Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 15920
2017-09-04
Technical Paper
2017-24-0042
Ali Jannoun, Xavier Tauzia, Pascal Chesse, Alain Maiboom
Residual gas plays a crucial role in the combustion process of spark ignited engines. It acts as a diluent and has a huge impact on pollutant emissions (NOx and CO emissions), engine efficiency and tendency to knock. Therefore, characterizing the residual gas fraction is an essential task for engine modelling and calibration purposes. Thus, an in-cylinder sampling technique was developed on a spark ignited VVT engine to measure residual gas fraction during the compression phase. Two gas sampling valves were flush mounted to the combustion chamber walls; they are located between the intake valves and between intake and exhaust valves respectively. Sampled gas was stocked in a sampling bag using a vacuum pump and measured with a standard gas analyzer. This paper describes in details the sampling technique and proposes a methodology allowing the evaluation of the residual gas fraction. For this purpose, five kinds of tests were undertaken.
2017-09-04
Technical Paper
2017-24-0021
Sabino Caputo, Federico Millo, Giancarlo Cifali, Francesco Concetto Pesce
One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction (ideally up to 46 %) and for Brake Specific Fuel Consumption (BSFC) reduction (up to 9 %), while firedeck, liner and valves only contribute respectively to 23 %, 19 % and 15 % in heat transfer decrease.
2017-09-04
Technical Paper
2017-24-0161
Noboru Uchida, Hideaki Osada
It can’t be avoided reducing heat loss from in-cylinder wall for further improvement in brake thermal efficiency (BTE). Especially for diesel engines, spray flame interference on the cavity and piston top wall during combustion period could be a major cause of the heat loss. To reduce heat transfer between hot gas and cavity wall, thin Zirconia layer (0.5mm) on the cavity surface of the forged steel piston was firstly formed by thermal spray coating aiming higher surface temperature swing precisely synchronized with flame temperature near the wall resulting in the reduction of temperature difference. However, no apparent difference in the heat loss was observed. On the contrary, BTE was deteriorated by the increase in other energy losses. To find out the reason why heat loss was not so improved, direct observation of flame impingement to the cavity wall was carried out with the top view visualization technique, for which one of the exhaust valves was modified to a sapphire window.
2017-09-04
Technical Paper
2017-24-0156
Minh Khoi Le, Srinivas Padala, Atsushi Nishiyama, Yuji Ikeda
The Microwave Discharge Igniter (MDI) was developed to create microwave plasma for the improvement of ignition inside combustion engines. The MDI plasma discharge is generated using the principle of microwave resonance with microwave (MW) originating from a 2.45 GHz semiconductor oscillator; it is then further enhanced and sustained using MW from the same source. The flexibility in the control of semiconductors allows multiple variations of MW parameters for MDI, which in turn, affects the resonating plasma characteristics and subsequently the combustion performance. In this study, a wide range of different controlling parameters of MDI and MW signal were selected for a parametric study of the generated Microwave Plasma. Schlieren imaging of the MDI-ignited propane flame were carried out to assess the impact on combustion quality of different MW parameters combinations.
2017-09-04
Technical Paper
2017-24-0145
Marco Piumetti, Debora Fino, Nunzio Russo, Samir Bensaid, Melodj Dosa
A set of CeO2 nanocatalysts with different structural properties (nanocubes, nanorods, high-surface area CeO2) was prepared to investigate the shape-dependency activity for two oxidation reactions: the soot combustion under different soot-catalyst contact conditions (namely, in “loose” and “tight” conditions) and the CO oxidation. The physico-chemical properties of the prepared materials were investigated by complementary techniques (XRD, N2-physisorption at -196 °C, H2-TPR, FESEM, TEM, micro-Raman, FT-IR, XPS). As a whole, the best performances in terms of soot combustion have been achieved for the CeO2-nanocubes (SBET = 4 m2g-1), due to the abundance of highly reactive (100) and (110) exposed surfaces. On the other hand, better results in terms of the onset of soot oxidation (T10%) have been obtained for high-surface-area materials (SBET = 75 m2g-1), thus reflecting the key role of the surface area at low reaction temperature.
2017-09-04
Technical Paper
2017-24-0136
Kurtis James Irwin, Roy Douglas, Jonathan Stewart, Andrew Pedlow, Rose Mary Stalker, Andrew Woods
With emission legislations becoming ever more stringent there is an increased pressure on the after treatment systems and more specifically the three-way catalysts. With more recent developments in emission legislations, there is requirement for more complex after-treatment systems and understanding of the ageing process. With future legislation introducing independent inspection of emissions at any time under real world driving conditions throughout a vehicle life cycle this is going to increase the focus on understanding catalyst behaviour during any likely conditions throughout its lifetime and not just at the beginning and end. In recent years it has become a popular approach to use accelerated aging of the automotive catalysts for the development of new catalytic formulations and for homologation of new vehicle emissions.
2017-09-04
Technical Paper
2017-24-0129
Vladimir Merzlikin, Svetlana Parshina, Victoria Garnova, Andrey Bystrov, Alexander Makarov, Sergey Khudyakov
The core of this paper is reduction of exhaust emission and increase of diesel efficiency due to application of microstructure ceramic semitransparent heat-insulating coatings (SHIC). The authors conducted experimental study of thermal state of internal-combustion engine piston head with a heat-insulating layer formed by plasma coating method. The paper presents physical and mathematical simulation of improved optical (transmittance, reflectance, absorption, scattering) and thermo radiative (emittance) characteristics determining optimal temperature profiles inside SHIC. The paper considers the effect of subsurface volumetric heating up and analyzes temperature maximum position inside subsurface of this coating. Decrease of SHIC surface temperature of the coated piston in comparison with temperature of traditional opaque heat-insulating coatings causes NOx emission reduction.
2017-09-04
Technical Paper
2017-24-0116
Ekarong Sukjit, Pansa Liplap, Somkiat Maithomklang, Weerachai Arjharn
In this study, two oxygenated fuels consisting of butanol and diethyl ether (DEE), both possess same number of carbon, hydrogen and oxygen atom but difference functional group, were blended with the waste plastic pyrolysis oil to use in a 4-cylinder direct injection diesel engine without any engine modification. In addition, the effect of castor oil addition to such fuel blends was also investigated. Four tested fuels with same oxygen content were prepared for engine test, comprising DEE16 (84% waste plastic oil blended with 16% DEE), BU16 (84% waste plastic oil blended with 16% butanol), DEE11.5BIO5 (83.5% waste plastic oil blended with 11.5% DEE and 5% castor oil) and BU11.5BIO5 (83.5% waste plastic oil blended with 11.5% butanol and 5% castor oil). The results found that the DEE addition to waste plastic oil increased more emissions than the butanol addition at low engine operating condition.
2017-09-04
Technical Paper
2017-24-0076
Mark A. Hoffman, Ryan O'Donnell, Zoran Filipi
The proven impact of combustion chamber deposits on advanced compression ignition combustion strategies has steered recent works toward the development of thermal barrier coatings, which can mimic their benefits on combustion efficiency and operational range expansion. However, recent work based on statistical thermodynamics has indicated that inter-molecular radiation during the combustion event may subject the combustion chamber walls to non-negligible radiation heat transfer, regardless of the relatively low soot formation within the well-mixed and lean charge. In the present paper, the impact of radiation heat transfer on combustion chamber deposits and thermal barrier coatings is studied. The morphological construction of the combustion chamber deposit layer is shown to be partially transparent to radiation heat transfer, drawing corollaries with ceramic based thermal barrier coatings.
2017-09-04
Technical Paper
2017-24-0070
Stefano D'Ambrosio, Daniele Iemmolo, Alessandro Mancarella, Nicolò Salamone, Roberto Vitolo, Gilles Hardy
A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flowrates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
2017-07-10
Technical Paper
2017-28-1939
Maruti Patil, Penchaliah Ramkumar, Shankar Krishnapillai
Abstract Minimum weight and high-efficiency gearboxes with the maximum service life are the prime necessity of today’s high-performance power transmission systems such as automotive and aerospace. Therefore, the problem to optimize the gearboxes is subjected to a considerable amount of interest. To accomplish these objectives, in this paper, two generalized objective functions for two stage spur-gearbox are formulated; first objective function aims to minimize the volume of gearbox material, while the second aims to maximize the power transmitted by the gearbox. For the optimization purpose, regular mechanical and critical tribological constraints (scuffing and wear) are considered. These objective functions are optimized to obtain a Pareto front for the two-stage gearbox using a specially formulated discrete version of non-dominated sorting genetic algorithm (NSGA-II) code written MATLAB. Two cases are considered, in the first with the regular mechanical constraints.
2017-07-10
Technical Paper
2017-28-1954
Premkumarr Santhanamm, K. Sreejith, Avinash Anandan
A local and global environmental concern regarding automotive emissions has led to optimize the design and development of Power train systems for IC engines. Blow-by and Engine oil consumption is an important source of hydrocarbon and particulate emissions in modern IC engines. Great efforts have been made by automotive manufacturers to minimize the impact of oil consumption and blow-by on in-cylinder engine emissions. This paper describes a case study of how simulation played a supportive role in improving piston ringpak assembly. The engine taken up for study is a six cylinder, turbocharged, water cooled diesel engine with a peak firing pressure of 140 bar and developing a power output of 227 KW at 1500 rpm. This paper reveals the influence of stepped land, top groove angle, ring face profile, twist features with regard to tweaking of Blow-by & LOC. Relevant design inputs of engine parameters were provided by the customer to firm up the boundary conditions.
2017-07-10
Technical Paper
2017-28-1925
Asif Basha Shaik Mohammad, Ravindran Vijayakumar, Nageshwar Rao Panduranga
Abstract The automotive market has seen a steady increase in customer demands for quiet and more comfortable tractors. High noise at Operator Ear Level (OEL) of tractor is the major cause of fatigue to the operator. With growing competition, and upcoming legislative requirement there is ominous need for the agricultural tractor manufacturers to control noise levels. The objective of this study is noise reduction on agricultural tractor by stiffening sheet metal components. The design and analysis plays a major role for determining the root cause for the problem. Once the problem and its root cause were well defined, the solution for addressing the problem would be made clear. The engine excitation frequency and Sheet metal Components such as fender and platform natural frequency were coming closer and are leading to resonance.
2017-06-17
Technical Paper
2017-01-9453
Tobias Hoernig
Within the scope of today’s product development in automotive engineering the aim is to produce more light and solid parts with higher capabilities. On the one hand lightweight materials such as aluminum or magnesium are used, but on the other hand, increased stresses on these components cause higher bolt forces in joining technology. Therefore screws with very high strength rise in importance. At the same time, users need reliable and effective design methods to develop new products at reasonable cost in short time. The bolted joints require a special structural design of the thread engagement in low-strength components. Hence an extension of existing dimensioning of the thread engagement for modern requirements is necessary. In the context of this contribution, this will be addressed in two dimensions: on one hand extreme situations (low strength nut components and high-strength fasteners) are considered.
2017-06-05
Journal Article
2017-01-1816
Mahsa Asgarisabet, Andrew Barnard
Abstract Carbon Nanotube (CNT) thin film speakers produce sound with the thermoacoustic effect. Alternating current passes through the low heat capacity CNT thin film changing the surface temperature rapidly. CNT thin film does not vibrate; instead it heats and cools the air adjacent to the film, creating sound pressure waves. These speakers are inexpensive, transparent, stretchable, flexible, magnet-free, and lightweight. Because of their novelty, developing a model and better understanding the performance of CNT speakers is useful in technology development in applications that require ultra-lightweight sub-systems. The automotive industry is a prime example of where these speakers can be enabling technology for innovative new component design. Developing a multi-physics (Electrical-Thermal-Acoustical) FEA model, for planar CNT speakers is studied in this paper. The temperature variation on the CNT thin film is obtained by applying alternating electrical current to the CNT film.
2017-06-05
Technical Paper
2017-01-1814
Todd Tousignant, Kiran Govindswamy, Vikram Bhatia, Shivani Polasani, W Keith Fisher
Abstract The automotive industry continues to develop technologies for reducing vehicle fuel consumption. Specifically, vehicle lightweighting is expected to be a key enabler for achieving fleet CO2 reduction targets for 2025 and beyond. Hybrid glass laminates that incorporate fusion draw and ion exchange innovations are thinner and thereby, offer more than 30% weight reduction compared to conventional automotive laminates. These lightweight hybrid laminates provide additional benefits, including improved toughness and superior optics. However, glazing weight reduction leads to an increase in transmission of sound through the laminates for certain frequencies. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of lightweight glass.
2017-06-05
Technical Paper
2017-01-1815
Pranab Saha, Satyajeet P. Deshpande
Abstract This paper discusses the importance of a dissipative sound package system in the automotive industry and how it works. Although this is not a new technique at this stage, it is still a challenge to meet the subsystem target levels that were originally developed for parts based on the barrier decoupler concept. This paper reviews the typical construction of a dissipative system and then emphasizes the importance of different layers of materials that are used in the construction, including what they can do and cannot do. The paper also discusses the importance of the proper manufacturing of a part.
2017-06-05
Journal Article
2017-01-1813
James M. Jonza, Thomas Herdtle, Jeffrey Kalish, Ronald Gerdes, Taewook Yoo, Georg Eichhorn
Abstract The aerospace industry has employed sandwich composite panels (stiff skins and lightweight cores) for over fifty years. It is a very efficient structure for rigidity per unit weight. For the automobile industry, we have developed novel thermoplastic composite panels that may be heated and shaped by compression molding or thermoforming with cycle times commensurate with automotive manufacturing line build rates. These panels are also readily recycled at the end of their service life. As vehicles become lighter to meet carbon dioxide emission targets, it becomes more challenging to maintain the same level of quietness in the vehicle interior. Panels with interconnected honeycomb cells and perforations in one skin have been developed to absorb specific noise frequencies. The absorption results from a combination and interaction of Helmholtz and quarter wave resonators.
2017-06-05
Technical Paper
2017-01-1812
Steven Sorenson, Gordon Ebbitt, Scott Smith, Todd Remtema
Abstract In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
2017-06-05
Journal Article
2017-01-1765
Albert Allen, Noah Schiller, Jerry Rouse
Abstract Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
2017-06-05
Technical Paper
2017-01-1895
Troy Bouman, Andrew Barnard, Joshua Alexander
Abstract Compared to moving coil loudspeakers, carbon nanotube (CNT) loudspeakers are extremely lightweight and are capable of creating sound over a broad frequency range (1 Hz to 100 kHz). The thermoacoustic effect that allows for this non-vibrating sound source is naturally inefficient and nonlinear. Signal processing techniques are one option that may help counteract these concerns. Previous studies have evaluated a hybrid efficiency metric, the ratio of the sound pressure level at a single point to the input electrical power. True efficiency is the ratio of output acoustic power to the input electrical power. True efficiency data are presented for two new drive signal processing techniques borrowed from the hearing aid industry. Spectral envelope decimation of an AC signal operates in the frequency domain (FCAC) and dynamic linear frequency compression of an AC signal operates in the time domain (TCAC). Each type of processing affects the true efficiency differently.
2017-06-05
Technical Paper
2017-01-1885
Kunhee Lee, Sang Kwon Lee, Taejin Shin, Keun Young Kim
Abstract This paper presents a novel method predicting the variation of sound quality of interior noise depending on the change of the proprieties of absorption materials. At the first, the model predicting the interior noise corresponding to the change of the absorption material in engine room is proposed. Secondly the index to estimate the sound quality of the predicted sound is developed. Thirdly the experimental work has been conducted with seven different materials and validated the newly developed index. Finally, this index is applied for the optimization of absorption material to improve the sound quality of interior noise in a passenger car.
2017-06-05
Technical Paper
2017-01-1886
Siwen Zhang, Jian Pang, Jun Zhang, Zhuangzhuang Ma, Xiaoxuan Zhang, Congguang Liu, Lihui Deng
Abstract A subjective evaluation method for the air-borne sound insulation of vehicle body in reverberation room is developed and the correlation between the subjective preference and objective noise reduction level (NRL) is investigated in this paper. The stationary vehicle's interior noise is recorded by using a digital artificial head under a given white noise excitation in the reverberation room, which demonstrates more credible than those in traditional road test methods. The recorded noises of six different vehicles are replayed and evaluated subjectively by 22 appraisers in a sound quality room. The paired comparison scoring method is employed and the check and statistic methods for the subjective scores are introduced. The subjective preference is introduced and calculated by the statistics and normalization of the effective scores, which can indicate an overall preference ranking of all the six vehicles numerically.
2017-06-05
Technical Paper
2017-01-1857
Joshua R. Goossens, William Mars, Guy Smith, Paul Heil, Scott Braddock, Jeanette Pilarski
Abstract Fatigue life prediction of elastomer NVH suspension products has become an operating norm for OEMs and suppliers during the product quoting process and subsequent technical reviews. This paper reviews a critical plane analysis based fatigue simulation methodology for a front lower control arm. Filled natural rubber behaviors were measured and defined for the analysis, including: stress-strain, fatigue crack growth, strain crystallization, fatigue threshold and initial crack precursor size. A series of four distinct single and dual axis bench durability tests were derived from OEM block cycle specifications, and run to end-of-life as determined via a stiffness loss criterion. The tested parts were then sectioned in order to compare developed failure modes with predicted locations of crack initiation. In all cases, failure mode was accurately predicted by the simulation, and predicted fatigue life preceded actual end-of-life by not more than a factor of 1.4 in life.
2017-06-05
Technical Paper
2017-01-1854
John T. Anton, Jason Ley, Ikpreet S. Grover, David Stotera
Abstract Liquid applied sound deadener (LASD) is a light-weight, targeted vibration damping treatment traditionally used in the automotive market for body-in-white (BIW) panels. Water-based LASDs may cure over a wide range of conditions from room temperature to over 200°C. However, curing conditions commonly affect change in the damping characteristics. A thorough understanding of the relationship between curing conditions and subsequent damping performances will inform the material selection process and may allow pre-manufacturing designs to be adjusted with limited impact during validation. This paper aims to strengthen the quantitative understanding of the role LASD curing conditions have on damping performance by observing the effects of variations in thickness and cure temperature as measured by the Oberst method.
2017-06-05
Technical Paper
2017-01-1851
Taewook Yoo, Ronald W. Gerdes, Seungkyu Lee, Daniel Stanley, Thomas Herdtle, Georg Eichhorn
Abstract Several methods for evaluating damping material performance are commonly used, such as Oberst beam test, power injection method and the long bar test. Among these test methods, the Oberst beam test method has been widely used in the automotive industry and elsewhere as a standard method, allowing for slight bar dimension differences. However, questions have arisen as to whether Oberst test results reflect real applications. Therefore, the long bar test method has been introduced and used in the aerospace industry for some time. In addition to the larger size bar in the long bar test, there are a few differences between Oberst (cantilever) and long bar test (center-driven) methods. In this paper, the differences between Oberst and long bar test methods were explored both experimentally and numerically using finite element analysis plus an analytical method. Furthermore, guidelines for a long bar test method are provided.
2017-06-05
Technical Paper
2017-01-1852
Satyajeet P. Deshpande, Pranab Saha, Kerry Cone
Abstract Most of NVH related issues start from the vibration of structures where often the vibration near resonance frequencies radiates the energy in terms of sound. This phenomenon is more problematic at lower frequencies by structureborne excitation from powertrain or related components. This paper discusses a laboratory based case study where different visco-elastic materials were evaluated on a bench study and then carried on to a system level evaluation. A body panel with a glazing system was used to study both airborne and structureborne noise radiation. System level studies were carried out using experimental modal analysis to shift and tune the mode shapes of the structure using visco-elastic materials with appropriate damping properties to increase the sound transmission loss. This paper discusses the findings of the study where the mode shapes of the panel were shifted and resulted in an increase in sound transmission loss.
2017-06-05
Technical Paper
2017-01-1884
Ruimeng Wu, David W. Herrin
Abstract Sound absorbing materials are commonly compressed when installed in passenger compartments or underhood applications altering the sound absorption performance of the material. However, most prior work has focused on uncompressed materials and only a few models based on poroelastic properties are available for compressed materials. Empirical models based on flow resistivity are commonly used to characterize the complex wavenumber and characteristic impedance of uncompressed sound absorbing materials from which the sound absorption can be determined. In this work, the sound absorption is measured for both uncompressed and compressed samples of fiber and foam, and the flow resistivity is curve fit using an appropriate empirical model. Following this, the flow resistivity of the material is determined as a function of the compression ratio.
2017-06-05
Technical Paper
2017-01-1883
Arnaud Duval, Guillaume Crignon, Mickael Goret, Maxime Roux
Abstract The lightweighting research on noise treatments since years tends to prove the efficiency of the combination of good insulation with steep insulation slopes with broadband absorption, even in the context of bad passthroughs management implying strong leakages. The real issue lies more in the industrial capacity to adapt the barrier mass per unit area to the acoustic target from low to high segment or from low petrol to high diesel sources, while remaining easy to manipulate. The hybrid stiff insulator family can realize this easily with hard felts barriers backfoamed weighting from 800 g/m2 to 2000 g/m2 typically with compressions below 10 mm. Above these equivalent barrier weights and traditional compressions of 7 mm for example, the high density of the felts begins to destroy the open porosity and thus the absorption properties (insulation works anyway here, whenever vibration modes do not appear due to too high stiffness…).
2017-06-05
Technical Paper
2017-01-1882
Pravin P. Hujare, Anil D. Sahasrabudhe
Abstract The reduction of vibration and noise is a major requirement for performance of any vibratory system. Due to legislative pressures in terms of external pass by noise limit of vehicles and customer requirements for better noise and ride comfort in vehicle, NVH attribute has become an important parameter. Major sources for vehicle pass-by noise consist of powertrain, tire and wind. Damping treatment is important to reduce vibration and noise radiation. The passive constrained layer dampening (CLD) treatment can be used to reduce structure-borne noise of vibrating structure using viscoelastic damping material. The performance of the passive constrained layer damping treatment can further be enhanced by new segmentation technique. The concept of segmented CLD is based on edge effect. The efficiency of segmenting a constrained layer damping treatment relies on the fact that a high shear region is created in the viscoelastic layer.
Viewing 1 to 30 of 15920