Criteria

Text:
Topic:
Display:

Results

Viewing 31 to 1 of 1
2017-09-19
Technical Paper
2017-01-2124
Violet Leavers
Abstract Within the aviation industry analysis of wear debris particles recovered from magnetic plugs and lubricating fluids is an essential condition monitoring tool. However, in large organisations, high staff turnover in remote work environments often leaves dangerous gaps in on-site support and background knowledge. The current work develops interactive software for wear debris particle classification, root cause diagnosis and serviceability prognostics. During the research several hundred wear debris particle images were collected, analysed and classified by a number of experts. At each stage of the analysis the experts were questioned about the knowledge and experience used to make their diagnoses and prognoses. The end result is an extensive knowledge base representing the combined expertise of a number of highly trained engineers, each with decades of hands-on experience.
2017-09-19
Technical Paper
2017-01-2086
Justin Lo
Abstract The fast growth of air traffic and the need for lighter and more fuel efficient aircraft is driving the ramp-up of important new aircraft programs. These increases in production rates are driving manufacturers to seek out robust and reliable installation systems. They must also adapt to the unique requirements of composite materials that now have an increasingly important place in the aerospace industry. Moreover, environmental constraints continue to evolve and drive new regulations, such as REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) in Europe. As an example, this regulation is leading to the adoption of non-chromate surface treatments and paints for most applications. The legacy generation of fasteners does not comply with all of these new requirements.
2017-09-19
Technical Paper
2017-01-2087
Peter Mueller-Hummel, Alex Hjorten
Abstract This article characterizes the special features of machining composite in comparison to machining metal. Simplified theoretic models will demonstrate how CFRP should be machined without delamination, burn marks and cutting tool breakages. Different strategies can be chosen depending on the material removal rate. The paper will present, based on this analytical approach, how milling cutters should be designed for optimal trimming, and how a drill should be designed in order to avoid the entrance, inner and exit delamination. While entrance and exit delamination is well understood, the paper will focus more to the delamination inside the bore. The appearance and the avoidance of the so called "Volcano Effect" and the reason why holes in composite becomes smaller after a couple of days will be explained. The comparison between 4 different cutting tool technologies will prove and give a better understanding how to use this theoretical approach.
2017-09-19
Technical Paper
2017-01-2029
Thibaut BILLARD, Cedric Abadie, Bouazza Taghia
Abstract The present paper reports non-electrically intrusive partial discharge investigations on aeronautic and electric vehicle motors fed by SiC inverter drive under variable environmental conditions. A representative test procedure and experimental set-up based on operating aeronautic conditions are essential to ensure the accuracy and reliability of partial discharge test on aircraft systems to make informed decisions on insulation system design choice. The aim of this paper is to demonstrate the feasibility of partial discharge test of the insulation system on a different type of motor under such conditions, both electrically and environmentally. To do so, the paper will start by detailing the innovative experimental set-up to be used in the study. It mainly consists in a high-voltage (1000V) inverter drive using SiC components to provide fast rise time surges.
2017-09-19
Technical Paper
2017-01-2058
Francesco Noziglia, Paolo Rigato, Enrico Cestino, Giacomo Frulla, Alfredo Arias-Montano
Abstract Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity. The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
2017-09-19
Technical Paper
2017-01-2050
Piotr Synaszko, Michal Salacinski, Patryk Ciezak
Abstract The work concerns the selection of measurement parameters for selected non-destructive testing methods of Mi helicopter rotor blades after repair. Considered repair cases involve metal cracks in the sandwich skin and repair damage of honeycomb structure (puncture, dent). In the event of a crack, repair is performed by applying a composite-metal repair package. In case of damage of the core, its broken piece is replaced by a new one and then applied the same metal-composite package as in the case of crack repair. The present work focuses on detecting disbond between skin and core below repair patch and cracks under the repair package. Detecting cracks and assessing their length is important because the repair technology provides the repair package without removing of cracked part of skin. Authors have used laser shearography and C-scan methods for MIA and ET.
2017-09-19
Technical Paper
2017-01-2060
Joseph Dygert, Patrick Browning, Magdalena Krasny
Abstract The dielectric barrier discharge (DBD) has seen significantly increased levels of interest for its applications to various aerodynamic problems. The DBD produces stable atmospheric-pressure non-thermal plasma with highly energetic electrons and a variety of ions and neutral species. The resulting plasma often degrades the dielectric barrier between the electrodes of the device, ultimately leading to actuator failure. Several researchers have studied a variety of parameters related to degradation and time-dependent dielectric breakdown of various polymers such as PMMA or PVC that are often used in actuator construction. Many of these studies compare the degradation of these materials to that of borosilicate glass in which it is claimed that there is no observable degradation to the glass. Recent research at West Virginia University has shown that certain actuator operating conditions can lead to degradation of a glass barrier and can ultimately result in failure.
2017-09-19
Journal Article
2017-01-2152
Sean Taklimi, Ali Ghazinezami, Kim Cluff PhD, Davood Askari
Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.
2017-09-19
Journal Article
2017-01-2142
Brandon Mahoney, Jamie Marshall, Thomas Black, Dennis Moxley
The supersession of metallic alloys with lightweight, high-strength composites is popular in the aircraft industry. However, aviation electronic enclosures for large format batteries and high power conversion electronics are still primarily made of aluminum alloys. These aluminum enclosures have attractive properties regrading structural integrity for the heavy internal parts, electromagnetic interference (EMI) suppression, electrical bonding for the internal cells, and/or electronics and failure containment. This paper details a lightweight carbon fiber composite chassis developed at Meggitt Sensing Systems (MSS) Securaplane, with a copper metallic mesh co-cured onto the internal surfaces resulting in a 50% reduction in weight when compared to its aluminum counterpart. In addition to significant weight reduction, it provides equal or improved performance with respect to EMI, structural and flammability performance.
2017-09-19
Journal Article
2017-01-2153
Patrick Land, Petros Stavroulakis, Richard Crossley, Patrick Bointon, Harvey Brookes, Jon Wright, Svetan Ratchev, David Branson
Abstract Inspection of Composite panels is vital to the assessment of their ability to be fit for purpose. Conventional methods such as X-ray CT and Ultrasonic scanning can be used, however, these are often expensive and time consuming processes. In this paper we investigate the use of off-the-shelf Non-Destructive Test, NDT, equipment utilizing Fringe projection hardware and open source software to rapidly evaluate a series of composite panels. These results are then verified using destructive analysis of the panels to prove the reliability of the rapid NDT methods for use with carbon composite panels. This process allows us to quickly identify regions of geometric intolerance or formed defects without the use of expensive sub-surface scanning systems, enabling a fast and cost effective initial part evaluation system. The focus of this testing series is on 6mm thick pre-preg carbon-epoxy composite laminates that have been laid up using AFP and formed using TRF.
2017-09-17
Technical Paper
2017-01-2528
Seongjoo Lee, JeSung Jeon, JooSeong Jeong, Byeongkyu Park, ShinWook Kim, ShinWan Kim, Seong Kwan Rhee, Wan Gyu Lee, Young sun Cho
It is widely believed or speculated that higher pad compressibility leads to reduced brake squeal and that caliper design can affect brake squeal. After encountering anecdotal contradictory cases, this investigation was undertaken to systematically generate basic data and clarify the beliefs or speculations. In order to adjust pad compressibility, it is common to modify pad molding temperatures, pressures and times, which in addition to changing the compressibility, changes friction coefficient and physical properties of the pad at the same time. In order to separate these two effects, NAO disc pads were prepared under the same molding conditions while using different thicknesses of the underlayer to achieve different compressibilities, thus changing the compressibility only without changing the friction coefficient and physical properties of the pad.
2017-09-17
Technical Paper
2017-01-2495
Andrew M. Visser, Scott Severnak
Abstract California and Washington recently passed legislation to limit certain constituents in brake pad friction materials. As part of the California (CA) legislation enacted in 2010, brake pad manufacturers need to perform an alternative assessment to identify potentially safer environmental and toxicological choices for future friction material production. Copper, chromium VI-salts, lead, cadmium, mercury, and other compounds have been identified as potentially unsafe to the environment. This paper contains the methodology behind an objective and comprehensive alternative assessment to quantify the ecological impact of friction materials. Utilizing raw material specific Chemical Abstracts Service (CAS) numbers and their associated toxicological reference values (TRVs), this newly defined method estimates the total toxicological impact of finished friction materials on both the environment and on a human carcinogenic level to allow the manufacturer to screen greener alternatives.
2017-09-17
Technical Paper
2017-01-2507
Matthias Hoch, Michal Kaczmarek, Markus Ahr
Abstract The demand for zinc-nickel coatings continuously increases in the automotive industry due to their high corrosion protection as well as superior wear and heat resistance compared to pure zinc platings. The state-of-the-art plating systems in the brake caliper industry are acid zinc-nickel electrolytes, as only they allow for direct plating on cast iron. Cast iron is the most common base material for the production of automotive brake components due to excellent mechanical and thermal properties. Well suited coatings will preserve the functional properties and provide additional advantages like improved corrosion protection and homogeneous and long lasting appearance. Consistently increasing quality demands, extended warranty periods and cost pressure lead to further developments and force the industry to look for new solutions.
2017-09-17
Technical Paper
2017-01-2510
Shengguang Xiong, Gangfeng Tan, Bo Yang, Longjie Xiao, Yongbing Xu, Yishi Wang
Abstract Fluid auxiliary braking devices can provide braking torque through hydraulic damping, fluid auxiliary braking devices can also convert vehicular inertia energy into transmission fluid heat energy during the braking, which can effectively alleviate the work pressure of the main brake. Traditional hydraulic auxiliary braking devices use transmission fluids to transmit torque, however, there is a certain lag effect during the braking. The magnetorheological fluid (MR fluid) can also be used to transmit torque because it has the advantages of controlling braking torque linearly and responding fast to the magnetic field changed. The temperature of MR fluid will increase when the vehicle is engaged in continuous braking. MR fluid temperature changes will cause a bad influence on the efficiency stability of auxiliary braking.
2017-09-17
Technical Paper
2017-01-2503
Binyu Mei, Xuexun Guo, Bo Yang, Shengguang Xiong, Gangfeng Tan
Abstract In order to ensure driving safety, heavy vehicles are often equipped with hydraulic retarder, which provides sustained, stable braking torque and converts the vehicle kinetic energy into heat taken away by the cooling system when traveling on a long downhill. The conventional hydraulic retarder braking torque is modulated by adjusting the liquid filling rate, which leads to slow response and difficult control. In this paper, a new kind of magnetorheological (MR) fluid hydraulic retarder is designed by replacing the traditional transmission oil with MR fluid and arranging the excitation coils outside the working chamber. The braking torque can be controlled by the fluid viscosity of MR fluid with the variation of magnetic field. Compared with the traditional hydraulic retarder, the system has the advantages of fast response, easy control and high adjustment sensitivity.
2017-09-17
Journal Article
2017-01-2529
Jae Seol Cho, JongYun Jeong, Hyoung Woo Kim, Hwa Sun Lee, Yang Woo Park, Junghwan Lim, Yoonjae Kim, Jinwoo Kim, Byung Soo Joo, Ho Jang
Abstract A semi-empirical index to evaluate the noise propensity of brake friction materials is introduced. The noise propensity index (NPI) is based on the ratio of surface and matrix stiffness of the friction material, fraction of high-pressure contact plateaus on the sliding surface, and standard deviation of the surface stiffness of the friction material that affect the amplitude and frequency of the stick-slip oscillation. The correlation between noise occurrence and NPI was examined using various brake linings for commercial vehicles. The results obtained from reduced-scale noise dynamometer and vehicle tests indicated that NPI is well correlated with noise propensity. The analysis of the stick-slip profiles also indicated that the surface property affects the amplitude of friction oscillation, while the mechanical property of the friction material influences the propagation of friction oscillation after the onset of vibration.
2017-09-17
Journal Article
2017-01-2502
David B. Antanaitis, Matthew Robere
Abstract The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
2017-09-17
Journal Article
2017-01-2511
Toshikazu Okamura
Abstract The most fundamental function of an automobile brake system is assuring stable braking effectiveness under various conditions. In a previous paper (2004-01-2765), the author et al. confirmed that the friction behavior of disc brakes during running-in depends on both the friction materials and discs’ friction-surface textures. Various friction pairs were tested by combining discs finished with roller-burnishing and grinding and five friction materials including NAO and low-steel. Some NAO material exhibited large effects on the difference in friction behaviors between the discs’ surface textures. A disc finished with roller-burnishing needed a longer running-in period than that with grinding. In another paper (2011-01-2382), a further experiment was conducted by combining eight surface textures (finished under four turning conditions with and without additional roller-burnishing), two NAO materials, and two rotational directions.
2017-09-17
Journal Article
2017-01-2501
ByeongUk Jeong, Hyong Tae Ryu, Kwang Ki Jung, Chang Jin Kim
Abstract Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Success of doing this properly causes more heat to the disc in the brake system which results in the deformation or scratches on the surface of it and a reduction in the appearance of the product. A study for detailed factors to aggravate this was done as a solution to prevent these from happening. In this paper, we present our work based on experiments to study MPU (Metal Pick Up) of the pad and the scoring(scratching) of the disc. MPU of which the main component is “Fe”, is formed through the process of fusing the separated materials from the disc by friction with the pad, and by local heat generation to the pad. [1,2,3,4,5] The occurrence of MPU and the possibility of the disc scoring resulting from this were studied by noting “Fe” which was transferred to the surface of the pad to different extent and degree of segregation according to the roughness of the disc.
2017-09-17
Journal Article
2017-01-2524
Sebastiano Rizzo, Stefano Pagliassotto
Abstract Wheel bearings are safety-critical automotive components. For this application, the steel rolling elements are subjected to fatigue failure and therefore play a key role in overall bearing fatigue life performance. This performance is influenced by metallurgical, mechanical, and physical properties obtained by precise manufacturing process parameters. These properties are continuously analyzed and are evolving at all bearing manufacturing companies. Last year, the Precision Bearing Components (PBC) Group of NN Inc., a global supplier of steel rolling elements for wheel bearings, developed a non-conventional heat treatment process for 100Cr6 (SAE 52100) rolling element steel for improved fatigue performance. The results of wheel bearing rolling contact fatigue (RCF) tests showed the importance of rolling element dimensional stability. As retained austenite transformed to the martensite phase, rolling element volume increase occurred, leading to fatigue failure.
2017-09-17
Journal Article
2017-01-2480
Roberto Dante, Andrea Sliepcevich, Marco Andreoni, Mario Cotilli
Abstract Tin sulfides (SnS and SnS2), represent a safer and greener alternative to other metal sulfides such as copper sulfides, and MoS2 etc. Their behavior is usually associated to that of solid lubricants such as graphite. A mixture of tin sulfides, with the 65 wt% of SnS2, has been characterized by scanning electron microscopy and by thermal gravimetric analysis (TGA). In order to investigate the effect of tin sulfides upon two crucial friction material ingredients, two mixtures were prepared: the former was made by mixing tin sulfides with a natural flake graphite and the latter was made mixing tin sulfides with a straight novolak. They were analyzed by TGA and differential thermal analysis (DTA) in both nitrogen and air. Some interferences were detected between tin sulfides and graphite in air.
2017-09-17
Journal Article
2017-01-2482
Meechai Sriwiboon, Nipon Tiempan, Kritsana Kaewlob, Seong K Rhee, Donald Yuhas
Abstract Disc pad physical properties are believed to be important in controlling brake friction, wear and squeal. Thus these properties are carefully measured during and after manufacturing for quality assurance. For a given formulation, disc pad porosity is reported to affect friction, wear and squeal. This investigation was undertaken to find out how porosity changes affect pad natural frequencies, dynamic modulus, hardness and compressibility for a low-copper formulation and a copper-free formulation, both without underlayer, without scorching and without noise shims. Pad natural frequencies, modulus and hardness all continuously decrease with increasing porosity. When pad compressibility is measured by compressing several times as recommended and practiced, the pad surface hardness is found to increase while pad natural frequencies and modulus remain essentially unchanged.
2017-09-17
Journal Article
2017-01-2481
Vishal Mahale, Jayashree Bijwe, Sujeet Sinha
Abstract Potassium titanate (KT) fibers/whiskers are used as a functional filler for partial replacement of asbestos in NAO friction materials (FMs). Based on little information reported in open literature; its exact role is not well defined since some papers claim it as the booster for resistance to fade (FR), or wear (WR) and sometimes as damper for friction fluctuations. Interestingly, KT fibers and whiskers (but not powder) are proved as carcinogens by the International Agency for Research on Cancer (IARC). However, hardly any efforts are reported on exploration of influence of KT powder and its optimum amount in NAO FMs (realistic composites) in the literature. Hence a series of five realistic multi-ingredient compositions in the form of brake-pads with similar parent composition but varying in the content of KT powder from 0 to 15 wt% (in the steps of 3) were developed. These composites were characterized for physical, mechanical, chemical and tribological performance.
2017-09-17
Journal Article
2017-01-2523
Seonho Lee, Yoongil Choi, Kyuntaek Cho, Hyounsoo Park
Abstract Raceway Brinell damage is one major cause of wheel bearing (hub unit) noise during driving. Original Equipment Manufacturer (OEM) customers have asked continuously for its improvement to the wheel bearing supply base. Generally, raceway Brinelling in a wheel hub unit is a consequence of metallic yielding from high external loading in a severe environment usually involving a side impact to the wheel and tire. Thus, increasing the yielding strength of steel can lead to higher resistance to Brinell damage. Both the outer ring and hub based on Generation 3 (Gen. 3) wheel unit are typically manufactured using by AISI 1055 bearing quality steel (BQS); these components undergo controlled cooling to establish the core properties then case hardening via induction hardening (IH). This paper presents a modified grade of steel and its IH design that targets longer life and improves Brinell resistance developed by ILJIN AMRC (Advanced Materials Research Center).
2017-09-16
Journal Article
2017-01-9183
Tine Christiansen, Johanne Jensen, Andreas Åberg, Jens Abildskov, Jakob Huusom
Abstract A methodology for the development of catalyst models is presented. Also, a methodology of the implementation of such models into a modular simulation tool, which simulates the units in succession, is presented. A case study is presented illustrating how suitable models can be found and used for simulations. Such simulations illustrate the behavior of the individual units and the overall system. It is shown how, by simulating the units in succession, the entire after treatment system can be tested and optimized, because the integration makes it possible to observe the effect of the modules on one another.
2017-09-04
Technical Paper
2017-24-0042
Ali Jannoun, Xavier Tauzia, Pascal Chesse, Alain Maiboom
Abstract Residual gas plays a crucial role in the combustion process of SI engines. It acts as a diluent and has a huge impact on pollutant emissions (NOx and CO emissions), engine efficiency and tendency to knock. Therefore, characterizing the residual gas fraction is an essential task for engine modelling and calibration purposes. Thus, an in-cylinder sampling technique has been developed on a spark ignition VVT engine to measure residual gas fraction. Two gas sampling valves were flush mounted to the combustion chamber walls; they are located between the 2 intake valves and between intake and exhaust valves respectively. In-cylinder gas was sampled during the compression stroke and stored in a sampling bag using a vacuum pump. The process was repeated during a large number of engine cycles in order to get a sufficient volume of gas which was then characterized with a standard gas analyzer.
2017-09-04
Technical Paper
2017-24-0116
Ekarong Sukjit, Pansa Liplap, Somkiat Maithomklang, Weerachai Arjharn
Abstract In this study, two oxygenated fuels consisting of butanol and diethyl ether (DEE), both possess same number of carbon, hydrogen and oxygen atom but difference functional group, were blended with the waste plastic pyrolysis oil to use in a 4-cylinder direct injection diesel engine without any engine modification. In addition, the effect of castor oil addition to such fuel blends was also investigated. Four tested fuels with same oxygen content were prepared for engine test, comprising DEE16 (84% waste plastic oil blended with 16% DEE), BU16 (84% waste plastic oil blended with 16% butanol), DEE11.5BIO5 (83.5% waste plastic oil blended with 11.5% DEE and 5% castor oil) and BU11.5BIO5 (83.5% waste plastic oil blended with 11.5% butanol and 5% castor oil). The results found that the DEE addition to waste plastic oil increased more HC and smoke emissions than the butanol addition at low engine operating condition.
2017-09-04
Technical Paper
2017-24-0145
Marco Piumetti, Debora Fino, Nunzio Russo, Samir Bensaid, Melodj Dosa
Abstract In this work, several nanostructured ceria-based catalysts were prepared by the hydrothermal technique varying two synthesis parameters (namely, temperature and pH). Then, cerias with different shapes (i.e., cubes, rods, combination of them, other polyhedra) and structural properties were obtained. The prepared materials were tested for the CO oxidation and soot oxidation efficiency. The results have shown that, for the CO oxidation, activities depend on the surface properties of the catalysts. Conversely, for the soot oxidation, the most effective catalysts exhibit better soot-catalyst contact conditions.
2017-09-04
Technical Paper
2017-24-0156
Minh Khoi Le, Srinivas Padala, Atsushi Nishiyama, Yuji Ikeda
Abstract The Microwave Discharge Igniter (MDI) was developed to create microwave plasma for ignition improvement inside combustion engines. The MDI plasma discharge is generated using the principle of microwave resonance with microwave (MW) originating from a 2.45 GHz semiconductor oscillator; it is then further enhanced and sustained using MW from the same source. The flexibility in the control of semiconductors allows multiple variations of MW signal which in turn, affects the resonating plasma characteristics and subsequently the combustion performance. In this study, a wide range of different MW signal parameters that were used for the control of MDI were selected for a parametric study of the generated Microwave Plasma. Schlieren imaging of the MDI-ignited propane flame were carried out to assess the impact on combustion quality of different MW parameters combinations.
2017-09-04
Technical Paper
2017-24-0136
Kurtis James Irwin, Roy Douglas, Jonathan Stewart, Andrew Pedlow, Rose Mary Stalker, Andrew Woods
Abstract With emission legislations becoming ever more stringent there is an increased pressure on the after-treatment systems, and more specifically the three-way catalysts. With recent developments in emission legislations, there is requirement for more complex after-treatment systems and understanding of the aging process. With future legislation introducing independent inspection of emissions at any time under real world driving conditions throughout a vehicle life cycle this is going to increase the focus on understanding catalyst behavior during any likely conditions throughout its lifetime and not just at the beginning and end. In recent years it has become a popular approach to use accelerated aging of the automotive catalysts for the development of new catalytic formulations and for homologation of new vehicle emissions.
Viewing 31 to 1 of 1