Display:

Results

Viewing 211 to 240 of 21019
CURRENT
2016-11-14
Standard
AMS4273D
This specification covers an aluminum alloy in the form of sheet and plate.
2016-11-11
Article
NOsparc arc suppressors from Arc Suppression Technologies are designed for both ac and dc power applications.
2016-11-11
WIP Standard
AS5385D
This Standard aims at identifying the design criteria and testing methods adequate to guarantee the ultimate load and operational dependability of cargo restraint strap assemblies with a typical 22,250 N (5,000 lbf) rated ultimate tension load capability, as used by the airline industry in order to restrain on board civil transport aircraft during flight: a. cargo loaded and tied down onto airworthiness certified air cargo pallets, themselves restrained into aircraft lower deck or main/upper deck cargo systems and meeting the requirements of NAS 3610 or AS36100, or b. non-unitized individual pieces of cargo, or pieces of, cargo placed onto an unrestrained ( "floating ") pallet into either lower deck or main deck containerized cargo compartments of an aircraft.
CURRENT
2016-11-10
Standard
AMS2252E
This specification covers established inch/pound manufacturing tolerances applicable to low-alloy steel sheet, strip, and plate ordered to inch/pound dimensions. These tolerances apply to all conditions unless otherwise noted. The term “excl” is used to apply only to the higher figure of the specified range.
2016-11-09
WIP Standard
AMS5339G
This specification covers an alloy steel in the form of investment castings.
2016-11-09
WIP Standard
AMS6501E
This specification covers a maraging steel in the form of welding wire.
2016-11-09
WIP Standard
AMS6453D
This specification covers a low-alloy steel in the form of welding wire.
2016-11-09
WIP Standard
AMS6459F
This specification covers a low-alloy steel in the form of welding wire.
2016-11-09
WIP Standard
AMS6452E
This specification covers a low-alloy steel in the form of welding wire.
2016-11-08
Journal Article
2016-32-0024
Daisuke Sugio, Shinpei Okazaki, Mitsuo Kaneko
Abstract Glass fiber reinforced plastic of polyamide is applied as one of the materials used for the high strength exterior parts of a motorcycle, such as a rear grab rail or a carrier, to which both strength and good exterior appearance are required. However, Glass Fiber reinforced Polypropylene (PPGF), which is relatively inexpensive material, has a property that the contained glass fibers are prone to be exposed at the surface and, therefore, the requirements for good appearance are hardly met by using PPGF. In this study, Heat and Cool molding method (H&C molding) was employed to realize a cost reduction by using PPGF yet without applying painting process, and the established method was applied to mass production while fulfilling the requirements for a good exterior appearance. In H&C molding, the metal molds are heated up by steam and cooled down by water after molding.
CURRENT
2016-11-08
Standard
AS9145
This standard establishes requirements for performing and documenting APQP and PPAP. APQP begins with conceptual product needs and extends through product definition, production planning, product and process validation (i.e., PPAP), product use, and post-delivery service. This standard integrates and collaborates with the requirements of the 9100, 9102, 9103, and 9110 standards. The requirements specified in this standard are complementary (not alternative) to contractual and applicable statutory and regulatory requirements. Should there be a conflict between the requirements of this standard and applicable statutory or regulatory requirements, the latter shall take precedence.
CURRENT
2016-11-07
Standard
AMS6520E
This specification covers a premium aircraft-quality, maraging steel in the form of sheet, strip, and plate.
2016-11-03
Magazine
SAE Convergence 2016 Talk of the healthy aspects of disruption mingles with SAE's renowned technical emphasis to foster the auto industry's continuing evolution toward electrification and autonomy. The Battery Man Speaks The speed of progress in automotive lithium batteries has impressed AABC's Dr. Menahem Anderman. So has silicon-graphite anode technology development from Tesla and Panasonic. Industry 4.0: The smart factory arrives The plants that produce automotive systems and vehicles are increasingly employing intelligent systems, Big Data and advanced analytics to improve quality, safety and efficiency. Editorial: Promise of 48 volts is no shock Nissan unveils variable-compression-ratio ICE for 2018 Infiniti production model Optimizing engine oil warm-up strategies for 'real-world' driving In search of higher-energy-content batteries Making Multiphysics fast and convenient I.D.
2016-11-01
Magazine
The comeback car The Cal Poly Pomona FSAE Team implements several measures to help overcome setbacks and achieve a podium finish at Formula SAE Lincoln. Going deep The uBox concept car developed as part of Clemson's Deep Orange program features a uniquely formed roof part. Creating a monster North Dakota State University SAE Clean Snowmobile Challenge team brings to life a war-torn engine pieced together with parts from another.
CURRENT
2016-11-01
Standard
J2580_201611
This Recommended Practice covers air braked trucks, truck-tractors, trailers and buses. It enumerates the identification and installation of the air brake components not covered in other SAE recommended practices and standards.
CURRENT
2016-10-31
Standard
AMS6461L
This specification covers a low-alloy steel in the form of welding wire.
2016-10-27
WIP Standard
AMS7004
This specification covers titanium 6Al-4V preforms fabricated using Rapid Plasma Deposition™ (RPD™) additive manufacturing process on a Ti-6Al-4V substrate that are subject to post deposition stress relieve.
CURRENT
2016-10-26
Standard
AMS6462K
This specification covers a low-alloy steel in the form of welding wire.
CURRENT
2016-10-26
Standard
AMS6469E
This specification covers a low-alloy steel in the form of welding wire.
2016-10-25
Technical Paper
2016-36-0303
Frederico Fernandes Reis, Valdir Furlanetto, Gilmar Ferreira Batalha
Abstract To highlight the importance of resistance spot weld in the automotive industry, it's important know that a vehicle has on average 4,000 welding spots [BROWN; SCHWABER 2000] and based on worldwide vehicle production in 2015 with 90.78 million vehicles produced [OICA, 2015], were performed more than 363 billion welding spots. The number of machines in manual and automatic workstations (robots), based on 20 points by equipment and production of 45 vehicles / hour add up more than 20 million of welding machines in all over world. According new production lines are being introduced using the adaptive dynamic resistance control the welding constant current control are being replaced, so understand this technology and know implement it with efficiency needs a deep knowledge in how dynamic resistance works and correlate his behavior with the problems that causes failures in welding, so is necessary give for the welding engineers this knowledge.
2016-10-25
Technical Paper
2016-36-0515
Ana Carolina Rodrigues Teixeira, José Ricardo Sodré, Lilian Lefol Nani Guarieiro, Erika Durão Vieira, Fabiano Ferreira de Medeiros, Carine Tondo Alves
Abstract In a scenario with growing population, increasing demand for energy and volatile prices of fossil fuel, there is a high incentive for the use of biofuels, especially those produced from waste material. In this context, second and third generation bioethanol (2G/3G) are interesting alternatives, as they can be produced from different raw material such as corn and rice straw, sugarcane bagasse, waste from pulp industry and microalgae. This paper presents an overview of the available technologies for both 2G and 3G bioethanol production, including lignocellulosic biomass feedstock, biocatalysts and cogeneration processes.
2016-10-25
Technical Paper
2016-36-0230
Guilherme Canuto da Silva, Paulo Carlos Kaminski
Abstract Automotive industries are undergoing a transformation of their manufacturing systems. Called by the German government as Industrie 4.0, this transformation is based on the evolution of traditional Embedded Systems-ES to Cyber-Physical Systems-CPS. In the next years such evolution will have to reach transitory stages, where ES and CPS should coexist for a determined period of time (ES-CPS). Based on this projection, this work compares ES with CPS, identifies the main differences between these systems and thus forms a transitory stage of automotive manufacturing for the next years. The work is structured as follows: Introduction section places the reader on the treated subject and presents the methodology of the work. Later, Industrie 4.0, Embedded Systems (ES) and Cyber-Physical systems (CPS) are defined. Once this is done, the analysis of ES-CPS transition is finished. Analysis results are presented and a representation of ES-CPS transition is proposed.
2016-10-25
Technical Paper
2016-36-0121
Raphael Gonçalves, Rubens Pinati, Rodrigo Godoi
Abstract Distortion is an intrinsic and undesired effect of the welding process, inducing residual stresses and hence, reducing the fatigue life of the welded structure. This distortion however, does not occurs simultaneously among the entire structure; instead, it occurs gradually during the execution of the welding chord. Due to this, equal structures, but composed by weld chords executed in a different sequencing, presents different residual stresses and therefore, different fatigue performances. This study proposes a method, using finite elements model (CAE), to capture the non-linear distortions of distinct welding sequences and contrast the diverse impacts in fatigue life.
2016-10-25
Technical Paper
2016-36-0224
Carla Lima, Filipe Andrade, Cristina Kawakami, Cristiane Gonçalves, Walmir Peraro
Abstract The microcellular foam injection molding process is being widely applied by the thermoplastics industry. This process consists in a melted polymer injection mixed with a processing solvent, that is an inert gas in the supercritical state, usually CO2 or N2 producing a microcellular foam. This technique offers many advantages such as weight reduction, dimensional uniformization and less warpage. Besides that, it offers a satisfactory property like acoustic and thermal insulation. On the other hand, the parts from this process have an inferior mechanical property like ductility and toughness if compared with solid injection molded parts. Nevertheless, the main issue for this process is the poor appearance quality. This paper presents a review of some existing methods for surface quality improvement as Co-injection process, where a skin is injected over the microcellular part, and Heat & Cool that consists in a control of mold temperature.
2016-10-25
Technical Paper
2016-36-0370
André Baroni Selim, Bruno Aquino de Lyra
Abstract This work aims to demonstrate a cooling package selection for an agricultural machine equipped with Diesel engine considering different radiators area / material and fan blade angles, pursuing the best match of performance, cost and weight. It was investigated two types of radiators made from copper-brass and aluminum, two types of charge air cooler varying the dimensions and four types of fans varying the blade angle. The selection method chosen was the experimental testing. The tests were performed according to the standard SAE and internal procedures at MWM Motores Diesel laboratories located at São Paulo / Brazil. When compared with cooper-brass, the aluminum radiator presents worse heat exchange performance what makes its size increase in order to compensate the gap. Even with bigger size, the aluminum radiator keeps lighter and cheaper.
2016-10-25
Technical Paper
2016-36-0360
Lucas Pintol Nishikawa, André Caetano Melado, Hélio Goldenstein, Luiz Felipe Bauri, Dinecio dos Santos Filho, Eduardo Nunes
Abstract The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
2016-10-25
Technical Paper
2016-36-0372
Bahr Rogerio, Weller Tiago
Abstract The product development process in the automotive industry is constantly subject to several studies focused on trying to minimize the costs and reduce the time to product. However, it can be said that there's very little focus on the opportunity that lays in the CAD Automation possibilities through the use of a method called Knowledge Based Engineering (KBE), which consists in its core essence on the reuse of knowledge gained during previous projects, as well as a set of best design practices, applied through automation methods and artificial intelligence in the CAD models. The CAD process automation could represent a significant reduction in the project hours in the automotive product development, mainly because the processes related to it are well defined and structured. Besides that, new automotive products are usually predictable and systemic, allowing room for an efficient CAD automation.
2016-10-25
Technical Paper
2016-36-0149
Edinilson Alves Costa
Abstract Mainly in the last 30 years so much research has been done on Fe-based calculation of seam welded thin-sheet structures fatigue life. However, available prediction methods have been developed for a limited range of geometries under ideal load conditions. Extrapolating to complex real world geometries and load conditions such those resultant from, for example, ground vehicles dislocation over rough surfaces, are least documented. One example of the application of seam welded thin-sheet structures in the ground vehicle industry is the powertrain installation bracketry. Such brackets are subject to variable amplitude loading sourced from powertrain and road surface irregularities and their fatigue strength is tightly dependent on the strength of their joints. In this paper, a FE-based force/moment method has been used for numerically predicting fatigue life of powertrain installation bracketry of a commercial truck submitted to variable amplitude loading.
2016-10-25
Technical Paper
2016-36-0159
Mauro Iurk Rocha, Ivna Oliveira da Cruz, Maria Clara Kremer Faller, Antônio Carlos Scardini Villela, Sergio Roberto Amaral, Frederico Braz Silva, Sillas Oliva Filho
Abstract Vehicles manufacturers, in search of cost reduction, fill the tanks of recently manufactured vehicles with the least volume of fuel necessary for future commercialization. The adoption of such practice, depending on the diesel fuel storage conditions, may lead to oxidation products formation in the fuel system and to problems during the first start of these vehicles. Some vehicles manufacturers, trying to minimize the occurrence of these problems, replace the diesel fuel in the vehicle tank with new fuel when vehicle storage time reaches 90 days. As a result of such occurrences, the opportunity for a first fill diesel fuel development, that presented better oxidation stability during storage, was identified.
2016-10-25
Technical Paper
2016-36-0169
Emilio C. Baraldi, Paulo Carlos Kaminski
Abstract The competition among automotive industries increases each year worldwide. Among their diverse needs, what can be highlighted are: market expansion, model diversification, competitive prices, customer-recognized quality, new products release in shorter time periods, among others. The occurrence of flaws that might compromise the health or safety of the product’s user is admittedly one of the largest issues for any manufacturer, especially if these flaws are identified after its commercialization (recall). In this work, a study on recall in the automotive industry in the Brazilian market will be presented, comprising the years of 2013 and 2014. Reasons and causes of recall are addressed, based on the sample of the aforementioned research, with special emphasis on flaws derived from the production process. The conclusion at the end of the work is that the final assembly in the automotive manufacturing process is what requires more attention from engineering area.
Viewing 211 to 240 of 21019

Filter