Display:

Results

Viewing 241 to 270 of 20494
2016-04-05
Technical Paper
2016-01-0325
Farhan Javed, Salman Javed
Abstract Additive manufacturing has experienced rapid growth over a span of 25 years. Additive manufacturing involves the development of a three-dimensional (3D) object by stacking layer upon layer. Conventional machining techniques involve the removal of material. However, this technique differentiates itself from other techniques by means of addition of the material. The integration of CAD with additive manufacturing has offered the ability to create complex structures. Despite its clear benefits, additive manufacturing suffers from a high initial investment. An average cost of an entry level commercial 3D printer is 600$. A low-cost 3D printer has been designed and built for experimental investigation within a budget of 300$. The paramount process of 3D printing involves a combination of interpreting data from CAD files and controlling the motors using this data. The various design considerations while developing the 3D printer have been discussed.
2016-04-05
Technical Paper
2016-01-0378
John George, Daniel Gross, Hamid Jahed, Ali Roostaei
Abstract The choice of an appropriate material model with parameters derived from testing and proper modeling of stress-strain response during cyclic loading are the critical steps for accurate fatigue-life prediction of complex automotive subsystems. Most materials used in an automotive substructure, like a chassis system, exhibit combined hardening behavior and it is essential to capture this behavior in the CAE model in order to accurately predict the fatigue life. This study illustrates, with examples, the strain-controlled testing of material coupons, and the calculations of material parameters from test data for the combined hardening material model used in the Abaqus solver. Stress-strain response curves and fatigue results from other simpler material models like the isotropic hardening model and the linear material model with Neuber correction are also discussed in light of the respective fatigue theories.
2016-04-05
Journal Article
2016-01-0420
Frank Anthony Cuccia, James Pineault, Mohammed Belassel, Michael Brauss
Abstract It is well known that manufacturing operations produce material conditions that can either enhance or debit the fatigue life of production components. One of the most critical aspects of material condition that can have a significant impact on fatigue life is residual stress (RS) [1, 2]. When springs are manufactured, the spring stock may undergo several operations during production. Additional operations may also be introduced for the purpose of imparting the spring with beneficial surface RS to extend its fatigue life and increase its ability to execute the task it was designed to perform. The resultant RS present in production springs as a result of the various fabrication and processing operations applied can be predicted and modeled, however, RS measurements must be performed in order to quantify the RS state with precision.
2016-04-05
Technical Paper
2016-01-0416
Eduardo Bustillos, Haley Linkous, Xin Xie, Laila Guessous, Lianxiang Yang
This paper presents the measurement and analysis of the edge stretching limit of aluminum alloy using digital image correlation. The edge stretching limit, also known as the “edge thinning limit,” is the maximum thinning strain at a point of edge failure resulting from tension; which may be predisposed by edge quality. Edge fracture is a vital failure mode in sheet metal forming, however it is very difficult to measure. A previous study enabled the measurement of edge thinning strain by using advanced digital image correlation but it did not consider how the edge quality could affect the edge stretching limit of aluminum alloy. This paper continues to measure edge thinning strain by comparing polished to unpolished AA5754, thus determining the effect edge quality has on the edge stretching limit. To enable the measurement by optical method for a very long and thin sample, a notch is used to localize where edge failure occurs.
2016-04-05
Technical Paper
2016-01-0531
Pulkit Batra, Arpit Bansal, V Jeganathan ArulMoni
Abstract Friction stir processing (FSP) is a method of changing the properties of metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into a workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. It comprises of a rotating tool with pin and shoulder which are inserted into a single piece of material and traversed along the desired path to cover the region of interest. Friction between the shoulder and work piece results in localized heating which raises the temperature of the material to the range where it is plastically deformed. During this process, severe plastic deformation occurs and due to thermal exposure of material, it results in a significant evolution in the local microstructure. Carbon nanotubes were dispersed into Al matrix by multipass FSP to fabricate Al6082 T0/Fe-MWCNT.
2016-04-05
Journal Article
2016-01-0505
Pai-Chen Lin, Shihming Lo
Abstract A concept of combining friction stir spot welding (FSSW) and clinching, denoted as friction stir clinching (FSC), was proposed to join alclad 2024-T3 aluminum sheets. A tool, having a smooth probe and a flat shoulder, and a die, having a circular cavity and a round groove, were used to make FSC joints. The failure loads and fatigue lives of FSC joints made by various punching depths, rotational speeds, and dwelling times, were evaluated to obtain the admissible processing parameters. Optical micrographs of the FSC joints, before and after failure, were examined to understand the effects of processing parameters on the mechanical interlock and alclad layer distribution, which strongly correlate to the failure load, failure mode, and fatigue life of FSC joints. Finally, the static and fatigue performance of FSC joints made by the admissible processing parameters was obtained. The feasibility of the FSC process for alclad 2024-T3 aluminum sheets was confirmed.
2016-04-05
Journal Article
2016-01-0506
Daisuke Tomomatsu
Abstract This study developed technology for simultaneously welding heterogeneous resin tubes in order to weld and integrate resin tubes with two different specifications (low temperature and high temperature). The aim of integration was cost and weight reduction. The cost reduction due to reducing the number of parts exceeded the increase in material cost due to a change to resin materials. Base material fracture of the resin tubes was set as the breaking format condition, and the welding parameters of the joint part rotations and the friction time between the joint part and the resin tubes were specified as the weld strength judgment standard. In addition, the fused thickness determined by observing the cross-section after welding was specified as the weld quality judgment standard. The range over which weld boundary peeling does not occur and weld strength is manifest was clarified by controlling the welding parameters and the fused thickness.
2016-04-05
Journal Article
2016-01-0501
Seung Hoon Hong, Frank Yan, Shin-Jang Sung, Jwo Pan, Xuming Su, Peter Friedman
Abstract Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
2016-04-05
Technical Paper
2016-01-0502
Yuyang Song, Umesh Gandhi
Abstract The application of adhesively bonded joints has increased significantly in order to improve the integrity of structural components in vehicle design. In this paper, finite element analysis is used to model the adhesive behavior of the adhesive joining between steel and composite. The cohesive element modeling techniques in Abaqus is used to model the adhesive interface. The standard lap shear and peeling test are first conducted to estimate the adhesive properties using reverse engineering. Next, these adhesive properties are applied and validated on the FE model of a 3D part for complex loading condition. The FEA model using reverse engineered cohesive interface properties get closed match to the test results for joining of the complex shape parts.
2016-04-05
Journal Article
2016-01-0504
Shin-Jang Sung, Jwo Pan
Abstract Analytical stress intensity factor solutions for welds in lap-shear specimens of equal thickness under pinned and clamped loading conditions based on the beam bending theory are presented and examined. Finite element analyses are also employed to obtain the stress intensity factor solutions for welds in lap-shear specimens under both clamped and pinned loading conditions. The computational solutions are compared well with the analytical solutions. The results of the analytical and computational solutions indicate that the bending moments at the clamped edges reduce the mode I and II stress intensity factor solutions by about 7% to 10% for the given specimen geometry. The effects of the clamped grips depend on the ratio of the weld width to the specimen length. Comparisons of the stress intensity factor solutions suggest that the fatigue lives of the welds in lap-shear specimens under clamped loading conditions should be higher than those under pinned loading conditions.
2016-04-05
Technical Paper
2016-01-0503
Evandro Giuseppe Betini, Francisco Carlos Cione, Cristiano Stefano Mucsi, Marco Antonio Colosio, Jesualdo Luiz Rossi, Marcos Tadeu D'Azeredo Orlando
Abstract This paper reports the experimental efforts in recording the 2-dimensional temperature distribution on autogenous thin plates of UNS S32304 steel during welding. The butt-welded autogenous joints were experimentally performed by the GTAW (Gas Tungsten Arc Welding) process with either argon or argon-2%nitrogen atmospheres. The temperatures cycles were recorded by means of thermocouples embedded by spot welding on the plate's surfaces and connected to a multi-channel data acquisition system. The laser flash method (LFM) was also used for the determination thermal diffusivity of the material in the thickness direction. The temperature curves suggest a relationship between the microstructures in the solidified and the heat affected zone with the diffusivity variation. This is a region where there had been a major incidence of heat. The obtained results validate the reliability of the experimental used apparatus.
2016-04-05
Journal Article
2016-01-0498
Yang Li, Qiangsheng Zhao, Mansour Mirdamadi, Danielle Zeng, Xuming Su
Abstract Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure.
2016-04-05
Journal Article
2016-01-0499
Xu Zhang, Jennifer Johrendt
Abstract Successful manufacture of Carbon Fibre Reinforced Polymers (CFRP) by Long-Fibre Reinforced Thermoplastic (LFT) processes requires knowledge of the effect of numerous processing parameters such as temperature set-points, rotational machinery speeds, and matrix melt flow rates on the resulting material properties after the final compression moulding of the charge is complete. The degree to which the mechanical properties of the resulting material depend on these processing parameters is integral to the design of materials by any process, but the case study presented here highlights the manufacture of CFRP by LFT as a specific example. The material processing trials are part of the research performed by the International Composites Research Centre (ICRC) at the Fraunhofer Project Centre (FPC) located at the University of Western Ontario in London, Ontario, Canada.
2016-04-05
Technical Paper
2016-01-0500
Akira Kato, Masayuki Takano, Kohei Hase, Satoko Inuzuka, Toshiyuki Dobashi, Tsuyoshi Sugimoto, Nobuaki Takazawa
Abstract In this report, adhesion mechanism between epoxy resin and primer and between primer and Ni platting in Hybrid vehicle (HV) was investigated. Adhesion forces are thought to be a combination of mechanical bond forces (such as anchor effect), chemical bond forces and physical bond forces (such as hydrogen bonding and Van der Waals force). Currently there is insufficient understanding of the adhesion mechanism. In particular, the extent to which the three bond forces contribute to adhesion strength. So the adhesion mechanism of polyimide primers was analyzed using a number of different methods, including transmission electron microscope (TEM) and atomic force microscope (AFM) observation, to determine the contributions of the three bonding forces. Molecular simulation was also used to investigate the relationship between adhesion strength and the molecular structure of the primer.
2016-04-05
Journal Article
2016-01-0374
Zhigang Wei, George Zhu, Litang Gao, Limin Luo
Vehicle exhaust components and systems under fatigue loading often show multiple failure modes, which should be treated, at least theoretically, with rigorous advanced bi-modal and multi-modal statistical theories and approaches. These advanced methods are usually applied to mission-critical engineering applications such as nuclear and aerospace, in which large amounts of test data are often available. In the automotive industry, however, the sample size adopted in the product validation is usually small, thus the bi-modal and multi-modal phenomena cannot be distinguished with certainty.
2016-04-05
Technical Paper
2016-01-0389
Mingchao Guo, Ramchandra Bhandarkar, Weidong Zhang, Guofei Chen, Zhenke Teng
Abstract This paper describes static and fatigue behavior of resistance spot welds with the stack-up of conventional mild and advanced high strength steels, with and without adhesive, based on a set of lap shear and coach peel coupon tests. The coupons were fabricated following specified spot welding and adhesive schedules. The effects of similar and dissimilar steel grade sheet combinations in the joint configuration have been taken into account. Tensile strength of the steels used for the coupons, both as-received and after baked, and cross-section microstructure photographs are included. The spot weld SN relations between this study and the study by Auto/Steel Partnership are compared and discussed.
2016-04-05
Technical Paper
2016-01-0392
HongTae Kang, Abolhassan Khosrovaneh, Xuming Su, Mingchao Guo, Yung-Li Lee, Sai Boorgu, Chonghua Jiang
Abstract Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
2016-04-05
Technical Paper
2016-01-0384
Andrew Cox, Jeong Hong
Lightweight, optimized vehicle designs are paramount in helping the automotive industry meet reduced emissions standards. Self-piercing rivets are a promising new technology that may play a role in optimizing vehicle designs, due to their superior fatigue resistance compared with spot welds and ability to join dissimilar materials. This paper presents a procedure for applying the mesh-insensitive Battelle Structural Stress Method to self-piercing riveted joints for fatigue life prediction. Additionally, this paper also examines the development of an interim fatigue design master S-N curve for self-piercing rivets. The interim fatigue design master S-N curve accounts for factors such as various combinations of similar and dissimilar metal sheets, various sheet thicknesses, stacking sequence, and load ratios. A large amount of published data was collapsed into a single interim S-N curve with reasonable data scattering.
2016-04-05
Technical Paper
2016-01-0386
HongTae Kang, Abolhassan Khosrovaneh, Xuming Su, Mingchao Guo, Yung-Li Lee, Shyam Pittala, Chonghua Jiang, Brian Jordon
Abstract Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
2016-04-05
Technical Paper
2016-01-0357
Daniel J. Branagan, Andrew E. Frerichs, Brian E. Meacham, Sheng Cheng, Alla V. Sergueeva
Abstract The historical development of autobody steels has demonstrated a paradoxical relationship between strength and ductility, with increasing strength necessary for lightweighting commensurate with reductions in ductility necessary for cold formability. This in turn creates geometric constraints in part design and manufacturing, ultimately limiting usage of these higher strength steel grades in automobiles. Quench and tempering including variants such as quench, partitioning, and tempering are known approaches to increase strength while attempts to overcome the paradox have focused on increasing ductility through three distinct deformation mechanisms including; 1) shear band induced plasticity (SIP), 2) transformation induced plasticity (TRIP), and 3) twinning induced plasticity (TWIP).
2016-04-05
Technical Paper
2016-01-0358
Saeid Nasheralahkami, Sergey Golovashchenko, Kaicen Pan, Lindsay Brown, Bindiya Gugnani
Abstract In recent years, implementation of dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) is increasing in automotive components due to their superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Tool wear is another major issue in the trimming of UHSS because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic in the microstructure. The objective of the present paper is to study the influence of trimming conditions and tool wear on quality of trimmed edge of DP980 steel sheet. For this purpose, mechanically trimmed edges were characterized for DP980 steel, sheared with six different cutting clearances (from 4% to 40% of the sheet thickness).
2016-04-05
Journal Article
2016-01-0359
Jeff Wang, Charles Enloe, Jatinder Singh, Curt Horvath
Abstract Impact toughness (or resistance to fracture) is a key material property for press hardened steel used in construction of the safety-critical elements of automotive body structures. Prior austenite grain size, as primarily controlled by the incoming microstructure and austenitization process, is a key microstructural feature that influences the impact toughness of press hardened steel. In this paper, a special Charpy V-notch impact test is developed to quantify the impact toughness of press hardened steel sheets with various prior austenite grain sizes, by stacking a number of thin sheets via mechanical riveting. Both the ductile-to-brittle transition temperature and upper shelf energy are analyzed in an effort to establish a correlation between impact toughness and prior austenite grain size. Within tested conditions, impact performance shows only a slight decrease as the prior austenitic grain size increases from 18 to 38 microns.
2016-04-05
Journal Article
2016-01-0360
Cédric Georges, Xavier Vanden Eynde, Frank Goodwin
Advanced high strength steels used in automotive body and structure applications are exposed to hydrogen during several steps of their processing. For galvanized sheet steel, one of these is the continuous galvanizing process, during which the sheet is prepared for coating in a H2-N2 furnace. This paper shows the relationship between hydrogen uptake in DP600 and DP980 grades, together with an IF steel control composition, and galvanizing process conditions. Hydrogen uptake is strongly dependent on the furnace atmosphere and the amount of martensite in the steel but has little dependence on the soaking time, the humidity of the furnace atmosphere, or the temperature within the usual intercritical annealing range. Rapid outgassing was observed during overageing prior to the zinc dipping. Slow strain rate tests showed that there was no loss of ductility in galvanized samples that had been treated in a 5% H2 atmosphere or that had been overaged before the galvanizing.
2016-04-05
Technical Paper
2016-01-0353
Suleman Ahmad, Dimitry Sediako, Anthony Lombardi, C. (Ravi) Ravindran, Robert Mackay, Ahmed Nabawy
Abstract Aluminum alloys have been replacing ferrous alloys in automotive applications to reduce the weight of vehicles. The engine block is a striking example of weight reduction, and is made of Al-Si-Cu-Mg (319 type) alloys. The wear resistance in the engine block is enabled by cast iron liners, and these liners introduce tensile residual stress due to a thermo-mechanical mismatch. Typically, an artificial aging treatment effectively reduces residual stress. In this study, neutron diffraction was used to measure the residual stress profiles along the cylinder bridge of a T5 treated 319 aluminum alloy engine block. Results indicated high tensile residual stresses (200-300 MPa) in the hoop and axial orientation at depths of 50-60 mm below the head deck. The high residual stresses were likely due to a combination of minimal stress relief during artificial aging and stress development during post process cooling.
2016-04-05
Technical Paper
2016-01-0355
Takashi Iwama
Abstract Although reduction of the thickness of materials used in the automobile body is important for weight reduction, reducing the thickness of outer panels deteriorates dent resistance and surface distortion. To investigate the potential for weight reduction, the factors which influence the surface distortion and dent resistance properties were evaluated quantitatively with the aim of securing these properties. The materials used in these experiments were a tensile strength (TS) 340MPa grade bake hardenable (BH) steel sheet, which is often used in door outers, and a TS 440MPa grade BH steel sheet for outer panels. Surface distortion increases as a result of higher yield point (YP). It is possible to suppress the increase in surface distortion by increasing the blank holding force (BHF) in press forming. However, because this reduces the BHF range to the forming limit, application of low YP material is considered to be more advantageous for suppressing surface distortion.
2016-04-05
Journal Article
2016-01-0356
Hua-Chu Shih
Prephosphated steels have been developed by applying the phosphate coating on zinc coated sheet steels to increase the lubricity in the automotive stamping process and adding extra corrosion protection. The prephosphate coating was also found to be able to further absorb the lubricant, which can reduce the oil migration and excessive amount of lubricant dripping on the die surface and the press floor. Due to its enhanced lubricity characteristic, the applications have been expanded to more-recently developed advanced high strength steels (AHSS). Because of the higher strength of AHSS, it is crucial to understand their performance under more extreme forming conditions such as higher die temperature, contact pressure and sliding speed, etc. The intent of this study is to investigate the tribological performance and die wear behavior of prephosphated AHSS in the die tryout and production conditions.
2016-04-05
Technical Paper
2016-01-0370
Zhigang Wei, Yunfei Qu, Dongying Jiang, Limin Luo, Jason Hamilton, Kay Ellinghaus, Markus Pieszkalla
Fatigue life assessment is an integral part of the durability and reliability evaluation process of vehicle exhaust components and systems. The probabilistic life assessment approaches, including analytical, experimental, and simulation, CAE implementation in particular, are attracting significant attentions in recent years. In this paper, the state-of-the-art probabilistic life assessment methods for vehicle exhausts under combined thermal and mechanical loadings are reviewed and investigated. The loading cases as experienced by the vehicle exhausts are first categorized into isothermal fatigue, anisothermal fatigue, and high-temperature thermomechanical fatigue (TMF) based on the failure mechanisms. Subsequently, the probabilistic life assessment procedures for each category are delineated, with emphasis on product validation.
2016-04-05
Journal Article
2016-01-0371
Wenkai Li, Carlos Engler-Pinto, Haitao Cui, Weidong Wen, Xuming Su
Abstract In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
2016-04-05
Journal Article
2016-01-0361
Takeki Matsumoto, Nan Li, Xin Shi, Jianguo Lin
Abstract To reduce the fuel consumption as well as to improve the crash safety of vehicles, the usage of hot stamping parts is increasing dramatically in recent years. Aisin Takaoka has produced hot stamping parts since 2001 and has developed various technologies related to Hot Stamping. In an actual hot stamping process, parts with insufficient strength could be produced sometimes at a prototyping phase, even under the proper forming conditions. In order to understand these phenomena, in this paper, phase transformation in a boron steel 22MnB5 under various cooling rates were investigated and the effects of pre-strain conditions on the phase transformations were characterised. Uniaxial tensile specimens were stretched under isothermal conditions to different strain levels of 0-0.3, at strain rates of 0.1-5.0/s and deformation temperatures of 650-800°C.
2016-04-05
Journal Article
2016-01-0363
HaiYan Yu, ZeZhen He, JiaYi Shen
Abstract The work-hardening response of TRIP780 steel subjected to strain-path changes was investigated using two-stage tension experiments. Large specimens were prestrained and then sub-sized samples were subjected to tension along various directions. The influence of strain-path changes on flow stress and work hardening performance was discussed in detail. The specific plastic work was calculated to compare the kinematic hardening behaviour after strain-path changes. The results showed that transient hardening was observed for TRIP780 sheets subjected to orthogonal strain-path change. The strain-hardening exponent (n-value) was influenced by prestraining levels and the strain path. The n-value exhibited a greater decrease under an orthogonal strain-path change. Prestraining can delay the onset of high work hardenability of TRIP steels. It is meaningful for the safety design of vehicles.
Viewing 241 to 270 of 20494

Filter