Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 14595
2015-06-15
Technical Paper
2015-01-2341
Marc Ingelmann, Holger Bickelmann
BASF supplies the automotive industry with parts made of the Micro-cellular Polyurethane Elastomer - Cellasto®, a material with unique characteristics in NVH applications. For over 50 years our automotive customers are relying on our materials, with the Jounce Bumper being our best known applications. Top mounts and coil-spring-isolators are also a key offering to the industry. A lot of functions in automotive and non-automotive products are using Cellasto® as damping element, such as armrests, seats, torque-dampers, handheld machines etc. The dynamic performance of Cellasto , combined with the ability to work in limited packages, makes it the ideal choice. The amplitude selective damping fits to the automotive requirements: small amplitudes are generating a low damping of the material; high amplitudes are increasing the damping.
2015-06-15
Technical Paper
2015-01-2076
Caroline Laforte, Neal Wesley, Marc Mario Tremblay
Abstract This study presents a new method to evaluate and compare the anti-icing performance, i.e., the ability to delay the reformation of ice, of runways and taxiways deicing/anti-icing fluids (RDF) under icing precipitation, based on the skid resistance values, obtained with the Portable Skid Resistance Tester (PSRT). In summary, the test consists of applying, on a standardized concrete pavement sample, a given quantity of de-icing fluid. Following this application, the concrete sample is submitted to low freezing drizzle intensities, in a cold chamber at −5.0 ± 0.3°C. The skid resistance of concrete is measured at 5 minute intervals, until the concrete becomes completely iced. The anti-icing performance of 5 different fluids, both experimental and commercial, was assessed in comparison with a reference solution of 50% w/w K-formate. The anti-icing performance is analyzed based on two parameters: the duration (Icing Protection Time, IPT) and the effectiveness of this protection.
2015-06-15
Technical Paper
2015-01-2093
Maxime Henno
Abstract Advanced sizing of the thermal wing ice protection system (WIPS) requires an improved and a robust manner to simulate the system operation in unsteady phases and particularly in de-icing operations. A two dimensional numerical tool has been developed to enable the simulation of unsteady anti-icing and de-icing operations. For example, the WIPS may be activated with delay after entering into the icing conditions. In this case, ice starts to accrete on the leading edge before the WIPS heats up the skin. Another example is the ground activation of the WIPS for several seconds to check its functionality: low external cooling may cause high thermal constraints that must be estimated with accuracy to avoid adverse effects on the structure. Thermal de-icing WIPS integrated in composite structures intrinsically have unsteady behaviors; the tool enables the computation of the skin temperature evolution with the time.
2015-06-15
Technical Paper
2015-01-2259
Jan Zuleeg
Tribological contacts with plastic or polymers tend to show stick-slip and have the ability to generate noise. With the help of lubricants like bonded coatings, greases and fluids the tribological properties can be well-directed and affected. In this paper it is shown, how well known theories about polymer friction from the literature can be used for the friction of lubricants and how these findings can help in the development of new lubricants. With an adequate stick-slip test rig (Ziegler Stick-Slip test rig) it is demonstrated, how the theories can be confirmed. The introduced test methods are used in the development for lubricants for automotive applications e.g. in the interior of the car including invisible lubricants developed for Class "A" surfaces.
2015-06-15
Technical Paper
2015-01-2120
Yong Han Yeong, Eric Loth, Jack Sokhey, Alexis Lambourne
Researchers have recently focused on superhydrophobic coatings as an ice-mitigation tool. These surfaces have a high degree of water-repellency and were shown in previous low-speed droplet studies to reduce surface ice adhesion strength. However, there is little research regarding testing in aerospace icing conditions, i.e. high-speed super-cooled droplet impact (> 50 m/s) on a freezing substrate and air temperature. A detailed set of experiments were conducted in an icing wind tunnel to measure the ice adhesion strength of various superhydrophobic coatings by subjecting the surfaces to a super-cooled icing cloud consisting of 20 μm droplets and at a constant LWC of 0.4 g/m3. Test conditions include air speeds of 50 m/s and 70 m/s and in glaze (−5°C) and rime ice regimes (−15°C). The accreted ice was then removed by pressurized nitrogen in a mode 1 (tensile) adhesion test.
2015-06-15
Technical Paper
2015-01-2149
Caroline Laforte, Caroline Blackburn, Jean Perron
Abstract This paper depicts icephobic coating performances of 274 different coatings, including 11 grease-type coatings, which were tested over the past 10 years in various research projects at the Anti-Icing Materials International Laboratory (AMIL). Icephobic performance is evaluated using two comparative test methods. The first method, the ice Centrifuge Adhesion Test (CAT), measures the force required to separate the accreted ice from the coating (e.g. adhesive failure). The test involves simultaneously icing, under supercooled precipitation, the extremity of bare reference and freshly coated aluminum samples. The ice adhesion shear stress is calculated from the ice detachment rotation speed. The results are reported as Adhesion Reduction Factor (ARF), which is the ice adhesion stress on the bare aluminum reference samples divided by the ice adhesion stress on the coated samples.
2015-06-15
Technical Paper
2015-01-2159
Philipp Grimmer, Swarupini Ganesan, Michael Haupt, Jakob Barz, Christian Oehr, Thomas Hirth
Abstract As known de-icing methods use a high amount of energy or environmentally harmful chemicals, research has focused lately on passive de-icing by functional surfaces with an improved removal of ice (de-icing) or a reduced formation of it (anti-icing). Inspired by the Lotus plant leaf, a “superhydrophobic” surface can be produced by the combination of a hierarchical micro/nanoscale roughness and a hydrophobic surface coating. By a hot stamping process we have generated differently shaped microstructures (cylinders, ellipses) on polyurethane (PU) films which were afterwards coated by a plasma enhanced chemical vapor deposition (PECVD) process with thin, hydrophobic fluorocarbon films. This combination of methods could be a process for the production of large area functionalized films. PU films are suitable for outdoor use, because they are resistant against erosion and UV radiation. The films can be glued to different geometries and can easily be exchanged if damaged.
2015-06-15
Technical Paper
2015-01-2158
Tatsuma Hyugaji, Shigeo Kimura, Haruka Endo, Mitsugu Hasegawa, Hirotaka Sakaue, Katsuaki Morita, Yoichi Yamagishi, Nadine Rehfeld, Benoit Berton, Francesc Diaz, Tarou Tanaka
Coating has been recently considered as having good potential for use in preventing in-cloud icing on the leading edge of the lifting surfaces of an aircraft in cold climates. In terms of wettability, a coat may exhibit hydrophobicity or hydrophilicity depending on its specific properties. The same applies to the ice adhesion strength, which may be either high or low. It is thus necessary to determine which type of anti-icing or de-icing coat would be appropriate for a particular application in order to fully utilize its specific properties. Notwithstanding, a coat is incapable of preventing ice accretion by itself, and a perfect icephobic coat is yet to be developed. Coating is also sometimes applied to the surfaces of electrical heaters and load-applying machines to enable them to function more effectively and use less energy. The coating used for an electric heater, for instance, should be hydrophobic because of the need for rapid removal of molten water from the surface.
2015-06-15
Technical Paper
2015-01-2160
Alidad Amirfazli
Abstract The surfaces that shed drops helps with mitigation of icing. Shedding of drop depends on surface hydrophobicity, which becomes affected when exposed to water and/or UV. The hydrophobicity degradation of six (Spray SHS, Etched Al SHS, Hydrobead, Neverwet, Waterbeader, and WX2100) different super-hydrophobic surfaces (SHS), exposed to water or UV, were studied from the drop shedding perspective. Two methods were adopted for the hydrophobicity analysis. Among them, one is to study the contact angles (CA) and contact angle hysteresis (CAH) change at static state (i.e., no airflow) compared to the untreated surface. The other one is to analyze the change in critical air velocity (Uc) for a given drop exposed to airflow, on water/UV treated surfaces at room temperature (22 °C) and icing conditions (−1 and −7 °C).
2015-06-15
Technical Paper
2015-01-2343
Jian Pan, Yuksel Gur
OEMs are racing to develop light weight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Light weight materials such as aluminum, magnesium and carbon fiber composites are being used as structural panels in vehicle body. The reduction in weight in structural panels increases noise transmission into passenger compartment. This poses a great challenge in sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option. This paper discusses weight saving approaches to reduce noise sources, noise transmission paths, and transmitted noise into the passenger. Light weight sound package materials are introduced to treat and reduced airborne noise transmission into multi-material light weight body structure.
2015-06-15
Technical Paper
2015-01-2301
Maxwell Hill, Dan Luo, Mark Moeller
Wind noise can be a significant event for automotive design engineers. The greenhouse glass plays an important role in the wind noise process. Robust estimates of the greenhouse glass damping are necessary for both understanding and modeling the role of the glass in the wind noise process. One unanswered question is whether the aerodynamic loads affect the window glass damping. To make this determination a method to assess the operational damping is required. The civil engineering community uses the random decrement technique to assess operational damping due wind loads. The random decrement technique has been shown to be a normalized autocorrelation function. In this paper the damping is estimated directly from the autocorrelation function. In the first section the relationship between the damping and autocorrelation function is examined for white noise excitation. A single oscillator is examined as the first case. Extension to higher modal densities is discussed.
2015-06-15
Technical Paper
2015-01-2210
Quan Wan
Five parameters are often used in acoustic modeling of porous absorption material, which are air flow resistivity σ, porosity φ, tortuosity α∞, viscous characteristic lengths Λ and thermal characteristic length Λ’. These parameters are not easy to be directly measured with high precision, especially the latter three parameters. FOAM-X is the software capable of identifying indirectly these parameters from impedance tube test results by virtue of Johnson-Champoux-Allard model, so becomes increasingly popular. However, its stability of parameter identification is rarely reported. This paper studies the factors to disturb the stability of FOAM-X on those porous absorption materials generally applied in vehicle interior trim (pure PET fiber, shoddy, PP/PET double-component fiber), such as the number of known parameters in advance, the frequency range, the vacuum bulk density, and so on.
2015-06-15
Technical Paper
2015-01-2208
David Stotera, Scott Bombard
Both vehicle roof systems and vehicle door systems typically have viscoelastic material between the beams and the outer panel. These materials have the propensity to affect the vibration decay time and the vibration level of the panel with their damping and stiffening properties. Decay time relates to how pleasant a vehicle door sounds upon closing, and vibration level relates to how loud a roof boom noise may be perceived to be by vehicle occupants. If a surrogate panel could be used to evaluate decay time and vibration level, then a design of experiments could be used to compare the effects of different factors on the system. The factors were varied in laboratory tests, and the results were calculated using design of experiments software. In this paper the results of a study of the varying factors tested with respect to their effects on decay time and vibration level are presented, as well as the effect the results had on potential optimization of the systems.
2015-06-15
Technical Paper
2015-01-2201
Paul B. Murray, Jason T. Kunio, Leif Christensen, Flemming S. Larsen
Acoustic material testing is becoming increasingly relevant to engineers, designers and manufacturers from a broad range of industries. This paper presents comparisons between material absorption measurements made using the traditional approaches of the reverberation room method and the fixed impedance tube using a sample holder, and compares the results with those obtained using a new portable flanged impedance tube method. The portable tube allows fast non-destructive in-situ material measurements. They therefore include the impact of the installed lay-up (e.g. effects of facing sheets, curvature, material compression, bagging, etc). Comparison between the varying measurement techniques shows that the portable meter data are more repeatable than both the reverberation room and sample holder procedures. The repeatability of the reverberation room absorption results is subject to variations in panel edge diffraction, non-diffuse field conditions, and source/ receiver repeatability.
2015-06-15
Technical Paper
2015-01-2171
Winston Spencer, Djamel Bouzit, Joseph Pace, Sudeep Dhillon
Driveline plunge mechanism dynamics has a significant contribution to the driver's perceivable transient NVH error states and to the transmission shift quality. As it accounts for the pitch or roll movements of the front powerplant and rear drive unit, the plunging joints exhibit resisting force in the fore-aft direction under various driveline torque levels. This paper tackles the difficult task of quantifying the coefficient of static friction and the coefficient of dynamic friction in a simple to use metric as it performs in the vehicle. The comparison of the dynamic friction to the static friction allows for the detection of the occurrence of stick-slip in the slip mechanism; which enables for immediate determination of the performance of the design parameters such as spline geometry, mating parts fit and finish, and lubrication. It also provides a simple format to compare a variety of designs available to the automotive design engineer.
2015-06-15
Technical Paper
2015-01-2190
Manchi Venkateswara Rao, S Nataraja Moorthy, Prasath Raghavendran
Abstract Mount development and optimization plays an important role in the NVH refinement of vehicle as they significantly influence overall driving experience. Dynamic stiffness is a key parameter that directly affects the mount performance. Conventional dynamic stiffness evaluation techniques are cumbersome and time consuming. The dynamic stiffness of mount depends on the magnitude of load, frequency of application and the working displacement. The above parameters would be far different in the test conditions under which the mounts are normally tested when compared to operating conditions. Hence there is need to find the dynamic stiffness of mounts in actual vehicle operating conditions. In this paper, the dynamic stiffness of elastomeric mounts is estimated by using a modified matrix inversion technique popularly termed as operational path analysis with exogenous inputs (OPAX).
2015-06-15
Technical Paper
2015-01-2200
Guojian Zhou, Xiujie Tian, Keda Zhu, Wei Huang, Richard E. Wentzel, Melvyn J. Care
Acoustic performance of auto interiors is definitely important to control the NVH (noise, vibration, and harshness) performance inside a vehicle, and it is determined by the material parameters, such as density (p), thickness (d), open porosity (OP), airflow resistivity (σ), tortuosity (T), viscous characteristic length (VCL), thermal characteristic length (TCL), young’s modulus, poisson’s ratio, and damping coefficient. Firstly, by making different felt samples (of different surface density and thickness), the sound absorption performance and related parameters were obtained. Then the correlation between the parameters and the sound absorption coefficient (SAC) was summarized. Through this method, database of acoustic parameters and the corresponding SAC for porous materials can be established and sound package design and adjustment can be easily conducted based on the database.
2015-06-15
Technical Paper
2015-01-2202
Catheryn Jackson, Justin E. Gimbal, Dhara Metla
Over the past decade damping materials have made major improvements in contributing to passenger comfort. NVH engineers have further shaped the material specifications to reflect key targeted properties that improve the vehicle design. The specified damping material is then applied to the formed surfaces of the vehicle body to provide optimal performance and achieve the required results. This paper describes how liquid dampers have advanced to meet increased performance requirements through improved loss modulus of the final coating. Data generated by dynamic mechanical analysis shows that this viscoelastic behavior is what drives the performance in damping materials. Through the correlation of loss moduli to damping performance of Oberst bars, the mechanism can be further quantified and explained.
2015-06-15
Technical Paper
2015-01-2207
Pranab Saha, Satyajeet P. Deshpande, Charles Moritz, Steve Sorenson
Standards are essential for evaluating the performance of products properly and for developing a data base for the products. This paper discusses various standards that are available for determining the acoustic performance of sound package materials. The paper emphasizes various SAE standards that are available in this area, the reasons why these standards are important to the researchers working in the mobility industry, the history behind the development of these standards, and how they are different from standards that are available from other standards organization on similar topics.
2015-06-15
Technical Paper
2015-01-2206
Glenn Yin, Alan Parrett, Nitish Wagh, Dennis Kinchen
In automotive noise control, the hood liner is an important acoustic part for mitigating engine noise. The random incidence absorption coefficient is used to quantify the component level acoustic performance. Generally, air gaps, type of substrate materials, density of the substrate materials and Air Flow Resistivity of the material or cover scrim are the dominant control factors in the sound absorption performance. This paper describes a systematic experimental investigation of how these control factors affect the part performance. The first stage of this study is based on current available solutions from sound absorber suppliers, the acoustic absorption of different hood liner constructions, with variations in materials, density, air gaps, and scrims were measured. Next, hood liners with these different constructions were installed in a vehicle, and Sound Power Based Noise Reduction (PBNR) from the engine compartment to the interior was measured to quantify in-vehicle effects.
2015-06-15
Technical Paper
2015-01-2205
John G. Cherng, Simeng Xing, Weiwei Wu, Jan Ladewig, Rolf Balte, Maurice Venegas
A comprehensive and systematic investigation on acoustical performance of carbon nanotube enhanced polyurethane (PU) foams was performed. The complete foam making process was carefully carried out in order to select a stable base foam composition that to be integrated with many carbon nanotube materials. A total of eight design parameters were evaluated, such as loading in weight percentage, diameter of the nanotube, length of the nanotube,coating with Ni, single and multiple layer nanotubes, graphitization of nanotube, radical bonding, and geometry configuration of nanotube, i.e. tube vs. sheet. Both normal incidence sound transmission loss (STL) and absorption coefficient were measured. It was found out that there is an optimum value in most of design parameters. In general, nanotube enhanced PU foam definitely demonstrated improvements in both absorption coefficients and sound transmission loss.
2015-06-15
Technical Paper
2015-01-2204
Michael Funderburg
The ability of various plasticizers to impact the vibration damping properties of polyvinyl chloride (PVC) plastisols was investigated. A material must have good viscoelastic properties in order for it to be an effective vibration damper. However, it is evident that not all viscoelastic materials are good vibration dampers. Consider flexible (plasticized) PVC, for example. PVC formulations demonstrating the same glass transition temperature may have widely different damping capabilities. This presentation will show that the type of plasticizer substantially impacts the damping ability of the final PVC composite. Initially, flexible PVC formulations with varied plasticizers were screened via dynamic mechanical thermal analysis (DMTA) to determine which ones would likely have good damping properties. Formulations which exhibited promising results with DMTA were then tested via an Oberst bar damping test (SAE J1637).
2015-06-15
Technical Paper
2015-01-2213
John Van Baren
Abstract Random vibration control systems produce a PSD plot by averaging FFTs. Modern controllers can set the Degrees of Freedom (DOF), which is a measure of the amount of averaging to use to estimate the PSD. The PSD is a way to present a random signal-which by nature “bounces” about the mean, at times making high excursions from the mean-in a format that makes it easy to determine the validity of a test. This process takes time as many frames of data are collected in order to generate the PSD estimate, and a test can appear to be out of tolerance until the controller has enough data to estimate the PSD with a sufficient level of confidence. Something is awry with a PSD estimate that achieves total in-tolerance immediately after starting or during level changes, and this can create dangerous over or under test conditions within specific frequency bands and should be avoided.
2015-06-15
Technical Paper
2015-01-2239
Nicholas N. Kim, Seungkyu Lee, J Stuart Bolton, Sean Hollands, Taewook Yoo
Abstract Because of the increasing concern with vehicle weight, there is an interest in lightweight materials that can serve several functions at once. Here we consider the vibration damping performance provided by an “acoustical” material (i.e., a fibrous layer that would normally be used for airborne noise control). It has been previously established that the vibration of panel structures creates a non-propagating nearfield in the region close to the panel. In that region, there is an oscillatory, incompressible fluid flow parallel to the panel whose strength decays exponentially with distance from the panel. When a fibrous medium is placed close to the panel in the region where the oscillatory nearfield is significant, energy is dissipated by the viscous interaction of the flow and the fibers, and hence the panel vibration is damped. The degree of panel damping is then proportional to the energy removed from the nearfield by the viscous interaction with the fibrous medium.
2015-06-15
Journal Article
2015-01-2325
P. Bremner, C. Todter, S. Clifton
Title: Sideglass Turbulence and Wind Noise Sources Measured with a High Resolution Surface Pressure Array Authors: Paul Bremner – AeroHydroPLUS, Del Mar CA 92104 USA Chris Todter – Keppel Professional Services, San Diego CA 92107 Scott Clifton – c/o AeroHydroPLUS, Del Mar CA 92104 USA The authors report on the design and use of high resolution micro-electro-mechanical (MEMS) microphone arrays for automotive wind noise engineering. The arrays integrate both sensors and random access memory (RAM) chips on a flexible circuit board that eliminates high channel count wiring and allows the array to be deployed on automobile surfaces in a convenient “stick-on/peel-off” configuration. These arrays have application to the quantitative evaluation of interior wind noise from measurements on a clay model in the wind tunnel, when used in conjunction with a body vibro-acoustic model.
2015-06-15
Technical Paper
2015-01-2342
Jun Zhang, Jian Pang, Siwen Zhang, Xiaoxuan Zhang, Congguang Liu
A Lightweight Dash Insulator Development and Engineering Application for the Vehicle NVH Improvement Jun ZHANG 1,2 , Jian PANG 1,2,*, Cong-guang LIU 1,2, Xiao-xuan ZHANG 1,2, 1 Changan Auto Global R&D Center NVH Department, Chongqing, China, 401120 2. State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing, China,, 401120 * Correspondence author, e-mail address: pangjian@changan.com.cn ABSTRACT The lightweight design for sound package is becoming more and more important in automobile development. The research on lightweight sound package has become one of the hot topics in automobile industry. This paper presents a procedure to develop lightweight dash insulator based on NVH targets. The mechanism to reduce dash panel weight and to improve sound insertion loss simultaneously is described in this paper. The paper illustrates a new lightweight dash insulator structure with surface density 2500g/mm2.
2015-06-15
Technical Paper
2015-01-2344
Murteza T. Erman
In today’s world automotive manufacturers are required to decrease CO2 emissions and increase the fuel economy while assuring driver comfort and safety. To achieve desired acoustic performance targets, automotive manufacturers use various Noise-Vibration-Harshness (NVH) materials which they apply to the vehicle structure either in paint shop or assembly shop. Beside sound deadening coatings applied onto underbody of vehicles they use also either constrained or not-constrained layer of sheets. The majority of these sheets are applied onto floor pan inside the vehicle, known as asphalt-sheets. These asphalt-sheets are highly filled systems with high specific gravity and depending on vehicle 10~20 kg/vehicle application is common. Since early 1990’s, automotive manufacturers also have introduced so called Liquid-Applied Sound Damping materials (LASD).
2015-06-15
Technical Paper
2015-01-2345
Arnaud Duval, Valérie Marcel, Ludovic Dejaeger, Francis Lhuillier, Moussa Khalfallah
The Flaxpreg™ is a green and light very long flax fibers thermoset reinforced sandwich, that can be effectively used as multi-position trunk loadfloor or structural floor in the passenger compartment of a vehicle. The prepreg FlaxTapes© of about 120 g/m² constituting the skins of the sandwich, are unidirectionally aligned flax fibers tapes, with acrylic resin here, easily manipulable without requiring any spinning or weaving step and thus without any negative out of plane crimping of the almost continuous flax fibers. Thank to their very low 1,45 density combined with an adaptative 0°/90°/0° orientation of the FlaxTapes© (for each skin) depending on the loading boundary conditions, the resulting excellent mechanical properties allow a – 35% weight reduction compared to petro-sourced Glass mat/PUR sandwich solutions (like the Baypreg).
2015-06-15
Journal Article
2015-01-2188
Zhaohui Sun, Glen Steyer, Chih Hung Chung, Gregory Kopp
Abstract This paper discusses approaches to properly design aluminum axles for optimized NVH characteristics. By effectively using well established and validated FEA and other CAE tools, key factors that are particularly associated with aluminum axles are analyzed and discussed. These key factors include carrier geometry optimization, bearing optimization, gear design and development, and driveline system dynamics design and integration. Examples are provided to illustrate the level of contribution from each main factor as well as their design space and limitations. Results show that an aluminum axle can be properly engineered to achieve robust NVH performances in terms of operating temperature and axle loads.
2015-06-15
Journal Article
2015-01-2203
Maaz Farooqui, Tamer Elnady, Ragnar Glav, Tony Karlsson
Abstract A novel porous metallic foam has been studied in this work. This composite material is a mixture of resin and hollow spheres. It is lightweight, highly resistive to contamination and heat, and is capable of providing similar or better sound absorption compared to the conventional porous absorbers, but with a robust and less degradable properties. Several configurations of the material have been tested inside an expansion chamber with spatially periodic area changes. Bragg scattering was observed in some configurations with certain lattice constants. The acoustic properties of this material have been characterized from the measurement of the two-port matrix across a cylindrical sample. The complex density and speed of sound can be extracted from the transfer matrix using an optimization technique. Several models were developed to validate the effect of this metallic foam using Finite Elements and the Two-port Theory.
Viewing 1 to 30 of 14595