Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 14359
2015-01-14
Technical Paper
2015-26-0025
Sireesha Mandagaddi
Title: Novel Conceptual approaches for improvements in Compression ratio for Diesel Engines Author: Mandagaddi Sireesha Affiliated To: Robert Bosch Engineering and Business Solutions Abstract: In diesel systems, compression ratio plays an important role in the combustion process.The volume of air that is sucked into the cylinder and which will be further compressed in compression stroke depends on the swept volume within the cylinder(ie,piston movement from TDC to BDC). In this paper the author gives two proposals: • To achieve greater compression ratio for the existing cylinder size by increasing the swept volume. • To achieve different compression ratio’s for the existing cylinder size by having different swept volumes. First proposal, a greater compression ratio can be achieved for the existing cylinder size by increasing the swept volume during intake stroke(ie, when the piston is travelling towards BDC from TDC ) .
2015-01-14
Technical Paper
2015-26-0063
Jurgen De Kimpe, Serge Lievens, Shengchun Yan
This paper describes the properties of an engine coolant that uses a potassium propionate solution as base fluid. Although alternatives for ethylene glycol are known, e.g. propylene glycol and glycerin, the use of a salt based coolant for high temperature applications has seldom been considered as a viable option due to the intrinsic corrosiveness of such salt solutions. The salt based coolant offers freezing as well as boiling protection and has thermal properties that allow for usage in standard combustion engines. Volumetric heat capacity and viscosity are very similar to glycol based analogues, while its thermal conductive is substantially higher. Thermal experiments indicate that the potassium propionate coolant is highly effective in suppressing localized boiling phenomena. Due to its chemical nature the coolant has superior oxidation stability. The coolant has the further advantage of being readily biodegradable and has a low toxicity.
2015-01-14
Technical Paper
2015-26-0062
Pankaj Kumar Verma, Shashi Bhusham Singh, Kalyan Vedula
The Armoured fighting vehicle designers are continuously fighting for ways to reduce vehicle weight, increase fuel efficiency, improve reliability, and reduce cost. Customized engineering design, and materials are becoming more widespread on all fronts. Also, vehicle emission norms are getting stringent day by day and there is increasing pressure to reduce fuel consumption. One important method of achieving the fuel economy and improve vehicle performance is to reduce vehicle weight. In view of the above advanced materials like Carbon Fiber Reinforced Polymer (CFRP) composites are promising to be the material to look for when it comes to reduce weight of structural elements due to its high strength to weight and high stiffness to weight ratios and hence was used for the development of Bogie Wheel of a light tracked vehicle. This paper illustrates the developmental methodology of Carbon Fiber Reinforced Polymer (CFRP) Road wheel for 20 ton class of tracked vehicle.
2015-01-14
Technical Paper
2015-26-0064
Asmita Manwatkar, Prasad S Phale, Moqtik Ashok Bawase, Mangesh Ramesh Saraf
Used oil analysis plays an important role in the field of engine development, considering that it can give brief idea about performance of lubricant/ oil being used, its compatibility with the system under considerations. Presently, regular testing are done like elemental analysis using ICP which can give idea about wear elements and additive elements. But it does not give information on morphological characterization of particles. In present work, Scanning Electron Microscopy technique with EDAX detector is used for characterizing the used oil. Oil is filtered on suitable paper and the particles collected on paper are analyzed. This gives the information on morphology and size of particles, their elemental analysis and mapping so that the sources can be judged. Size of wear metal particle is very important factor as even few bigger size particles are more detrimental than large number of smaller particles.
2015-01-14
Technical Paper
2015-26-0066
Aravind Vadiraj, Shashank Tiwari, Ashutosh Dasare
Mechanical and wear properties of Al alloyed gray cast iron (0.5% and 1.0%) was compared with that of Mo (1.0%) and Cu (0.77%) alloyed gray cast iron in this investigation. All the alloys showed pearlitic microstructure. The graphite morphology varied due to varying chemistry. The fracture surface showed “cabbage” life dimpled morphology indicating the predominant ductile fracture. It was found that the Mo containing cast iron show 25 to 30% higher strength and 6 to 7 times better wear resistance compared to Al containing cast irons. The worn surface showed oxide formation during sliding.
2014-12-01
Journal Article
2014-01-9004
Mohammad Danish Khan
Abstract Effectiveness of current electromagnetic shielding techniques in composite aircraft has been called into question several times before and is a subject of interest and research in the aerospace industry. We present an analytical approach to understand the issues in detail. It was found using first order approximations that a panel with Aluminum expanded metallic foil (ExMF) along with carbon fiber plies used on composite aircraft provides fair albeit lower electromagnetic shielding from source frequencies of a few KHz until well into MHz range when compared to an aluminum panel used on metallic aircraft. This was primarily attributed to relatively large skin depth value at low frequencies which was due to: a) low electrical conductivity of aluminum ExMF when compared to bulk aluminum; b) low electrical conductivity of resin impregnated carbon fiber layers and; c) very thin layer of aluminum ExMF used.
2014-11-11
Technical Paper
2014-32-0034
Saager Paliwal, Alex S. Bare, Katherine J. Lawrence, Marc Anderson, Glenn Bower
Abstract This study looks at the application of a titanium dioxide (TiO2) catalytic nanoparticle suspension to the surface of the combustion chamber as a coating, as well as the addition of hydrogen gas to a four-stroke spark-ignited carbureted engine as a possible technique for lowering engine-out emissions. The experiments were conducted on two identical Generac gasoline powered generators using two, four and six halogen work lamps to load the engine. One generator was used as a control and the second had key components of the combustion chamber coated with the catalytic suspension. In addition to the coating, both engines were fed a hydrogen and oxygen gas mixture and tested at low, medium and high loads. Using an unmodified engine as a control set, the following three conditions were tested and compared: addition of hydrogen only, addition of coating only, and addition of hydrogen to the coated engine.
2014-11-11
Technical Paper
2014-32-0042
Bernard Alsteens
Abstract Composite materials can bring significant weight saving in the design of a new component. These materials are one of the solutions offered to designers to achieve new fuel efficiency regulation. New challenge arises in term of design optimization and manufacturing. Shifting from a metal to composite paradigm requires a dedicated tool for composite design in order to take into account the specific composite behavior. Material performance varies widely over the entire part mainly due to the manufacturing process and the corresponding microstructure. Classical design tools are not able to describe accurately the local composite material behavior, leading to the introduction of safety factors and lack of confidence in the design. Accurate modelling of composites require the use of a multi-scale approach. The composite is not seen as a homogeneous material anymore but as a heterogeneous material made of several constituents.
2014-11-11
Technical Paper
2014-32-0117
Matthew Smeeth
Abstract Rolling contact fatigue is a particular type of fatigue that occurs in heavily loaded, non-conformal contacts, such as gears and rolling element bearings. It is primarily a failure mode associated with repeated cyclic loading that generates high local Hertzian pressures, leading to local plastic deformation and substantial surface or sub surface stress. This in turn leads to crack formation and propagation. In some instances this results in sudden and often critical mechanical failure of contacting parts. This failure mode can, to a certain degree, be controlled by the appropriate choice of lubricant; in terms of both the physical and chemical properties of the films formed at the surface. A three contact disc machine has been used to examine the rolling contact fatigue of motorcycle lubricants in such heavily loaded contacts. Three counterface test rings of equal diameter (54mm) are mounted 120° apart with a smaller (12mm diameter) test roller in the centre.
2014-11-11
Technical Paper
2014-32-0026
Alessandro Franceschini, Emanuele Pellegrini, Raffaele Squarcini
Abstract Nowadays the challenge in design of auxiliary devices for automotive small engines is focused on packaging reduction and on the increase of the performance. These requirements are in contrast to each other and in order to fulfil the project specifications, new and more refined design tools and procedures need to be developed. This paper presents a calculation loop developed by Pierburg Pump Technology Italy S.p.A. (PPT). It supports the design of a variable displacement oil pump component for engine applications. The work is focused on the fatigue life evaluation of a joint, which transmits the drive torque from the engine to the oil pump. The aim of the procedure is to calculate the onset of the surface fatigue phenomenon in the hexagonal joint which drives the oil pump, taking into account the axes misalignment and the flat-to-flat clearance. The study has involved several matters, experimental measures, CFD, MBA and FEM analyses.
2014-11-11
Journal Article
2014-32-0045
Akiko Tanaka, Ikue Sato
Abstract Currently, there is a growing demand for application of plastic coverings for motorcycles in the market. Accordingly, decorative features for plastic coverings are increasingly important to enhance the attractiveness of exterior designs of those motorcycles. Under these circumstances, the magnetically formed decorative painting had been adopted to a mass-production model sold in Thailand in 2008. Magnetically formed decorative painting is a method in which the design patterns are formed by painting a material that contains flakes movable along with magnetic fields, while applying magnetic sheets in the ornamenting design shapes underneath the part being painted. It offers a three-dimensional appearance even though its surface has no protrusions or indentations. The degree of three-dimensionality on the paint surface appearance was defined as “plasticity” [1] (a term used in pictorial arts).
2014-11-11
Journal Article
2014-32-0044
Simone Vezzù, Carlo Cavallini, Silvano Rech, Enrico Vedelago, Alessandro Giorgetti
Abstract The deposition of thick, pore-free, high-performance copper alloy matrix composite coatings is a topic of interest for several industrial applications, including friction materials, high-strength electrical contacts, and welding electrodes, among others. This study investigates the use of cold spray to deposit CuCrZr/Al2O3 cermet coatings on aluminum alloy 6060. The objective is to integrate copper-based materials with aluminum-based materials, ensuring a high degree of mechanical and thermal contact, using a low temperature process that does not adversely affect the properties of the base materials. This technique can be used to produce integral coolers and aluminum-based bearings for automotive and motorcycle applications. Fused and crushed alumina and gas-atomized CuCrZr powder blends have been used as initial feedstocks, with compositional weight ratios of 65/35 and 80/20 (ceramic/metal).
2014-10-13
Technical Paper
2014-01-2765
Simona Silvia Merola, Cinzia Tornatore, Luca Marchitto, Gerardo Valentino, Adrian Irimescu
Abstract Liquids with stable suspensions of nanoscale materials are defined as nanofluids. As reported in recent scientific literature, a very small amount of suspended nanostructures has the potential to enhance the thermo physical, transport and radiative properties of the base fluid. One of the main applications of this technology is in the field of combustion and fuels. In fact, adding nanomaterials (such as metals, oxides, carbides, nitrides, or carbon-based nanostructures) to liquid fuels is able to enhance ignition and combustion. The focus of this research is to gain a fundamental understanding of the characteristics of a nanofluid fuel prepared using carbon nanoparticles (CNPs) and multi-walled carbon nanotubes (MWCNTs) dispersed in butanol. This study starts with the investigation of the optical properties of the mixtures. The transmission spectra of the nanofluids are measured in a wide wavelength range from UV (250 nm) to near IR (800 nm).
2014-10-13
Technical Paper
2014-01-2783
Oliver M. Smith, Alexander Michlberger, Doug Jayne, Alex Sammut, Mike Sutton
Abstract It has long been understood that the piston assembly of the internal combustion engine accounts for a significant proportion of total engine friction. Modern engines are required to have better fuel economy without sacrificing durability. The pursuit of better fuel economy drives trends like downsizing, turbocharging and direct injection fuelling systems that increase cylinder pressures and create a more arduous operating environment for the piston ring / cylinder bore tribocouple. The power-cylinder lubricant is therefore put under increased stress as modern engine technology continues to evolve. The conventional approach to investigating fundamental power-cylinder tribology employs bench-tests founded on assumptions which allow for simplification of experimental conditions.
2014-10-13
Technical Paper
2014-01-2781
Nishant Mohan, Mayank Sharma, Ramesh Singh, Naveen Kumar
Abstract The need for advanced lubricants is increasing rapidly due to the current wide range of operational usage, i.e., high loads and speeds of motion between friction pairs, broader temperature range, and the overall requirements for increased reliability and service life of machinery. It is essentially important to develop specialized anti-friction and anti-wear materials that will help in preventing wear and decreasing friction, thereby saving fuel and electricity. Simultaneously, such materials are also expected to reduce vibration, noise and maintenance of machine parts. Thus, the research into extending the service life of such materials continues to be imperative. Nanoparticles (NPs) present a novel approach in this regard, as they can be used in lubricants in between two mating contact surfaces as a third body.
2014-10-13
Technical Paper
2014-01-2790
Sakthinathan Ganapathy Pandian
Nanolubricants are suspensions of nanoparticles in base fluids, a new challenge for thermal sciences provided by nanotechnology. The objective of this work is to analyze the thermal and tribological properties of yttria stabilized zirconia (YSZ) nanolubricants. Nanosized YSZ particles were prepared by milling YSZ (10μm) in a planetary ball mill equipped with vials using tungsten carbide balls. After 40 hrs, milled YSZ nanoparticles of sizes ranging from 70-90nm were obtained. The nanoparticles were characterized by Energy Dispersive X-ray analysis (EDXA), Scanning Electron microscope (SEM), Transmission Electron Microscope, Thermo Gravimetric-Differential Scanning Calorimeter and non contact 3D surface profilometer and the images of the same were obtained.
2014-10-13
Technical Paper
2014-01-2805
Benjamin Kingsbury, Jonathan Stewart, Zhentao Wu, Roy Douglas, Kang Li
Abstract This study describes an innovative monolith structure designed for applications in automotive catalysis using an advanced manufacturing approach developed at Imperial College London. The production process combines extrusion with phase inversion of a ceramic-polymer-solvent mixture in order to design highly ordered substrate micro-structures that offer improvements in performance, including reduced PGM loading, reduced catalyst ageing and reduced backpressure. This study compares the performance of the novel substrate for CO oxidation against commercially available 400 cpsi and 900 cpsi catalysts using gas concentrations and a flow rate equivalent to those experienced by a full catalyst brick when attached to a vehicle. Due to the novel micro-structure, no washcoat was required for the initial testing and 13 g/ft3 of Pd was deposited directly throughout the substrate structure in the absence of a washcoat.
2014-10-13
Technical Paper
2014-01-2797
Vicente Macian, Bernardo Tormos, Santiago Ruiz, Guillermo Miró, Tomás Pérez
Abstract Due to the increasingly stringent emissions standards in the world and, on the other hand, the foreseen shortage of fossil fuels, the application of low viscosity engine oils (LVO) is considered one of the most interesting options for counter these threats. In parallel to a fuel consumption fleet test, the aim of this study was to assess the performance of commercial low viscosity oils regarding their degradation and engine wear, since the use of LVO could imply an increase in wear rate. Potential higher engine wear could result in a reduction in the expected engine life cycle, obviously is a non-desired effect. In addition, currently limited data are available regarding “real-world” performance of LVO in a real service fleet.
2014-10-13
Technical Paper
2014-01-2818
Mohammad Reza Hamedi, Athanasios Tsolakis, Jose Martin Herreros
Abstract Recent developments in diesel engines lead to increased fuel efficiency and reduced exhaust gas temperature. Therefore more energy efficient aftertreatment systems are required to comply with tight emission regulations. In this study, a computational fluid dynamics package was used to investigate the thermal behaviour of a diesel aftertreatment system. A parametric study was carried out to identify the most influential pipework material and insulation characteristics in terms of thermal performance. In the case of the aftertreatment pipework and canning material effect, an array of different potential materials was selected and their effects on the emission conversion efficiency of a Diesel Oxidation Catalyst (DOC) were numerically investigated over a driving cycle. Results indicate that although the pipework material's volumetric heat capacity was decreased by a factor of four, the total emission reduction was only considerable during the cold start.
2014-10-13
Technical Paper
2014-01-2849
Wei Guo, Henry Guo, Xiaowei Du, Daniel Wang
Turbochargers are widely used to boost internal combustion engines for both on and off high way applications to meet emission and performance requirements. Due to the high operating temperature, turbochargers are subjected to hostile environment. Low vibration level is one of the key requirements while designing turbo for every application. An engine bracket is employed to support turbine housing to reduce total vibration level. Turbine housing in the turbocharger is commonly equipped with boss to accommodate the engine bracket supporting which eventually includes additional constraints in the turbocharger system. Additional constraints in the turbine housing can lead to adverse impact in the Thermo-Mechanical Fatigue (TMF) life of the housing component. Boss generally has critical influence to thermal stress distribution of the turbine housing.
2014-10-13
Technical Paper
2014-01-2859
Oliver P. Taylor, Richard Pearson, Richard Stone, Phil Carden, Helen Ballard
Abstract Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselization. There is now increased focus on approaches which give smaller but significant incremental efficiency benefits such as reducing parasitic losses due to engine friction. Fuel economy improvements which achieve this through the development of advanced engine lubricants are very attractive to vehicle manufacturers due to their favorable cost-benefit ratio. For an engine with components which operate predominantly in the hydrodynamic lubrication regime, the most significant lubricant parameter which can be changed to improve the tribological performance of the system is the lubricant viscosity.
2014-10-13
Technical Paper
2014-01-2865
Anandan Sivakumar, V. Saishanker, Raghvendra Gopal
Abstract Success of the vehicle in cold countries depends on performance of the vehicle under cold climatic conditions. In automobiles, structural elastomer components have strong influence on vehicle performance including NVH, ride comfort & durability. Elastomers are sensitive in nature to these climatic conditions due to its temperature dependent visco-elastic behavior. Thus, it is very important to understand structural elastomer component's performance at sub zero temperatures. In a vehicle, Engine mount is used to hold engine firmly and isolate vibrations away from chassis. Vibration isolation of a mount at low temperature is generally affected by the rubber composition. Major ingredients of the rubber composition influencing the low temperature characteristics are Elastomer type, filler type, plasticizer and curing system. Rubber composition plays key role in achieving engine mount properties like static stiffness, dynamic stiffness, permanent set and durability.
2014-10-13
Technical Paper
2014-01-2866
Zhi-yong Chen, Ning Sun, Wenku Shi
Abstract In order to improve structure and performance of magneto-rheological dual mass flywheel (MRF-DMF), some parameters effects on dynamic characteristics are acquired by parameters analysis. The dynamic stiffness and loss angle in different current and different frequency are gained through dynamic characteristic test. The fluid-structure interaction finite element model of MRF-DMF is built and the accuracy is verified by comparison between test and simulation. Based on the model, the parameters analysis is done and the law of MRF viscosity, arc spring stiffness, working clearance, rotor radius and axial width effect on dynamic characteristics are gained, it will prove some guidance for the structure and performance improvement.
2014-10-13
Technical Paper
2014-01-2867
Zhiyong Chen, Zhiyuan Chen, Yang Mao, Wenku Shi, Guihui Zhang
Abstract To research the torsional vibration damping characteristic of magneto-rheological fluid dual mass flywheel (MRF-DMF) and the control system in power train, the multi-degree power train torsional vibration model which contains MRF-DMF and semi-active fuzzy control model are built, then the damping characteristic of MRF-DMF in several conditions are gained and compared with MRF-DMF when no control system. The result indicates: the damping characteristic of MRF-DMF effect on power train when using control is better than without control in idle, speed up, slow down, ignition and stalling, while the damping characteristic is less obvious in constant speed because the simulation condition and damping moment relatively stable.
2014-10-13
Journal Article
2014-01-2772
Annika Talus, Lisen Johansson, Francesco Regali, Ali Saramat
Abstract Biodiesel is chemically unstable and sensitive to oxidation. Aging of biodiesel results in the formation of degradation products, such as short chain fatty acids (SCFA) and water. These products may cause corrosion of metals in fuel systems. When performing corrosion tests, biodiesel continuously degrades during the test, resulting in an uncontrolled test system. In order to obtain a stable corrosion testing system, a test fuel was developed using a saturated FAME (methyl myristate), which was doped with RME degradation products at levels typically seen in field tests. The test fuel was compared to RME with regards to structure, SCFA and water content before and after aging tests. In addition, an accelerated corrosion study of copper was performed in both the test fuel and in RME. The copper specimens were analyzed before and after test using light optical microscope and weight measurements. The Cu content in the test fuel and RME was also analyzed.
2014-09-30
Journal Article
2014-01-2433
Abhishake Goyal, Nadeem Yamin, Naveen Kumar
Abstract Fuel cells are a promising energy source on account of their high efficiency and low emissions. Proton exchange membrane fuel cells (PEMFC) are clean and environmental-friendly power sources, which can become future energy solutions especially for transport vehicles. They exhibit good energy efficiency and high power density per volume. Working at low temperatures (<90°C), hydrogen fuelled proton exchange membrane fuel cells (PEMFCs) are identified as promising alternatives for powering autos, houses and electronics. At the middle of the proton exchange membrane (PEM) fuel cell is the membrane electrode assembly (MEA). The MEA consists of a proton exchange membrane, catalyst layers, and gas diffusion layers (GDL). However, most of the researchers have already mentioned that PEMFC are not competitive enough to rechargeable lithium ion battery with respect to price because of the rare metal used such as platinum in it.
2014-09-30
Technical Paper
2014-01-2429
C Venkatesan, V Faustino, S Arun, S Ravi Shankar
Abstract The automotive industry needs sustainable seating products which offer good climate performance and superior seating comfort. The safety requirement is always a concern for current seating systems. The life of the present seating system is low and absorbs moisture over a period of time which affects seat performance (cushioning effect). Recycling is one of the major concerns as far as polyurethane (PU) is concerned. This paper presents the development of an alternative material which is eco-friendly and light in weight. Thermoplastic Polyolefin (PO) materials were tried in place PU for many good reasons. It is closed cell foam which has better tear and abrasion resistance. It doesn't absorb water and has excellent weathering resistance. Also it has a better cushioning effect and available in various colours. Because of superior tear resistance, it is possible to eliminate upholstery and would reduce system level cost.
2014-09-30
Technical Paper
2014-01-2365
Vinod Kumar Mannaru, Sunil M Makhe, Lori Stephens, Dinesh Kumar, Shivaprasad Goud
Abstract Vapor management system is critical to manage fuel tank capacity, evaporative emissions and pressure control for hybrid applications. Due to stringent emission norms and other regulations there has been lot of advancements in design and application of vapor control valves that are used in automotive fuel tanks. Continuous exposure of these valves to fuel vapor or fuel in some instances led to swelling of assemblies and poses serious threat to product functionality and maintaining required tolerances. Swelling of plastics in fuel is ideally a case of multi physics, which involves modeling of complex mass transfer phenomena. In this study a simple thermal analogous approach has been used to model swelling behavior by characterizing the basic plastic-fuel soaking through coefficient of hygroscopic swelling. Extensive testing has been performed with multiple plastic-fuel combinations with different shapes at different temperatures.
2014-09-30
Technical Paper
2014-01-2366
Francis J. Walker
Abstract According to the International Energy Agency (IEA), the United States consumes 20 million barrels of crude oil per day (840,000,000 gallons)1. More than half of this quantity is imported. It is expected that by 2025 this quantity is expected to rise to 26 million barrels per day with an estimated sixty percent of the consumed quantity being imported. With the prices of oil to continue to be above $90/barrel, the expected annual expenditures on imported oil is estimated to be >$250 billion. With the cost of fossil fuel continuing to increase as its quantity is depleted, there is a strong driver for continued investment in renewable fuel sources. One such approach is the use of plant-based feedstock to augment conventional fossil fuel for diesel applications. Use of such feedstock has given rise to the biodiesel fuel industry (BD). Studies have documented fuel-oil dilution issues in diesel applications.
2014-09-30
Technical Paper
2014-01-2323
Steffen Hoppe, Troy Kantola
Abstract The fundamental drivers in the development of commercial vehicle engines are improved fuel efficiency and the need to meet more stringent exhaust emissions legislation. This strategy presents significant challenges in the development of engine components, particularly piston rings. Within the power cylinder, piston rings are significant contributors to friction losses, with the ring pack contributing up to 25 percent of the total mechanical engine friction loss, and a corresponding fuel consumption of up to four percent. The challenge lies in reducing friction power loss, without compromising oil consumption, while also mastering the increasing thermo-mechanical and tribological demands that piston rings must endure due to increased power density, smoother cylinder bores, reduced lubrication, and the use of alternative fuels.
Viewing 1 to 30 of 14359