Display:

Results

Viewing 121 to 150 of 21495
2017-09-22
WIP Standard
AMS4918P
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4.000 inches (101.60 mm), inclusive.
2017-09-22
WIP Standard
AMS4985F
This specification covers a titanium alloy in the form of investiment castings.
2017-09-22
WIP Standard
AMS4937E
This specification covers a titanium alloy in the form of extruded bars, tubes, and shapes, and of flash welded rings and stock for flash welded rings.
2017-09-22
WIP Standard
AMS4914G
This specification covers a titanium alloy in the form of sheet and strip up to and including 0.125 inches in thickness. These products have been used typically in applications requiring high strength-to-weight ratio and stability up to 550 °F (288 °C), but usage is not limited to such applications. Parts are typically formed in the solution heat treated condition and subsequently precipitation heat treated to final condition.
2017-09-22
WIP Standard
AMS4900Q
This specification covers one grade of commercially-pure titanium in the form of sheet, strip, and plate.
2017-09-22
WIP Standard
AMS4992C
This specification covers titanium Ti 6Al-4V alloy in the form of investment castings.
2017-09-22
WIP Standard
AMS4991F
This specification covers a titanium alloy in the form of investment castings having four grades of permissible discontinuities.
2017-09-22
WIP Standard
AMS4989D
This specification covers a titanium alloy in the form of sheet, strip, and plate.
2017-09-22
WIP Standard
AMSH81200E
This specification covers the heat treatment of titanium and titanium alloy mill products (raw material), including wrought and cast products, by material producers. This specification also covers furnace equipment requirements, test procedures, and general information for heat treating procedures, heat treating temperatures, and material test procedures for the heat treatment of titanium and titanium alloys. It also describes procedures that, when followed, have produced the desired properties within the limitations of the respective alloys.
CURRENT
2017-09-22
Standard
AMS2685F
This specification defines the requirements for joining metals and alloys using the gas-tungsten-arc welding (GTAW) methods.
2017-09-21
WIP Standard
AMSQQP416F
This specification covers the requirements for electrodeposited cadmium plating.
2017-09-20
WIP Standard
F17AA
These castings have been used typically for structural parts requiring strength up to 1350 °F (732 °C) and oxidation resistance up to 1800 °F (982 °C), but usage is not limited to such applications.
2017-09-20
WIP Standard
D17AC
This specification covers a copper-nickel-tin alloy in the form of back-extruded mechanical tube 1.100 to 13.6 inches (28 to 330 mm) in outer diameter. .
CURRENT
2017-09-20
Standard
AMS2510F
This specification covers the engineering requirements for finishing aircraft parts and assemblies with an engine gray enamel.
CURRENT
2017-09-20
Standard
AMS2550F
This specification covers the engineering requirements for a treatment to provide enhanced corrosion resistance to sheet metal parts, such as brackets, spacers, and washers, fabricated from martensitic Corrosion-resistant steels, usually AMS 5504 or AMS 5508 and having hardness not higher than 40 HRC, or ferritic corrosion-resistant steels, usually AMS 5506. The treatment is not recommended for use on parts subject to impact in service.
CURRENT
2017-09-20
Standard
AMSM45202B
This specification covers the requirements for equipment, materials and procedures to be used in anodic treatments for magnesium base alloys for the purpose of increasing their corrosion resistance or producing surfaces suitable for the application of a protective organic finish.
CURRENT
2017-09-20
Standard
AMS2435H
This specification covers the engineering requirements for applying tungsten carbide/cobalt coatings to metal parts by the detonation process and the properties of such coatings.
CURRENT
2017-09-20
Standard
ARP1575C
This document describes a hand-applied, nontank, phosphoric acid anodizing process for surface preparation of aluminum alloys required to achieve optimum bondline durability for structural adhesive bonding.
2017-09-20
WIP Standard
AMS4928W
This specification covers a titanium alloy in the form of bars, wire, forgings, flash welded rings, drawn shapes up through 6.000 inches (152.40 mm) inclusive in diameter or least distance between parallel sides and stock of any size for forging or flash welded rings.
CURRENT
2017-09-19
Standard
AMS2451/6B
This specification establishes the requirements for brush plating of copper by electrodeposition.
2017-09-19
Technical Paper
2017-01-2148
Ho-Sung Lee
In this paper, manufacturing of launcher structural components with superplastic forming (SPF) and solid state welding technologies is presented with several examples. Some of high strength aerospace alloys, like aluminum, titanium and superalloys, are known to have superplasticity so that complex shapes of aerospace components can be produced with this technology. A combination of superplastic forming and solid state welding processes produces lighter and stiffer components than one manufactured with conventional machining and welding. Solid state welding is an attractive method to weld materials without melting where mechanical properties are important since the welding interface is homogeneous without liquid phases.
2017-09-19
Technical Paper
2017-01-2166
Hendrik Susemihl, Christoph Brillinger, Sven Philipp Stürmer, Stephan Hansen, Christian Boehlmann, Simon Kothe, Jörg Wollnack, Wolfgang Hintze
Abstract The demand for higher production rates in aircraft industry requests more flexible manufacturing solutions. A bottleneck in production is the machining of large components by vast portal machines. Time-consuming referencing processes result in non-satisfying cost-effectiveness of these high-invest-machines. Mobile robot-based solutions are able to operate simultaneously which increases the productivity significantly. However, due to the limited workspace of robots, machining tasks have to be divided and long trajectories are separated in single overlapping segments. Thus high-accuracy referencing strategies are required to achieve desired production tolerances. In this publication different advanced optical reference strategies will be discussed taking the inhomogeneous behavior of a mobile robotic machining system into account.
2017-09-19
Technical Paper
2017-01-2017
Catherine Ninah, Brian Strevens, Cole Barcia, Isabelle Labbe, Michael Frenna, Austin Faulconer, Keon Habbaba, Katherine Loundy, Louis Schaefer, Alexa Frost, Andrew Foran, Robert Brown, Luis Rabelo
Abstract The National Aeronautics and Space Administration (NASA) is preparing for a manned mission to Mars to test the sustainment of civilization on the planet Mars. This research explores the requirements and feasibility of autonomously producing fuel on Mars for a return trip back to Earth. As a part of NASA’s initiative for a manned trip to Mars, our team’s work creates and analyzes the allocation of resources necessary in deploying a fuel station on this foreign soil. Previous research has addressed concerns with a number individual components of this mission such as power required for fuel station and tools; however, the interactions between these components and the effects they would have on the overall requirements for the fuel station are still unknown to NASA. By creating a baseline discrete-event simulation model in a simulation software environment, the research team has been able to simulate the fuel production process on Mars.
2017-09-19
Technical Paper
2017-01-2022
Katherine Loundy, Louis Schaefer, Andrew Foran, Catherine Ninah, Khristopher Bandong, Robert Brown, Hunter Heston, John-Paul Steed, William Young, Mark Heinrich, Luis Rabelo
Abstract The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
2017-09-19
Technical Paper
2017-01-2091
Leo Muijs, Manuela Snijders
Abstract The use of Collaborative Robots (Cobots) is an emerging technology that is developing at a fast pace. Within GKN Aerospace’s Fokker business a project is initiated to accelerate knowledge of application of this technology. Goal of the project is to get familiar with the technology and possibilities of a Cobot. The primary difference between Cobotics and a conventional Robotics approach is that the technology can safely exist in a human operating environment without caging or other hard guarding. Both Fokker Aerostructures and Fokker Landing Gear wanted to gain experience with this technology and worked together in the preparation of 2 projects to be showcased in their companies. Fokker Aerostructures concentrated on the application of handling of an Automatic Drilling Unit (ADU) for the production of the A350 Outboard Flap. Task of the Cobot was to pick-up an ADU from a table and insert the ADU in a drill jig.
2017-09-19
Technical Paper
2017-01-2096
Rainer Mueller, Matthias Vette, Aaron Geenen, Tobias Masiak
Abstract Assembly processes in aircraft production are difficult to automate due to technical risks. Examples of such technical challenges include small batch sizes and large product dimensions as well as limited work space for complex joining processes and organization of the assembly tasks. A fully automated system can be expensive and requires a large amount of programming knowledge. For these reasons, ZeMA believes a semi-automated approach is the most effective means of success for optimizing aircraft production. Many methods can be considered semi automation, one of which is Human-Robot-Collaboration. ZeMA will use the example of a riveting process to measure the advantages of Human-Robot-Collaboration systems in aircraft structure assembly. In the assembly of the aircraft aft section the pressure bulkhead is mounted with a barrel section using hundreds of rivets. This assembly process is a non-ergonomic and burdensome task in which two humans must work cooperatively.
2017-09-19
Technical Paper
2017-01-2095
Timothy Jackson
Abstract The advent of accuracy improvement methods in robotic arm manipulators have allowed these systems to penetrate applications previously reserved for larger, robustly supported machine architectures. A benefit of the relative reduced size of serial-link robotic systems is the potential for their mobilization throughout a manufacturing environment. However, the mobility of a system offers unique challenges in maintaining the high-accuracy requirement of many applications, particularly in aerospace manufacturing. Discussed herein are several aspects of mechanical design, control, and accuracy calibration required to retain accurate motion over large volumes when utilizing mobile articulated robotic systems. A number of mobile robot system architectures and their measured static accuracy performance are provided in support of the particular methods discussed.
2017-09-19
Technical Paper
2017-01-2093
Thorsten Dillhoefer
Ever increasing process applications inspire us, as suppliers of aircraft, structural-assembly, and equipment to design innovative and modular, manufacturing cells in compliance with modern specification. The result is the new highly flexible Aerospace application specific robot identified as “POWER RACe”. This paper describes how benchmarks for flexible automated drilling and fastening are being achieved with the Power RACe technology platform.
2017-09-19
Technical Paper
2017-01-2080
James Merluzzi, Isaac Bahr
Abstract Manually changing stringer-side tooling on an automatic fastening machine is time consuming and can be susceptible to human error. Stringer-side tools can also be physically difficult to manage because of their weight, negatively impacting the experience and safety of the machine operator. A solution to these problems has recently been developed by Electroimpact for use with its new Fuselage Skin Splice Fastening Machine. The Automatic Tool Changer makes use of a mechanically passive gripper system capable of securely holding and maneuvering twelve tools weighing 40 pounds each inside of a space-saving enclosure. The Automatic Tool Changer is mounted directly to the stringer side fastening head, meaning the machine is capable of changing tools relatively quickly while maintaining its position on the aircraft panel with no machine operator involvement.
2017-09-19
Technical Paper
2017-01-2077
John McClelland, Michael Morgan, Caroline McClory, Colm Higgins, Rory Collins, Adrian Murphy, Yan Jin
The need to drill several million holes per aircraft through composite and hybrid material stacks is a large challenge for the aerospace assembly process. The ability to produce high quality holes for the lowest tooling costs is at the forefront of requirements for aircraft assembly factories worldwide. Consequently, much research has been conducted into tool design and development, however, the effect of drilling platform characteristics has not been well covered in literature. Respectively, this research has compared the drilling abilities of a 5-axis precision CNC platform, a hybrid parallel kinematic machine and an articulated robotic arm fitted with a drilling module. In-process force measurement and post process hole and tool analysis methods were used to better understand the effect of static and dynamic platform characteristics on the achievable hole quality, cycle time and tool wear when drilling aerospace metal alloy stacks.
Viewing 121 to 150 of 21495

Filter