Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 14949
2016-11-08
Technical Paper
2016-32-0019
David Weiss
In the early 1980's, some promising research and development efforts focused on powder metallurgy revealed that aluminum alloys containing 4 wt% cerium exhibit high temperature mechanical properties exceeding those of the best commercial aluminum casting alloys currently in production. Cerium oxide is an abundant rare earth oxide that is often discarded during the refining of more valuable rare earths such as Nd and Dy. Therefore, the economics are compelling for cerium as an alloy additive. Aluminum-cerium alloy components prepared via hot pressing and forging exhibited tensile strengths of 43 ksi at 450°F. This compares to typical tensile strengths of 10-26 ksi for Al-Cu and Al-Mg-Zn systems at that temperature.
2016-11-08
Technical Paper
2016-32-0024
Daisuke Sugio, Shinpei Okazaki, Mitsuo Kaneko
Injection molding is a common molding method for plastic parts and is widely applied to outer parts of motorcycles. To make it stiff enough to hold a large load, glass fibers are usually mixed in it. However, when a plastic part contains glass fibers, the appearance of the outer surface becomes deteriorated after molding. It is because the glass fibers come out of the surfaces. Therefore, the surfaces of these parts are painted to conceal the exposed fibers. Moreover, in the case of glass fiber reinforced plastic made from polypropylene (PP-GF), glass fibers easily come out of the surface and painting is not easily applied. Accordingly, PP-GF hardly satisfies the requirements for outer appearances. In this development, a method that fulfills the appearance requirement and is applicable to mass production was established using rapid heat and cool molding (H&C molding) while eliminating painting process for cost reduction.
2016-11-08
Technical Paper
2016-32-0020
TL Balasubramanian, V Lakshminarasimhan, Srivenkata subramani N, Ajith kumar S, Sudhagar V
Development of small air cooled motorcycles is ever challenging due to combination of customer expectation, regulatory requirements and cost factors. Achieving higher performance and emission standards means higher engine and parts operating temperature. Under these changes meeting durability targets at reasonable cost needs good understanding of material, surface treatment and tribological aspects. In this paper some of the surface and process improvements done to reduce wear in engine valves is discussed in detail. Design of engine valves shall ensure meeting thermal, mechanical strength requirements wear and durability targets. Surface treatments, coating, surface finish and also use of special materials in tip, valve stem, seat ensures higher durability; low wear in valve and interfacing parts. During new engine development process verification tests, wear observed in valve stem- valve guide, valve tip- screw interface.
2016-11-08
Technical Paper
2016-32-0071
Koji Ueno, Hiroyuki Horimura, Akiko Iwasa, Yuji Kurasawa, Pascaline tran, Ye Liu
Motorcycles are one of the major modes of transportation globally, and further expansion of motorcycle demand and usage is expected to continue because of population growth and individual income increase, in particular in emerging countries. At the same time, approach to critical environmental issues, such as escalation of air pollution, becomes more important challenge and this trend accelerates tightening of motorcycle emission regulation globally. In accordance with this, responding to social needs and minimizing the impact on air pollution while enhancing features of motorcycles, such as drive performance, convenience, and price attractiveness are our mission as a manufacture. Platinum group metals (PGMs) such as platinum, palladium and rhodium are commonly used for automotive and motorcycle catalysts. One of catalyst researchers’ dream is ultimately to develop catalyst without using such PGMs that are precious and costly resources.
2016-11-08
Technical Paper
2016-32-0023
Shinji Kasatori, Yuji Marui, Hideto Oyama PhD, Kosuke Ono
One of the effective methods for weight reduction of valve systems in an engine is the application of titanium to the valve material. However, titanium exhaust valves that require high temperature resistance are basically expensive because they contain a lot of rare metals. Therefore, their application to a mass produced product has been very much limited. In this study, it was challenged to develop an alloy that contains only minimum required amount of rare metal elements which has a large impact to the cost, aiming at broadening the application of titanium exhaust valves. Generally speaking, heat-resisting titanium alloy has a high deformation resistance because of its superior strength at high temperature. Accordingly, its formability at high temperature is low and cracks and other defects may easily occur. In addition, when a titanium alloy is exposed with a high temperature atmosphere for a long time, oxidized scales that easily exfoliate are formed on its surface.
2016-11-08
Technical Paper
2016-32-0021
Stephen Gurchinoff
Thermoplastic bearing materials are being used in automotive transmission architectures where higher pressures and velocities are driving innovation. The benefits thermoplastics offer are high PV capable materials suitable to reduce NVH, increase design freedom while reducing design space, thermal insulation, reduce coefficient of friction, and improve wear resistance when compared to needle bearings. Expanding on the success in automotive may allow for these types of materials to be evaluated in marine lower units, CVT’s, pumps, and other small engine applications
2016-11-08
Technical Paper
2016-32-0022
David Weiss, Simon Beno, Chris Jordan, Pradeep Rohatgi
Cylinder liners exert a major influence on engine performance, reliability, durability and maintenance. Various combinations of non-metallic reinforcements and coatings have been used to improve the tribological performance of sleeves or surfaces used in compressors and internal combustion engines in four stroke, two stroke and rotary configurations. In this paper we report the use of a hybrid composite containing silicon carbide and graphite in an aluminum alloy matrix to improve the performance of various small engines and compressors. Material properties of the base material, as well as comparative dynamometer testing, are presented.
2016-10-17
Technical Paper
2016-01-2351
Kotaro Tanaka, Kazuki Hiroki, Tomoki Kikuchi, Mitsuru Konno, Mitsuharu Oguma
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide (NOx) emissions. However, a kind of lacquer is formed on the EGR valve or EGR cooler because of the particulate matters and other components present in diesel exhaust, which are serious problems. In this study, the mechanism of the lacquer deposition has been investigated using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometer, which allows for in situ measurements of the surface of the depositing lacquer. Scanning electron microscope (SEM) was also used to perform detail observation of the lacquer. Deposition of temperature-dependent lacquers was evaluated by varying the temperature of a diamond prism between 353 K and 393 K in ATR-FTIR that was set to a custom-built sample line, which branched off from the exhaust pipe of the diesel engine.
2016-10-17
Technical Paper
2016-01-2272
Carl Bennett, Jason Bell, Jeffrey Guevremont
Elastomer compatibility is an important property of lubricants. When seals degrade oil leakages may occur, which is a cause of concern for original equipment manufacturers (OEMs) because of warranty claims. Leakage is also a concern for environmental reasons. Most often, the mechanical properties and fitting of the oil seals is identified as the source of failure, but there are cases where the interaction between the lubricant and the seal material can be implicated. The performance of seal materials in tensile testing is a required method that must be passed in order to qualify lubricant additive packages. We conducted an extensive study of the interactions between these elastomeric materials and lubricant additive components, and their behavior over time. The physicochemical mechanisms that occur to cause seal failures will be discussed.
2016-10-17
Technical Paper
2016-01-2205
Chris McFadden PhD, Kevin Hughes PhD, Lydia Raser PhD, Timothy Newcomb
Hybrid drivetrain hardware combines an electric motor and a transmission, gear box, or hydraulic unit. With many hybrid electric vehicle (HEV) hardware designs the transmission fluid is in contact with the electric motor, and so some OEMs and tier suppliers have concerns about the electrical properties of automatic transmission fluids (ATFs). Lubrizol has conducted a fundamental research project to better understand the electrical conductivity of ATFs. In this paper we will present conductivity data as a function of temperature for a range of commercially available lubricants, including engine oils and gear oils, in addition to ATFs. All fluids, regardless of type, had conductivities in the range of 1E-8 to 1E-10 S/cm at 100oC and as such are good insulators with the ability to dissipate static charge. Next we will deconstruct one ATF to show the relative impact of the various classes of lubricant additives.
2016-10-17
Technical Paper
2016-01-2350
Zhien Liu, Jiangmi chen, Sheng-hao Xiao
This paper combines fluid software STAR-CCM+ and finite element software ABAQUS to stimulate the internal field of this Gasoline engine exhaust manifold based on the theory of loose coupling. Through the simulation of car parking cooling - full load condition at full speed, we estimate thermal fatigue life of the exhaust manifold with the plastic strain increment as the evaluation parameters. Results shows that the manifold satisfies the target life performance. Here we also made a consideration about the how the bolt force affects the manifold elastic and plastic material behavior.
2016-10-17
Technical Paper
2016-01-2238
Kazunari Kuwahara, Tadashi Matsuo, Yasuyuki Sakai, Yoshimitsu Kobashi, Tsukasa Hori, Eriko Matsumura, Jiro Senda
Normal tridecane, a low-boiling-point component of gal oil, has been employed as a single-component fuel for diesel combustion model experiments. However, no reaction mechanism for normal tridecane has been applied to three-dimensional modeling to reproduce experimental resulsts. A detailed reaction mechanism for normal tridecane generated by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), contains 1493 chemical species and 3641 elementary reactions. Reaction paths during ignition process computed using the detailed mechanism, were analyzed with the initial temperatures of 650 K, 850 K and 1100 in the tau1 dominant, negative temperature coefficient and non-tau1 regions, respectively. Based on knowledge derived from the reaction path analysis, a reduced reaction mechanism containing 49 species and 85 reactions, was generated and validated.
2016-10-17
Technical Paper
2016-01-2204
Takafumi Mori, Masanori Suemitsu, Nobuharu Umamori, Takehisa Sato, Satoshi Ogano, Kenji Ueno, Oji Kuno, Kotaro Hiraga, Kazuhiko Yuasa, Shinichiro Shibata, Shinichiro Ishikawa
One effective and easy way to improve fuel economy for automobiles is to decrease viscosity of lubricants, as it brings less churning loss. However, this option creates a higher potential for thinner oil film, which could damage the mechanical parts. This paper describes a new low-viscosity gear oil technology which was successfully developed to improve wear at tapered-roller bearings in differential gear units, whereas achieving higher fuel economy performance. As for tapered-roller bearings in differential gear units protected by gear oils, one major damage is supposed to cause wear at large end face of rollers and the counterpart, so-called bearing bottom wear. In order to understand the wear mechanism, wear at rolling contact surface of rollers and the counterparts, so-called bearing side wear was additionally observed to confirm the wear impact on tapered-roller bearing.
2016-10-17
Technical Paper
2016-01-2214
Teuvo Maunula, Thomas Wolff
The emission regulations for mobile on- and off-road applications are becoming stricter in Euro 6/Stage 5 and beyond levels and require the use of SCR for NOx and diesel particulate filter (DPF) for PM removal. The presence of wall-flow filter with active regeneration creates a risk of thermal deactivation of SCR catalyst in the aftertreatment system (ATS). The thermal and chemical durability of Cu- and Fe-SCR catalysts were screened and developed to stand these conditions. The performance of catalysts were investigated with laboratory simulations and engine-bench equipments. New Cu-SCR catalysts have a very high low-temperature SCR activity and a low dependency on NO2 promotion. Developed Fe-SCR catalysts showed also an improved low temperature activity and durability but were more dependant on NO2 concentration too. Low N2O formation with Cu-SCR catalyst is a key factor to minimize green house gas emissions.
2016-10-17
Technical Paper
2016-01-2333
Akio Kawaguchi, Hiroki Iguma, Hideo Yamashita, Noriyuki Takada, Naoki Nishikawa, Chikanori Yamashita, Yoshifumi Wakisaka, Kenji Fukui
From the environmental and energy security point of view, drastic fuel efficiency improvement of engines is required. Cooling heat loss is one of the most dominant losses among the various engine losses to reduce. Since the 1980s, many attempts to reduce cooling heat loss by insulating the combustion chamber wall have been carried out, most of which have not been successful. Charge air heating by the constantly high temperature insulating wall is a significant issue of these attempts, because it deteriorates charging efficiency, fuel/air mixture in diesel engines, and the tendency of knock occurrence in gasoline engines. Toyota has developed a new concept heat insulation methodology, which can reduce cooling heat loss through the combustion chamber wall, without sacrificing any other engine performances. Surface temperature of insulation coat on combustion chamber wall changes rapidly, according with the fluctuating temperature of in-cylinder gas.
2016-10-17
Technical Paper
2016-01-2161
Gangfeng Tan, Xuefeng Yang, Li Zhou, Kangping Ji, Mengying Yang
Mg2Si1-xSnx thermoelectric material is eco-friendly and of high thermoelectric performance. In this research heat transfer and power generating characteristics of the automobile exhaust heat recovery system based on Mg2Si1-xSnx material were studied. Firstly, the heat transfer model for the exhaust heat recovery system was established. Then, based on primitive characteristics of Mg2Si1-xSnx material under the different Sn/Si ratio, two-phase heat transfer of coolant was adopted and the heat transfer process was analyzed. Finally, when the saturation temperature of coolant in the two-phase zone was respectively 373K and 343K, the heat transfer and power generating characteristic were analyzed for each condition.
2016-09-27
Technical Paper
2016-01-2143
Yury Zhuk
The EU REACH regulations set September 2017 as a “sunset date” for the use of toxic Hexavalent Chromium salts, and as this date is approaching the aerospace manufacturers are looking for alternative coatings to replace Hard Chrome plating (HCP). HCP is widely used in the aircraft industry to protect steel components against wear, corrosion and galling. Hardide-A CVD Tungsten/Tungsten Carbide coating has met the technical performance requirements as a potential alternative to HCP on some specific Airbus aircraft components. This newly-developed CVD coating is crystallized from the gas phase atom-by-atom, forming a uniform layer on both internal and external surfaces and complex shaped parts, which are impossible to coat by thermal spray coatings, considered to be the best available alternative to HCP. Hardide coating consists of Tungsten Carbide nano-particles dispersed in metal Tungsten matrix, combining hardness with toughness and crack-resistance.
2016-09-27
Technical Paper
2016-01-2142
Pavel Lykov PhD, Artem Leyvi, Rustam M. Baytimerov, Aleksei Doikin, Evgeny Safonov
Nowadays the treatment of solid surface by powerful streams of charged particles accelerated with power density of ≥106 W/сm2 is widely used for modifications of different materials properties. Fast electron beam power entry into the target material causes intense thermal and deformation processes. The changing of the structure, the phase composition, the microrelief of the treated surface consequently happens. It is often accompanied by the hardening and increase of the wearing properties. Low-energy high-current electron beam usage is proposed as a finishing treatment of product obtained by selective laser melting of heat-resistant nickel alloy EP648. The subject of the research is the surface properties of the product.
2016-09-27
Technical Paper
2016-01-2144
Galina M. Susova, Rostislav Sirotkin
FMEA methodology is widely used today for solution of practical analysis problems, quality (reliability, risks) evaluation and assurance etc., owing to a clear and simple algorithm and the absence of restrictions on a subject of analysis (i.e., systems, processes, products). However, the efficiency of applying FMEA methodology for problems solution is determined by the choice of elements of analysis, completeness of identification of potential non-conformities, their causes, frequencies and effects. Quality of manufacture is determined by deviations from requirements of design and manufacturing documentation including drawings. In this article a task of ensuring a steady reduction of deviations from these requirements during manufacture through implementation of preventive actions combined with control of time and costs for correction of non-conformances is considered.
2016-09-27
Technical Paper
2016-01-8044
Guoyu Feng, Wenku Shi, Henghai Zhang, Qinghua Zu
In order to predict the fatigue life of heavy commercial vehicles thrust rod made of rubber material dumbbell specimens and uniaxial tensile fatigue tests. Based on the measured data samples to the maximum principal strain injury parameters established rubber uniaxial fatigue life prediction models. In the longitudinal tension and compression loading, fatigue life V rods were predicted, and by the uniaxial fatigue test verification, the results show that the maximum principal strain prediction model, the maximum error is less than 10% predicted better results. Show by dumbbell specimen data, the establishment of a spherical hinge rubber life prediction model method, it is possible to predict the fatigue life of the thrust rod.
2016-09-27
Technical Paper
2016-01-2114
Matthias Meyer
Carbon composites have been on an odyssey within the past 15 years. Starting on the highest expectations regarding the performance, reality was hitting a lot of programs hard. Carbon composites were introduced on a very high technical level and industry has shown of being capable to handle those processes in general. In particular, production never sleeps and processes undergo a continuous change. Within these changes costs remain the most critical driver. As products are improving during their lifetime, they usually increase the degree of complexity, too. According to the normal cost improvement, this has drastic consequences for production. When setting up the first generation of composite production, the part being produced has been in the centre of attention.
2016-09-27
Technical Paper
2016-01-8027
Stefan Steidel, Thomas Halfmann, Manfred Baecker, Axel Gallrein
Rolling resistance and tread wear of tires do particularly influence the maintenance costs of commercial vehicles. Although the tire labeling is established in Europe, it is meanwhile well-known that, due to the respective test procedures, these labels do not hold in realistic application scenarios in the field. This circumstance arises from the development phase of tires, where the respective performance properties are mainly evaluated in tire/wheel standalone scenarios in which the wide range of usage variability of commercial vehicles cannot be considered adequately. Within this article we address a method to predict indicators for rolling resistance and tread wear of tires in realistic application scenarios considering application-based factors of influence like specific customers, operation circumstances, regional dependencies, fleet specific characteristics etc. Moreover, the prescribed methodology may also be transferred to the prediction of fuel consumption and emission.
2016-09-27
Technical Paper
2016-01-2084
Curtis Hayes
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at D2 (the exit of the skin) can often be a problem without exceeding the maximum interference at D4 (exit of the stringer). Softer base materials and harder, higher-strength rivets can compound the problem. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the tail side die dramatically reduces D4 interference, which in some instances resulted in a reduction of more than 30%. This allowed an increase in forming force to increase D2 interference and made for a much more robust process.
2016-09-27
Technical Paper
2016-01-2118
Patrick Land, Luis De Sousa, Svetan Ratchev, David Branson, Harvey Brookes, Jon Wright
With increased demand for composite materials in the aerospace sector, there is a requirement for the development of manufacturing processes that enable larger and more complex geometries, whilst ensuring that the functionality and specific properties of the component are maintained. To achieve this methods such as thermal roll forming are being considered. This method is relatively new to composite forming in the aerospace field, and as such there are currently issues with the formation of part defects during manufacture. Previous work has shown that precise control of the force applied to the composite surface during forming has the potential to prevent the formation of wrinkle defects. In this paper the development of various control strategies that can robustly adapt to different complex geometries are presented and compared within simulated and small scale experimental environments, on varying surface profiles.
2016-09-27
Technical Paper
2016-01-2117
Rustam M. Baytimerov, Pavel Lykov, Sergei Sapozhnikov, Dmitry Zherebtsov, Konstantin Bromer
The development of Additive technologies (SLS/SLM, EBM, DMD) suggests the increase of range expansion of materials used. One of the most promising directions is products manufacturing from composite materials. The technology of composite micro-powders production on the basis of heat-resistant nickel alloy EP648 and Al2O3 is proposed. The aim of this research is to develop a method of producing composite micropowders for additive technology application. This method is based on modification of the metal micro-powders surface as a second phase in a planetary mixer (mechanochemical synthesis). The obtained composite micropowders are compared with powders which are recommended for selective laser melting usage (produced by MTT Technology). The equipment used in the research: planetary mixer, scanning electron microscopy (SEM), optical granulomorphometer Occhio 500nano.
2016-09-27
Technical Paper
2016-01-2116
Peter Mueller-Hummel
ABSTRACT: Drilling holes into metal is a normal procedure, because the drill (metal drill) and the mal-leable capability of the metal compensate the insufficient cutting capability of a worn out drill. Drilling Composite by using the same drill (metal drill) is different procedure, because composite fibers are not mal-leable like metal at all. This fact is the reason why drills for metal are getting very hot by drilling Composite fibers. Even the diameter of the drilled holes in the carbon fiber parts are getting smaller than the drill them-selves afterwards. The hole in the metal part of the stack remains constant. This article explains the physical reason and characterizes the special features of a drill to realize a safe drilling Composite or CFRP/Aluminum stacks in H8 quality. Simplified theoretic models will show how CFRP/Aluminum stacks should be machined “Safe”, inside the cpk tolerance, without scratches even when the drill is worn.
2016-09-27
Technical Paper
2016-01-2113
Raphael Reinhold
Resin transfer molding (RTM) is gaining importance as a particularly economical manufacturing method for composites needed in the automotive and aerospace industries. With this method, the component is first shaped with dry fiber reinforcements in a so-called “preforming process” before the mold is placed in a RTM tool, injected with resin and cured. In recent years, Brotje-Automation have been developing innovative product solutions that are specially designed for these preforming processes and suitable for industrial use. For the first time ever, Broetje’s Composite Preforming Cell (CPC) makes large-quantity serial production of complex and near-net-shape preforms for composite components using this RTM process possible. With the additional integration of the patented 3D Composite Handling System Broetje impressively demonstrates its service and product portfolio in the area of innovative composite manufacturing technology and its know-how as a complete system integrator.
2016-09-27
Technical Paper
2016-01-2129
Antonio Rubio, Luis Calleja, Javier Orive, Ángel Mújica, Asunción Rivero
Aluminum skin milling is a very challenging process due to the high quality requirements needed in the aeronautic and aerospace industries. Nowadays, on these markets, there are just two technological approaches able to face the manufacturing of this sort of wide thin blanks: chemical and mechanical milling by means of highly complex machines. Both solutions lead to a high investment requirement that affect directly on the application profitability on these industrial sectors. This paper presents a flexible machining system that allows milling skin shaped parts within required tolerances by means of an innovative universal holding fixture combined with an adaptive toolpath development. This flexible holding fixture can be adapted to the required shape and can hold uniformly the whole sheet surface. Besides, the solution includes an implementation that can adapt the machining toolpath by means of the skin thickness online measurement.
2016-09-27
Technical Paper
2016-01-2123
Matthias Busch, Benedikt Faupel
The integration of omega stringers to panels made of carbon fiber reinforced plastic (CFRP) by adhesive bonding, which are joined together in an autoclave, must be subject to high quality standards. Defects such as porosity, kissing bonds, voids or inclusion must be detected safely to guaranty the functionality of the component. Therefore, an inspection system is required to verify these bonds and detect different kinds of defects. In this contribution, the advantages of a robotic inspection system, which will be achieved through continuous testing, will be introduced. The testing method is the active thermography. The active thermography has major advantages compared with other non-destructive testing methods. Compared to testing with ultrasonic there is no coupling medium necessary, thus testing will be significantly enhanced.
2016-09-27
Technical Paper
2016-01-2121
Pavel Lykov, Rustam M. Baytimerov, Artem Leyvi, Dmitry Zherebtsov, Alexey Shultc
The Copper-Nickel alloys are widely used in various industries. The adding of nickel significantly enhances mechanical properties, corrosion resistance and thermoelectric properties of copper. The technology of producing Copper-Nickel composite micro-powders by gaseous deposition of Nickel on the surface of copper powder is proposed. The vaporization of nickel is implemented by using electric arc. The dependence between mode of processing and the ratio of phases in the powder is investigated. The possibility of the obtained composite powder application in additive technologies is investigated. The equipment used in the research: magnetron sprayer, scanning electron microscopy (SEM), optical granulomorphometer Occhio 500 nano.
Viewing 1 to 30 of 14949