivalent to approximately 190°C for up to 60 minutes. 7xxx-series aluminum alloys are heat treatable, additional thermal exposure such as a paint bake cycle could alter the material properties. Therefore, this study investigates the response of three 7xxx-series aluminum alloys with respect to conductivity, hardness, and yield strength when exposed to three oven curing cycles of a typical automotive paint operation. The results have indicated that alloy composition and artificial aging practice influence the material response to the various paint bake cycles.
2017-03-28
Technical Paper
2017-01-1272
Nick Parson, Jerome Fourmann, Jean-Francois Beland
Abstract One of the main applications for aluminum extrusions in the automotive sector is crash structures including crash rails, crash cans, bumpers and structural body components. The objective is usually to optimize the energy absorption capability for a given structure weight. The ability to extrude thin wall multi-void extrusions contributes to this goal. However, the alloy used also plays a significant role in terms of the ability to produce the required geometry, strength - which to a large extent controls the energy absorption capability and the “ductility” or fracture behavior which controls the strain that can be applied locally during crush deformation before cracking. This paper describes results of a test program to examine the crush behavior of a range of alloys typically supplied for automotive applications as a function of processing parameters including artificial ageing and quench rate.
2017-03-28
Technical Paper
2017-01-0226
Vesna Savic, Louis Hector, Ushnish Basu, Anirban Basudhar, Imtiaz Gandikota, Nielen Stander, Taejoon Park, Farhang Pourboghrat, Kyoo Sil Choi, Xin Sun, Jun Hu, Fadi Abu-Farha, Sharvan Kumar
Abstract This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
2017-03-28
Technical Paper
2017-01-0331
Qiuren Chen, Haiding Guo, Katherine Avery, Xuming Su, HongTae Kang
Abstract Fatigue crack growth tests have been carried out to investigate the mixed mode fatigue crack propagation behavior of an automotive structural adhesive BM4601. The tests were conducted on a compound CMM (Compact Mixed Mode) specimen under load control with 0.1 R ratio and 3Hz frequency. A long distance moving microscope was employed during testing to monitor and record the real time length of the fatigue crack in the adhesive layer. The strain energy release rates of the crack under different loading angles, crack lengths and loads were calculated by using finite element method. The pure mode I and mode II tests show that an equal value of mode I strain energy release rate results in over ten times higher FCGR (Fatigue Crack Growth Rate) than the mode II stain energy release rate does. The mixed mode tests results show that under a certain loading angle, the mixed mode FCGR is changed by changing the load, which is contrary to the find in pure mode I and mode II tests.
2017-03-28
Technical Paper
2017-01-0338
Jeong Kyun Hong, Andrew Cox
Abstract Even under uniaxial loading, seemingly simple welded joint types can develop multi-axial stress states, which must be considered when evaluating both the fatigue strength and failure location. Based on the investigation of fatigue behavior for the multi-axial stress state, a procedure for fatigue behavior of welded joints with multi-axial stress states was proposed using an effective equivalent structural stress range parameter combined normal and in-plane shear equivalent structural stress ranges and the master S-N curve approach. In automotive structures, fatigue failure is often observed at weld end, which often show a complex stress state. Due to simplified weld end representation having a sharp right-angled weld corner, the fatigue failure prediction at the weld end tends to be overly conservative due to the excessive stress concentration at the right-angled weld termination.
2017-03-28
Technical Paper
2017-01-0474
Chady Khalil, Yannick Amosse, Guillaume Racineux
Abstract In this study, a proposed new 3-in-1 process using the magnetic pulse welding (MPW) for welding similar and dissimilar metals and for hybrid joining between FRC and metals is developed. Welding between (a) AA1199 sheets and XES, (b) AA1199 and XSG which is zinc coated steel, (c) 5754-aluminum alloy and XES were performed and (d) hybrid joint between PA66-glass-FRC and 5754-aluminum was achieved. SEM observations and EDX analysis for the weld interface between aluminum and steel showed where detectable very thin layers of intermetallics and the wavy interface pattern typical for impact welding was identified. X-Ray microtomography observation for the joining region in the FRC showed the good state of the composite structure after joining. 3D numerical simulation using LS-Dyna was used for the selection of the welding parameters. Quasi-static lap shear testing for the welds revealed a failure in the weak metal sheet and not in the weld.
Viewing 91 to 120 of 15907