Display:

Results

Viewing 241 to 270 of 19849
2014-09-25
WIP Standard
AMS5355K
This specification covers a corrosion-resistant steel in the form of investment castings.

These castings have been used typically for parts requiring good corrosion resistance and strength up to 600 °F (316 °C), but usage is not limited to such applications.

Certain processing procedures and service conditions may cause these castings to become subject to stress-corrosion cracking; ARP1110 recommends practices to minimize such conditions. Where stress-corrosion is considered to be a factor, precipitation heat treatment should be performed at a temperature not lower than 1000 °F (538 °C).

2014-09-25
WIP Standard
AMS5759M
This specification covers a corrosion and heat-resistant cobalt alloy in the form of bars, forgings, flash welded rings, and stock for forging, flash welded rings, or heading. These products have been used typically for parts requiring high strength up to 1500 °F (816 °C) and oxidation resistance up to 2000 °F (1093 °C), but usage is not limited to such applications.
2014-09-25
WIP Standard
AMS2241S
This specification covers established manufacturing tolerances applicable to corrosion and heat-resistant steel, iron alloy, titanium, and titanium alloy bars and wire. These tolerances apply to all conditions, unless otherwise noted. The term "excl " is used to apply only to the higher figure of the specified range.
2014-09-25
WIP Standard
AMS5513K
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate. These products have been used typically for formed and drawn parts requiring corrosion resistance up to 800 °F (427 °C), but usage is not limited to such applications. Welding, brazing, or other exposure to temperatures over 800 °F (427 °C) during fabrication may impair corrosion resistance.
2014-09-24
WIP Standard
AMS4824E
This specification has been declared "CANCELLED " by the Aerospace Materials Division, SAE, as of January 2009. By this action, this document will remain listed in the Numerical Section of the Index of Aerospace Material Specifications indicating that it has been "CANCELLED ".
2014-09-24
WIP Standard
AMS4822G
This specification has been declared "CANCELLED " by the Aerospace Materials Division, SAE, as of January 2009. By this action, this document will remain listed in the Numerical Section of the Index of Aerospace Material Specifications indicating that it has been "CANCELLED ".
2014-09-23
WIP Standard
AMS2475H
This specification establishes the requirements for chromate conversion coatings on magnesium alloys. This process has been used typically to improve corrosion resistance and adherence of organic finishes but usage is not limited to such applications. The dichromate treatment may not be suitable for alloys with high manganese content. The chrome pickle treatment has been used as touch-up for previously dichromate-treated surfaces and for improving corrosion protection temporarily, but usages are not limited to such applications.
2014-09-23
WIP Standard
AMS2481K
This specification covers the requirements for a manganese phosphate coating on ferrous alloys.
2014-09-23
Standard
AS3535B
Scope is unavailable.
2014-09-23
WIP Standard
AMS2482E
This specification establishes the requirements for a hard aluminum oxide coating, impregnated or codeposited with polytetrafluoroethylene (PTFE) on aluminum alloys.
2014-09-20
WIP Standard
AMS2467A
No Scope Available
2014-09-19
Standard
AMS4162E
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing under 3.00 inches (76.2 mm) in diameter, least thickness, or wall thickness and 25 in 2 (161 cm 2 ) or less in cross-sectional area.
2014-09-16
Standard
ARP169B
This SAE Aerospace Recommended Practice (ARP) defines a method of numbering aricraft engine cylinders.
2014-09-16
Technical Paper
2014-01-2138
Ron Wang, Michelle Bash, Steven D. Pekarek
Abstract In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
2014-09-16
Technical Paper
2014-01-2127
Karl Strauss
Abstract “Today's electronic components rely on principles of physics and science with no manufacturing precedence and little data on long term stability and reliability.” [1] Yet many are counting on their reliable performance years if not decades into the future, sometimes after being literally abandoned in barns or stored neatly in tightly sealed bags. What makes sense? To toss everything away, or use it as is and hope for the best? Surely there must be a middle ground! With an unprecedented number of missions in its future and an ever-tightening budget, NASA faces the daunting task of doing more with less. One proven way for a project to save money is to use already screened and qualified devices from the spares of its predecessors. But what is the risk in doing so? How can a project reliably count on the value of spare devices if the risk of using them is not, in itself, defined?
2014-09-16
Journal Article
2014-01-2242
Samuel Baha II
Hybrid (bolted/bonded) joining is becoming one of the innovative joining processes for light weight structures in the transport industry, especially in the aerospace industry where weight reduction and high joining requirements are permanent challenges. Combining the adhesive bonding with the mechanical joining -riveting for instance- can lead to an enhancement of the properties of the joint compared to the wide established riveting, as a result of a synergistic load bearing interaction between the fastener and the adhesive bondline. The influence of the rivet installation process on a hybrid joint regarding the joint stress state, the change of the bondline thickness as well as its effects on the joint performance and load transfer are some of the factors that drive the users to a better understanding of the hybrid joining process.
2014-09-16
Technical Paper
2014-01-2246
Yanbin Yao
Abstract Drilling plays a significant process in the aircraft manufacturing. This paper develops a robot automatic drilling system for processing the titanium alloy, aluminum alloy and laminated composites component of aircraft. The accurate robot drilling system is comprised of ABB IRB6640-235 robot, drilling end-effector, end-effctor control system and vision system. Experimental results show that the system absolute location precision is within 0.3mm, and the drilling efficiency can be up to four holes per minute. The drilling efficiency and quality of the aircraft component can be increased immensely by the developed robot automatic drilling system.
2014-09-16
Technical Paper
2014-01-2263
Eric Barton, Dan Hasley, Joey Jackson
Abstract The following is a unique case study expounding on automatic fastening technology designed and engineered to ramp up a Tier 2 supplier that had no experience with automatic fastening, to efficiently produce a large volume of fuselage panel assemblies with demanding process requirements in a very short amount of time. The automation technology integrated for the skin to stringer & skin to window frame fastening were two GEMCOR G12 five-axis CNC All-Electric fastening systems coupled with a Cenit offline part programming system. This joint solution served as a launch vehicle for Center Industries to efficiently supply the full rate of fuselage panel assemblies for a large volume commercial aircraft program without having any automatic riveting experience.
2014-09-16
Journal Article
2014-01-2241
Jamie Skovron, Laine Mears, Durul Ulutan, Duane Detwiler, Daniel Paolini, Boris Baeumler, Laurence Claus
Abstract A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
2014-09-16
Technical Paper
2014-01-2259
Greg Adams
Abstract Electroimpact has developed a second generation of mobile robots with several improvements over the first generation. The frame has been revised from a welded steel tube to a welded steel plate structure, making the dynamic response of the structure stiffer and reducing load deflections while maintaining the same weight. The deflections of the frame have been optimized to simplify position compensation. The caster mechanism is very compact, offers greater mounting flexibility, and improved maneuverability. The mechanism uses a pneumatic airbag for both lifting and suspension. The robot sled has been improved to offer greater rigidity for the same weight, and dual secondary feedback scales on the vertical axis further improve the rigidity of the overall system. Maintenance access has been improved by rerouting the cable and hose trays, and lowering the electrical cabinet.
2014-09-16
Journal Article
2014-01-2258
Sylvain Laporte, Etienne Gueydon, Alain Auffret, Cosme De Castelbajac
Abstract In today's aircraft assembly process several new features make drilling operations very challenging according to production requirements. Parts are made of thin or thick multi-material stacks with a large scope to cover and complex assembly sequences. In addition, the current ramp-up in aircraft programs involves to improve productivity while keeping process quality and reliability. In this context robotic solution meets perfectly all these requirements as it is flexible, reconfigurable, fast and agile. Among the possible end-effectors, the Barrel Multi-Function End Effector (BMFEE) appears to be the most flexible solution to allow many different process configurations. The latest developments have been focused on the drilling equipment of this BMFEE. In fact the drilling process efficiency can be constantly improved especially in terms of reliability, quality and productivity. Therefore vibration-assisted drilling system has been integrated into the BMFEE drilling module.
2014-09-16
Journal Article
2014-01-2271
Ryan Haldimann, Daniel Orf
Abstract In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
2014-09-16
Technical Paper
2014-01-2264
Peter B. Zieve, Osman Emre Celek, John Fenty
Abstract The E7000 riveting machine installs NAS1097KE5-5.5 rivets into A320 Section 18 fuselage side panels. For the thinnest stacks where the panel skin is under 2mm (2024) and the stringer is under 2mm (7075), the normal process of riveting will cause deformation of the panel or dimpling. The authors found a solution to this problem by forming the rivet with the upper pressure foot extended, and it has been tested and approved for production.
2014-09-16
Technical Paper
2014-01-2275
Karl-Erik Neumann, Robert Reno
Abstract The utilization of new materials and tightening of desired tolerances has driven the advancement of Practical and Portable Automated Machining. Increased demand in volume within the aerospace industry not only requires minimizing the amount of manual operations, but also applying automation inside existing manual fixtures. In the past, manual labor, with drastic limitations on achievable accuracies, has been utilized in areas that machine tools cannot either access or the limited amount of work does not justify the expense of additional machines. Assemblies requiring critical hole alignment or drilling through stack materials often are difficult to achieve using manual operations. The solution is a practical and very portable machining unit that is small enough to fit into otherwise difficult areas and is lightweight enough to be either moved into position by small machines or quickly disassembled/assembled with each subassembly capable of being positioned manually.
2014-09-16
Journal Article
2014-01-2230
Ruiqiang Lu
Abstract With the development of many new technologies in aircraft manufacturing area and the increasing competition of the global market, aircraft manufacturing enterprises have to reduce their production time and increase the cost-efficiency, with the consideration of high speed response to the changes inside enterprises or in the environment. Production scheduling is a significant process in manufacturing, especially for complicated part or component processing. This paper proposes an agent based multi-objective optimization approach for production scheduling based on Genetic Algorithms. It aims to minimize the total production cost and simultaneously reducing the emission released during production, and the delivery time and equipment constraints are satisfied as well. The new approach is tested in a virtual plant for turbine blade manufacturing.
2014-09-16
Technical Paper
2014-01-2237
Rainer Mueller, Matthias Vette, Andreas Ginschel, Ortwin Mailahn
Abstract The global competition challenges aircraft manufacturers in high wage countries. The assembly of large components happens manually in fixed position assembly. Especially the completion of the inner fuselage structure is done 100% manually. The shells have to be joined with rivets and several hundred clips have to be assembled to connect the shell to the frames. The poise of the worker is not ergonomic so a lot of physical stress is added to the worker and minimizes the working ability. Aircraft manufacturers need a lot of different production resources and qualified persons for the production, which provokes higher costs. Due to these high costs there is a demand for automated reconfigurable assembly systems, which offer a high flexibility and lower manufacturing costs. The research project “IProGro” deals with this challenge and develops innovative production systems for large parts.
2014-09-16
Journal Article
2014-01-2236
Julian Lonfier, Côme De Castelbajac
Abstract As aircraft programs currently ramp up, productivity of assembly processes needs to be improved while keeping quality, reliability and manufacturing cost requirements. Efficiency of the drilling process still remains an issue particularly in the case of CFRP/metal stacks: hot and long metallic chips are difficult to remove and often damage the surface of CFRP holes. Low frequency axial vibration drilling has been proposed to solve this issue. This innovative drilling process allows breaking up the metallic chips in such a way that jamming is avoided. This paper presents a case of CFRP/Ti6Al4V drilling on a CNC machine where productivity must be increased. A comparison is made between the current regular process and the MITIS drilling process. First the analysis and comparison method is presented. The current process is analyzed and its limits are highlighted. Then the vibration process is implemented and its performances are studied.
2014-09-16
Technical Paper
2014-01-2238
Richard Kingston
Abstract Industrial robots are extremely good at repetitive tasks. They exhibit excellent repeatability, making them ideal candidates for many tasks. However, increasing use of CAD based offline programming highlights the fact that industrial robots are generally not accurate devices. Several approaches have been used to compensate for this deficiency. Robot calibration is well established and factory calibrated robots are available from most industrial robot manufacturers. This can improve the spatial accuracy of robots to figures better than 1mm which is adequate for most robot processes in use today. Improvements in accuracy beyond this point can be achieved if the working range of the robot is constrained in some way. For example, limiting a robot to working in a single plane or restricting the robot to a reduced work volume can contribute to significant improvements in accuracy.
2014-09-16
Journal Article
2014-01-2240
Joshua Norman, Cesar Moreno, Zhiyu Wang, James Mann, Christopher Saldana
Abstract The beneficial effects of contact disruption in modulation-assisted machining of aerospace alloys have been well documented, but sources for such improvements are not well understood. This study explores the underlying nature of differences that occur in energy dissipation during conventional and modulation-assisted machining by characterizing the relationship between controllable process parameters and their effects on chip formation. Simultaneous in situ force and tool position measurements are used to show that the forces in modulation-assisted machining can be described by empirical force models in conventional machining conditions. These models are found to accurately describe plastic dissipation over a range of modulation conditions and configurations, including in cases where energy expenditure decreases with the application of modulation.
Viewing 241 to 270 of 19849

Filter