Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 15895
2017-04-11
Journal Article
2017-01-9451
Marouen Hamdi, Drew Manica, Hung-Jue Sue
Abstract Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
2017-03-28
Technical Paper
2017-01-0231
Shih-Po Lin, Yijung Chen, Danielle Zeng, Xuming Su
In the conventional approach, the material properties of laminate composites for crash simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to calibrate the material models in the intermediate stage. In this paper, a laminate cylinder tube under high-impact velocity in the direction of tube axis is chosen as an example for the crash analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction.
2017-03-28
Technical Paper
2017-01-1645
Marjorie Myers
Harness and terminal manufacturers are working to support the Automotive industry’s need to reduce energy consumption (and costs) via weight savings initiatives by converting from Cu to Al electrical cables within the traditional open style cable harness termination manufacturing environment. As the Automotive industry is fully aware, terminating nominally same sized Al cable to existing Cu cable designed terminals is neither a functional, nor a reliable, equivalent option – termination design changes are required to be able successfully qualify any such Al cable to Cu terminal connections for Automotive applications. In addition, the harness industry are looking for any new Al ‘open’ crimp termination designs to work well within the existing manufacturing and connector/harness design environment; e.g., ‘open’ crimp termination, on par termination process speed, no post-treatment, etc.
2017-03-28
Technical Paper
2017-01-0949
Makoto Ito, Mitsuru Sakimoto, Zhenzhou Su, Go Hayashita, Keiichiro Aoki
New two-A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the two-A/F systems, two A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the two-A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the two-A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
2017-03-28
Technical Paper
2017-01-0480
Mingde Ding
For structural application, composite parts structure is much more affected by load cases than steel part structure. Engine room bracket of EV, which is structural part and is used to bear Motor Controller, Charger and so on, has different load cases for different EV. Three commonest load cases that are Case 1: bearing 65kg (without suspension part), Case 2: bearing 68kg(including 3.5kg suspension part) and Case 3: bearing 70.1kg (including 5.6kg suspension part). According to topology optimization, structurel 1 was obtained, and then CAE analysis including (strength, stiffness and model) was carried out for abovement three load cases. For Case 1 and Case 2, the analysis result can meet the requirement. However, for Case 3, the stiffness and model analysis result can not satisfy the requirement. To meet the analysis result of Case 3, Structure 1 was optimized and structure 2 was obtained. The CAE analysis was conducted and the results can satisfy the requirements.
2017-03-28
Technical Paper
2017-01-0396
Guobiao Yang, Changqing Du, Dajun Zhou, Hao Wang, Elizabeth Lekarczyk, Lianxiang Yang
Abstract Vehicle weight reduction is a significant challenge for the modern automotive industry. In recent years, the amount of vehicular components constructed from aluminum alloy has increased due to its light weighting capabilities. Automotive manufacturing processes, predominantly those utilizing various stamping applications, require a thorough understanding of aluminum fracture predictions methods, in order to accurately simulate the process using Finite Element Method (FEM) software or use it in automotive engineering manufacture. This paper presents the strain distribution of A5182 aluminum samples after punch impact under various conditions by Digital Image Correlation (DIC) system, its software also measured the complete strain history, in addition to sample curvature after it was impacted; therefore obtaining the data required to determine the amount of side-wall-curl (Aluminum sheet springback) present after formation.
2017-03-28
Technical Paper
2017-01-0448
Prakash T. Thawani, Stephen Sinadinos, John Zvonek
Abstract With the advent of EVs/HEVs and implementation of Idle-Stop-Start (ISS) technologies on internal combustion engine (ICE) driven cars/trucks to improve fuel economy and reduce pollution, refrigerant sub-system (RSS) induced noise phenomena like, hissing, gurgling and tones become readily audible and can result in customer complaints and concerns. One of the key components that induce these noise phenomena is the Thermostatic Expansion Valve (TXV). The TXV throttles compressed liquid refrigerant through the evaporator that results in air-conditioning (A/C) or thermal system comfort for occupants and dehumidification for safety, when needed. Under certain operating conditions, the flow of gas and/or liquid/gas refrigerant at high pressure and velocity excites audible acoustical and structural modes inherent in the tubing/evaporator/HVAC case. These modes may often get masked and sometimes enhanced by the engine harmonics and blower noise.
2017-03-28
Technical Paper
2017-01-0455
Harshad Hatekar, Baskar Anthonysamy, V. Saishanker, Lakshmi Pavuluri, Gurdeep Singh Pahwa
Abstract Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
2017-03-28
Technical Paper
2017-01-0457
Kenji Matsumoto, Hideharu Koga
Abstract Piston ring wear in gasoline engine induces deterioration of emissions performance due to leakage of blow-by gas, instability of idling caused by reduced compression in combustion chamber, and to generate early degeneration of engine oil. We examined anti-wear performance of DLC coating on piston ring, which had been recently reported as an effective method for improving the abrasion resistance. As a result, wear rate remained low under the condition of DLC existence on sliding surface, but once DLC was worn out completely, wear of the piston ring was accelerated and its life became shorter than piston ring without DLC. In this research, we designed reciprocating test apparatus that operates at much higher velocity range, and characterized the frictional materials of the piston ring and sleeve and the DLC as a protective film, a vapor phase epitaxy (VPE) was actively used as a means to form certain level of convex and concave shape on its surface.
2017-03-28
Technical Paper
2017-01-0460
Erina Yasuda, Hiroki Kobayakawa, Seiji Amano, Yuto Otsuki, Tomohiro Ukai
Abstract The number of vehicles with engines using idling stop systems and hybrid systems to improve fuel consumption has recently been increasing. However, with such systems the frequent starts and stops of the engine, where the oil film between the bearings and shaft is squeezed out and direct contact between the components is more likely, can result in increased wear of the engine bearings, particularly in the main bearing. Bearings with resin overlays have been shown to display superior resistance to wear from such start-stop cycles. Moreover, cast iron shafts without quenching treatment have also been used in engines for cost reduction. Because the cast shaft has low hardness and unstable surface graphite after abrasive finishing, increase in the wear amount cannot be suppressed by conventional resin overlay in comparison with steel shaft. Therefore, the resin overlay with improved wear resistance achieved by adding hard particles was developed.
2017-03-28
Technical Paper
2017-01-0465
HaiYan Yu, Siji Chen
Abstract Carbon Fiber Reinforced Plastic (CFRP) tube is an important material for the lightweight design of automotive structures. Simulation method of CFRP thin-walled tubes subjected to axial compression using MAT54 in LS-DYNA was investigated. Based on the two-layer shell model combined with MAT54, failure strategy and the parameters sensitivity of the model were discussed in detail. Then the simulation model was verified by using duplicate specimens comprised of carbon fiber/epoxy unidirectional prepreg tape. Furthermore, the modeling methods of crush trigger and different types of loading speed were analyzed. In addition, based on the method of equal energy absorption, energy absorption performance of thin-walled circular and square tubes made from four materials including mild steel, high strength steel, aluminum alloy and CFRP were also compared.
2017-03-28
Technical Paper
2017-01-0464
Guang Wang, Xueyuan Nie, Jimi Tjong
Abstract Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
2017-03-28
Technical Paper
2017-01-0467
Wei Yuan, Brian Jordon, Bita Ghaffari, Harish Rao, Shengyi Li, Min Fan
Abstract Lightweight metals such as Al and Mg alloys have been increasingly used for reducing mass in both structural and non-structural applications in transportation industries. Joining these lightweight materials using traditional fusion welding techniques is a critical challenge for achieving optimum mechanical performance, due to degradation of the constituent materials properties during the process. Friction stir welding (FSW), a solid-state joining technique, has emerged as a promising method for joining these lightweight materials. In particular, high joining efficiency has been achieved for FSW of various Al alloys and Mg alloys separately. Recent work on FSW of dissimilar lightweight materials also show encouraging results based on quasi-static shear performance. However, coach-peel performance of such joints has not been sufficiently examined.
2017-03-28
Technical Paper
2017-01-0472
Gyoko Oh
Abstract To prevent corrosion of the inlet part with aqueous ammonia injection, high chromium corrosion-resistant materials have been applied for welded joints of mufflers. Bending fatigue strength of welded joint samples of flange pipes was defined through fatigue experiments, modeling that high fluctuating stresses exist in the inlet and outlet flange pipes of a muffler caused by the vibration of a moving vehicle. Factors that caused fatigue to failure such as welding bead shape and metallographic structure were identified through local stress measurements, FEM stress simulations, microscopic observations, and SEM-EDS composition analyses. By comparing with sample A having a smaller flank angle and sample B having a larger flank angle, the results suggested that the difference of bending fatigue strengths at 200,000 cycles was 24% when based on nominal stress, and the difference was 10% when based on measured maximum stress.
2017-03-28
Technical Paper
2017-01-0473
Satoshi Nakada, Toru Furusawa, Eiichiro Yokoi, R Carbas, M Costa, E Marques, G Viana, LFM da Silva
Abstract In recent years, adhesive bonding is increasingly being applied in the construction of vehicle frames in order to improve body stiffness and crash performance. Regarding crash performance, the behavior of impacted components is affected by the fracture energy value of the adhesive. However, the relationship between the ductility and fracture energy values under mixed-mode loadings has not been sufficiently evaluated. In this paper, the fracture energy of three structural adhesives in a static mixed-mode loading using Double Cantilever Beam (DCB) specimens is presented. To derive the fracture energy values, the Compliance Based Beam Method (CBBM) was used, which allowed for precise determination of fracture energy values. Static mixed-mode loading tests were performed in six configurations of mixed-mode loading, ranging from pure peel mode state to almost pure shear mode state.
2017-03-28
Technical Paper
2017-01-0474
Chady Khalil, Yannick Amosse, Guillaume Racineux
Abstract In this study, a proposed new 3-in-1 process using the magnetic pulse welding (MPW) for welding similar and dissimilar metals and for hybrid joining between FRC and metals is developed. Welding between (a) AA1199 sheets and XES, (b) AA1199 and XSG which is zinc coated steel, (c) 5754-aluminum alloy and XES were performed and (d) hybrid joint between PA66-glass-FRC and 5754-aluminum was achieved. SEM observations and EDX analysis for the weld interface between aluminum and steel showed where detectable very thin layers of intermetallics and the wavy interface pattern typical for impact welding was identified. X-Ray microtomography observation for the joining region in the FRC showed the good state of the composite structure after joining. 3D numerical simulation using LS-Dyna was used for the selection of the welding parameters. Quasi-static lap shear testing for the welds revealed a failure in the weak metal sheet and not in the weld.
2017-03-28
Technical Paper
2017-01-0471
Yasuo Kadoya, Yuki Oshino
Abstract By implementation of the core technology of capacitor-resistance welding, RingMash technology, metallic bonding, is developed to manufacture various components. It is the best suited for powertrain components such as transmission gears at low cost. Components made by RingMash are attributed to smaller and lighter transmission. The technology is recommended to manufacture co-axle male-female work pieces bonding, male side diameter is slightly larger than female side hole. RingMashing is a solid state bonding without melting work pieces. The actual RingMashing process is done in ambient atmosphere and does not use filler. RingMashing process itself takes only 100 milliseconds, results very minimum Heat-Affected Zone (HAZ), normally no more than 1 mm. The minimum HAZ achieves excellent structural integration for better performance of transmission. If two work pieces are same metals, spattering free bonding is possible.
2017-03-28
Technical Paper
2017-01-0508
Gabor Kiss, Yuya Ando, Martin Schifko
Abstract Simulation tools are becoming more and more popular in the automotive industry since they can significantly reduce the costs required for development of new models. Currently there are many computational fluid dynamics (CFD) tools available on the market and becoming indispensable tools for R&D in many of the automotive applications. However there are some applications which require much effort by highly skilled engineers to prepare the model and impractical level of computation time even using a cluster computer using the conventional CFD tools due to the nature of physics and complexity of a geometry such like dip painting process. Therefore, corrosion protection engineers are striving to find an alternative solution. Another issue is that the main focus of those available CFD tools are problems occurring during the dip paint simulations and they omit problems occurring after the object dips out from the bath, such as retained water or bake drips.
2017-03-28
Technical Paper
2017-01-0506
Xueyuan Nie, Jimi Tjong
Abstract Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
2017-03-28
Technical Paper
2017-01-0489
Hyunkwon Jo, Jongsoo Kim, Jaemin Park, Heeseung Yang, Hyunmin Park
Abstract Cost reduction is an important issue in the intense competition automotive industry. Interior parts which are mainly consist of plastic have same issue. The manufacturing main processes of plastic products are injection and assemble and the cost of injection depends on injection cycle time. Therefore many studies for the reduction of injection cycle time have been implemented. However the researches based on engineer's experiences have limits so, nowadays many studies utilize CAE. In this paper, the study for the reduction of cycle time focused on injection molding design. To satisfy appearance quality with the reduction of cycle time, the design of injection molding was optimized by using CAE. The result of CAE showed many causes and effects of problems. The optimization of injection molding design improved the quality with the reduction of cycle time. Finally, the product based on CAE showed good quality and cycle time reduction in comparison with previous products.
2017-03-28
Technical Paper
2017-01-1443
Lu ZiLin, Gangfeng Tan, Yuxin Pang, YU TANG, Keyu Qian
Abstract The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
2017-03-28
Technical Paper
2017-01-1074
Xingfu Chen, Todd Brewer, Cagri Sever, Eben Prabhu, Reda Adimi, Carlos Engler-Pinto
Abstract Cylinder head design is a highly challenging task for modern engines, especially for the proliferation of boosted, gasoline direct injection engines (branded EcoBoost® engines by Ford Motor Company). The high power density of these engines results in higher cylinder firing pressures and higher operating temperatures throughout the engine. In addition to the high operating stresses, cylinder heads are normally heat treated to optimize their mechanical properties; residual stresses are generated during heat treatment, which can be detrimental for high-cycle fatigue performance. In this paper, a complete cylinder head high cycle fatigue CAE analysis procedure is demonstrated. First, the heat treatment process is simulated. The transient temperature histories during the quenching process are used to calculate the distribution of the residual stresses, followed by machining simulation, which results in a redistribution of stress.
2017-03-28
Technical Paper
2017-01-1301
Deepak A. Patil, Hrishikesh Buddhe
Abstract Frontal collisions account for majority of car accidents. Various measures have been taken by the automotive OEMs’ with regards to passive safety. Honeycomb meso-structural inserts in the front bumper have been suggested to enhance the energy absorption of the front structure which is favorable for passive safety. This paper presents the changes in energy absorption capacity of hexagonal honeycomb structures with varying cellular geometries; under frontal impact simulations. Honeycomb cellular metamaterial structure offers many distinct advantages over homogenous materials since their effective material properties depend on both, their constituent material properties and their cell geometric configurations. The effective static mechanical properties such as; the modulus of elasticity, modulus of rigidity and Poisson’s ratio of the honeycomb cellular meso-structures are controlled by variations in their cellular geometry.
2017-03-28
Technical Paper
2017-01-0504
Anthony Berejka, Dan Montoney, Dan Dispenza, Len Poveromo, Rick Galloway, Mark Driscoll, Marshall Cleland
Having demonstrated the feasibility of using X-rays derived from high current industrial electron beam accelerators to cure the matrices of carbon fiber composites and then scaled this up to cure large sized, non-structural automobile components, performance car hoods, the New York State Vehicle Composites Program had a chassis designed, a cured epoxy mold made and then the chassis matrix cured using X-rays with a formulated radiation responsive matrix material. The feasibility study showed how X-rays could cure through materials embedded within the composite layers, such as metal inserts that could be used for mechanical fastening without fracturing the composite. In producing X-ray cured hoods, the power consumption for X-ray curing was found to be more than 20% lower than that needed for autoclave curing the same sized hoods using conventional thermosetting pre-pregs. More significant was the time-to-cure.
2017-03-28
Technical Paper
2017-01-0443
Yong Hyun Nam, Gwansik Yoon
The sound induced by a closing door is determined by the various components like door latch, door module, door glass installed within the door area. The key components vibrate due to the force from the closing door, and the combined vibration caused by the components determines the sound from the door. In particular, when the door is closed with the door glass down, the vibration and noise of the door glass are louder than those of any other component; this is called door glass rattle - attributed to the loss of the door glass support point. This study not only evaluates the rattle influence level of a door glass support but also introduces an approach to reduce glass rattle noise by using sealing components. 1. Study on Minimization of Vibration A jig was constructed to evaluate the level of influence of the rattle of a door glass support.
2017-03-28
Technical Paper
2017-01-1633
Eiji Kojima, Kazuhiko Kano, Hiroyuki Wado, Noriyuki Iwamori
Abstract In automotive applications, magnetic field sensors are widely used for detecting position and current. However, magnetic field sensors are required to be highly precise with good usability. To satisfy demand, we have developed a graphene Hall sensor that senses magnetic fields by the Hall effect. The sensitivity of a Hall sensor is proportional to the carrier mobility, and graphene has an extremely high carrier mobility compared with conventional materials like Si, GaAs and InSb. Thus, graphene Hall sensors are expected to give high sensitivity that will enable sensing of the Earth’s magnetic field. In addition, graphene has a low temperature dependence on carrier mobility due to its ballistic transport, so good usability in actual use is also anticipated. In this paper, we demonstrate a graphene Hall sensor made using conventional Si process technology.
2017-03-28
Technical Paper
2017-01-1626
Tomas Poloni, Jianbo Lu
Abstract This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
2017-03-28
Technical Paper
2017-01-1663
Alan Druschitz, Christopher Williams, Erin Connelly, Bob Wood
Abstract Binder jetting of sand molds and cores for metal casting provides a scalable and efficient means of producing metal components with complex geometric features made possible only by Additive Manufacturing. Topology optimization software that can mathematically determine the optimum placement of material for a given set of design requirements has been available for quite some time. However, the optimized designs are often not manufacturable using standard metal casting processes due to undercuts, backdraft and other issues. With the advent of binder-based 3D printing technology, sand molds and cores can be produced to make these optimized designs as metal castings.
2017-03-28
Technical Paper
2017-01-1666
David Weiss, Orlando Rios
Abstract Aluminum alloys containing cerium have excellent castability and retain a substantial fraction of their room temperature strength at temperatures of 200°C and above. High temperature strength is maintained through a thermodynamically trapped, high surface energy intermetallic. Dynamic load partitioning between the aluminum and the intermetallic increases mechanical response. Complex castings have been produced in both permanent mold and sand castings. This versatile alloy system, using an abundant and inexpensive co-product of rare earth mining, is suitable for parts that need to maintain good properties when exposed to temperatures between 200 and 315°C.
2017-03-28
Technical Paper
2017-01-0921
Bharadwaj Sathiamoorthy, Alex Graper, Andrew McIntosh, William Kaminski
The automotive aftermarket industry is an extremely cost competitive market to say the least. Aftermarket manufacturers are sought by customers primarily for their ability to replace an OES for a fraction of the cost. This pressurizes the manufacturers to yield on performance abilities to get a share in the market place. The TWC system in gasoline vehicles not only acts as an emissions reduction device but is an integral part of the overal vehicle performance itself, especially since the introduction of OBD II systems in 1995. An inefficient catalyst not only leads to excessive tailpipe emissions but also acts detrimental to vehicle fueling and hence overall performance. The aftemarket catalyst industry which is regulated by EPA and CARB for gasoline engines is subject to meeting a mandatory performance standard for the same reason. There are several advancement in catalyst technologies to gain performance but this may or may not apply to the aftermarket manufacturers.
Viewing 1 to 30 of 15895