Display:

Results

Viewing 121 to 150 of 20378
2016-04-05
Technical Paper
2016-01-0416
Eduardo Bustillos, Haley Linkous, Xin Xie, Laila Guessous, Lianxiang Yang
This paper presents the measurement and analysis of the edge stretching limit of aluminum alloy using digital image correlation. The edge stretching limit, also known as the “edge thinning limit,” is the maximum thinning strain at a point of edge failure resulting from tension; which may be predisposed by edge quality. Edge fracture is a vital failure mode in sheet metal forming, however it is very difficult to measure. A previous study enabled the measurement of edge thinning strain by using advanced digital image correlation but it did not consider how the edge quality could affect the edge stretching limit of aluminum alloy. This paper continues to measure edge thinning strain by comparing polished to unpolished AA5754, thus determining the effect edge quality has on the edge stretching limit. To enable the measurement by optical method for a very long and thin sample, a notch is used to localize where edge failure occurs.
2016-04-05
Technical Paper
2016-01-0271
David A. Warren
Abstract The objective of the paper is to outline the steps taken to change the reliability and maintenance environment of a plant from completely reactive to proactive. The main systems addressed are maintenance function fulfillment with existing staffing; work order management, planning, and scheduling; preventive maintenance (PM) definition and frequency establishment; predictive maintenance (PdM) scheduling and method definition; and shutdown planning and execution. The work order management methods were evaluated and modified to provide planning and scheduling of work orders on a weekly basis. The computerized maintenance and management system (CMMS) was updated to automatically insert work orders into the backlog of work for completion. A failure modes and effects analysis (FMEA) was performed and the results of the FMEA led to implementation of the following PM and PdM activities: vibration analysis, thermal imaging, and temperature monitoring.
2016-04-05
Technical Paper
2016-01-1074
Takamichi Hirasawa, Michihiro Yamamoto
Abstract Although burr removal after machining generates no value, it is a factor to add major processing cost. While our final goal is to remove the deburring process, development of minimizing the variance in the amount and type of burr after machining was promoted this time as our first step. This report presents how we reduced deburring time significantly by minimizing burr as much as possible from optimization of a blade release angle and development of a relevant tool.
2016-04-05
Journal Article
2016-01-0498
Yang Li, Qiangsheng Zhao, Mansour Mirdamadi, Danielle Zeng, Xuming Su
Abstract Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure.
2016-04-05
Technical Paper
2016-01-0500
Akira Kato, Masayuki Takano, Kohei Hase, Satoko Inuzuka, Toshiyuki Dobashi, Tsuyoshi Sugimoto, Nobuaki Takazawa
Abstract In this report, adhesion mechanism between epoxy resin and primer and between primer and Ni platting in Hybrid vehicle (HV) was investigated. Adhesion forces are thought to be a combination of mechanical bond forces (such as anchor effect), chemical bond forces and physical bond forces (such as hydrogen bonding and Van der Waals force). Currently there is insufficient understanding of the adhesion mechanism. In particular, the extent to which the three bond forces contribute to adhesion strength. So the adhesion mechanism of polyimide primers was analyzed using a number of different methods, including transmission electron microscope (TEM) and atomic force microscope (AFM) observation, to determine the contributions of the three bonding forces. Molecular simulation was also used to investigate the relationship between adhesion strength and the molecular structure of the primer.
2016-04-05
Journal Article
2016-01-0499
Xu Zhang, Jennifer Johrendt
Abstract Successful manufacture of Carbon Fibre Reinforced Polymers (CFRP) by Long-Fibre Reinforced Thermoplastic (LFT) processes requires knowledge of the effect of numerous processing parameters such as temperature set-points, rotational machinery speeds, and matrix melt flow rates on the resulting material properties after the final compression moulding of the charge is complete. The degree to which the mechanical properties of the resulting material depend on these processing parameters is integral to the design of materials by any process, but the case study presented here highlights the manufacture of CFRP by LFT as a specific example. The material processing trials are part of the research performed by the International Composites Research Centre (ICRC) at the Fraunhofer Project Centre (FPC) located at the University of Western Ontario in London, Ontario, Canada.
2016-04-05
Technical Paper
2016-01-0502
Yuyang Song, Umesh Gandhi
Abstract The application of adhesively bonded joints has increased significantly in order to improve the integrity of structural components in vehicle design. In this paper, finite element analysis is used to model the adhesive behavior of the adhesive joining between steel and composite. The cohesive element modeling techniques in Abaqus is used to model the adhesive interface. The standard lap shear and peeling test are first conducted to estimate the adhesive properties using reverse engineering. Next, these adhesive properties are applied and validated on the FE model of a 3D part for complex loading condition. The FEA model using reverse engineered cohesive interface properties get closed match to the test results for joining of the complex shape parts.
2016-04-05
Technical Paper
2016-01-0503
Evandro Giuseppe Betini, Francisco Carlos Cione, Cristiano Stefano Mucsi, Marco Antonio Colosio, Jesualdo Luiz Rossi, Marcos Tadeu D'Azeredo Orlando
Abstract This paper reports the experimental efforts in recording the 2-dimensional temperature distribution on autogenous thin plates of UNS S32304 steel during welding. The butt-welded autogenous joints were experimentally performed by the GTAW (Gas Tungsten Arc Welding) process with either argon or argon-2%nitrogen atmospheres. The temperatures cycles were recorded by means of thermocouples embedded by spot welding on the plate's surfaces and connected to a multi-channel data acquisition system. The laser flash method (LFM) was also used for the determination thermal diffusivity of the material in the thickness direction. The temperature curves suggest a relationship between the microstructures in the solidified and the heat affected zone with the diffusivity variation. This is a region where there had been a major incidence of heat. The obtained results validate the reliability of the experimental used apparatus.
2016-04-05
Journal Article
2016-01-0504
Shin-Jang Sung, Jwo Pan
Abstract Analytical stress intensity factor solutions for welds in lap-shear specimens of equal thickness under pinned and clamped loading conditions based on the beam bending theory are presented and examined. Finite element analyses are also employed to obtain the stress intensity factor solutions for welds in lap-shear specimens under both clamped and pinned loading conditions. The computational solutions are compared well with the analytical solutions. The results of the analytical and computational solutions indicate that the bending moments at the clamped edges reduce the mode I and II stress intensity factor solutions by about 7% to 10% for the given specimen geometry. The effects of the clamped grips depend on the ratio of the weld width to the specimen length. Comparisons of the stress intensity factor solutions suggest that the fatigue lives of the welds in lap-shear specimens under clamped loading conditions should be higher than those under pinned loading conditions.
2016-04-05
Journal Article
2016-01-0506
Daisuke Tomomatsu
Abstract This study developed technology for simultaneously welding heterogeneous resin tubes in order to weld and integrate resin tubes with two different specifications (low temperature and high temperature). The aim of integration was cost and weight reduction. The cost reduction due to reducing the number of parts exceeded the increase in material cost due to a change to resin materials. Base material fracture of the resin tubes was set as the breaking format condition, and the welding parameters of the joint part rotations and the friction time between the joint part and the resin tubes were specified as the weld strength judgment standard. In addition, the fused thickness determined by observing the cross-section after welding was specified as the weld quality judgment standard. The range over which weld boundary peeling does not occur and weld strength is manifest was clarified by controlling the welding parameters and the fused thickness.
2016-04-05
Journal Article
2016-01-0543
Takashi Hara, Masaki Kato, Kazuki Mizutani
Abstract There are such outside door handles called smart handles which have a transmitting antenna, a lock/unlock sensor, and a sensor detection circuit, with which operation of door lock is possible just by "touching" the electrostatic-capacitance type sensor of the handles.As the design of the outside handles, body color painting and Cr plating are adopted. However, if plating is applied over the entire surface of a smart handle, electromagnetic waves transmitted from the antenna will be blocked since plating material is electrically conductive. In addition to this, touching a part other than the sensor may change the electrostatic-capacitance of the sensor, which results in unwanted functioning of the lock/unlock sensor. Because of this, only part of the handle, which does not hinder the transmission of electromagnetic waves and does not cause unwanted functioning, is covered by plating, that is called, "Partially plated specifications" (Figure 1).
2016-04-05
Journal Article
2016-01-0542
Hiroshi Kawaguchi, Osamu Funatsumaru, Hiroyoshi Sugawara, Hiroshi Sumiya, Takanobu Iwade, Tomitaka Yamamoto, Takashi Koike, Ryuta Kashio
Abstract Trivalent chromium passivation is used after zinc plating for enhancing corrosion resistance of parts. In the passivating process, the amount of dissolved metal ions (for example zinc and iron) in the passivation solution increases the longer the solution is used. This results in a reduced corrosion resistance at elevated temperatures. Adding a top coat after this process improves the corrosion resistance but has an increased cost. To combat this, we strove to clarify the mechanism of decreased corrosion resistance and to develop a trivalent chromium passivation with a higher corrosion resistance at elevated temperatures. At first, we found that in parts produced from an older solution, the passivation layer has cracks which are not seen in parts from a fresh/new solution. These cracks grow when heated at temperatures over 120 degrees Celsius.
2016-04-05
Journal Article
2016-01-1344
Koushi Kumagai, Masaaki Kuwahara, Tsuyoshi Yasuki, Norimasa Koreishi
Abstract This paper describes the development of a fracture finite element (FE) model for laser screw welding (LSW) and validation of the model with experimental results. LSW was developed and introduced to production vehicles by Toyota Motor Corporation in 2013. LSW offers superb advantages such as increased productivity and short pitch welding. Although the authors had previously developed fracture FE models for conventional resistance spot welding (RSW), a fracture model for LSW has not been developed. To develop this fracture model, many comprehensive experiments were conducted. The results revealed that LSW had twice as many variations in fracture modes compared to RSW. Moreover, fracture mode bifurcations were also found to result from differences in clearance between welded plates. In order to analyze LSW fracture phenomena, detailed FE models using fine hexahedral elements were developed.
2016-04-05
Technical Paper
2016-01-1347
S. Khodaygan
Abstract Fixtures play a key role in locating workpieces to manufacture high quality products within many processes of the product lifecycle. Inaccuracies in workpiece location lead to errors in position and orientation of machined features on the workpiece, and strongly affect the assemblability and the final quality of the product. The accurate positioning of workpiece on a fixture is influenced by rigid body displacements and rotations of the workpiece. In this paper, a systematic approach is introduced to investigate the located workpiece position errors. A new mathematical formulation of fixture locators modeling is proposed to establish the relationship between the workpiece position error and its sources. Based on the proposed method, the final locating errors of the workpiece can be accurately estimated by relating them to the specific dimensional and geometric errors or tolerances of the workpiece and the related locators.
2016-04-05
Technical Paper
2016-01-0106
Michael Stamper
Abstract One of the many critical design criteria for vehicle harness design is circuit protection. This process typically involves calculating the maximum load on each wire manually and then comparing the result to a spreadsheet that may be quite old. Testing physical prototypes occurs so late in the design process that problems found can be very expensive to rectify. Using simulation to detect faults, such as short circuits or the time for the fuse to blow vs. the time for the wire to smoke is an effective solution that can not only save a great deal in costs, but shorten the development cycle as well.
2016-04-05
Technical Paper
2016-01-0406
Akihiko Asami, Tomoyuki Imanishi, Yukio Okazaki, Tomohiro Ono, Kenichi Tetsuka
Abstract High-tensile steel plates and lightweight aluminum are being employed as materials in order to achieve weight savings in automotive subframe. Closed-section structures are also in general use today in order to efficiently increase parts stiffness in comparison to open sections. Aluminum hollow-cast subframe have also been brought into practical use. Hollow-cast subframe are manufactured using sand cores in gravity die casting (GDC) or low-pressure die casting (LPDC) processes. Using these manufacturing methods, it is difficult to reduce product thickness, and the limitations of the methods therefore make the achievement of weight reductions a challenge. The research discussed in this paper developed a lightweight, hollow subframe technology employing high-pressure die casting (HPDC), a method well-suited to reducing wall thickness, as the manufacturing method. Hollow-casting using HPDC was developed as a method of forming water jackets for water-cooled automotive engines.
2016-04-05
Technical Paper
2016-01-0531
Pulkit Batra, Arpit Bansal, V Jeganathan ArulMoni
Abstract Friction stir processing (FSP) is a method of changing the properties of metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into a workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. It comprises of a rotating tool with pin and shoulder which are inserted into a single piece of material and traversed along the desired path to cover the region of interest. Friction between the shoulder and work piece results in localized heating which raises the temperature of the material to the range where it is plastically deformed. During this process, severe plastic deformation occurs and due to thermal exposure of material, it results in a significant evolution in the local microstructure. Carbon nanotubes were dispersed into Al matrix by multipass FSP to fabricate Al6082 T0/Fe-MWCNT.
2016-04-05
Journal Article
2016-01-0505
Pai-Chen Lin, Shihming Lo
Abstract A concept of combining friction stir spot welding (FSSW) and clinching, denoted as friction stir clinching (FSC), was proposed to join alclad 2024-T3 aluminum sheets. A tool, having a smooth probe and a flat shoulder, and a die, having a circular cavity and a round groove, were used to make FSC joints. The failure loads and fatigue lives of FSC joints made by various punching depths, rotational speeds, and dwelling times, were evaluated to obtain the admissible processing parameters. Optical micrographs of the FSC joints, before and after failure, were examined to understand the effects of processing parameters on the mechanical interlock and alclad layer distribution, which strongly correlate to the failure load, failure mode, and fatigue life of FSC joints. Finally, the static and fatigue performance of FSC joints made by the admissible processing parameters was obtained. The feasibility of the FSC process for alclad 2024-T3 aluminum sheets was confirmed.
2016-04-05
Journal Article
2016-01-0501
Seung Hoon Hong, Frank Yan, Shin-Jang Sung, Jwo Pan, Xuming Su, Peter Friedman
Abstract Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
2016-04-05
Technical Paper
2016-01-0357
Daniel J. Branagan, Andrew E. Frerichs, Brian E. Meacham, Sheng Cheng, Alla V. Sergueeva
Abstract The historical development of autobody steels has demonstrated a paradoxical relationship between strength and ductility, with increasing strength necessary for lightweighting commensurate with reductions in ductility necessary for cold formability. This in turn creates geometric constraints in part design and manufacturing, ultimately limiting usage of these higher strength steel grades in automobiles. Quench and tempering including variants such as quench, partitioning, and tempering are known approaches to increase strength while attempts to overcome the paradox have focused on increasing ductility through three distinct deformation mechanisms including; 1) shear band induced plasticity (SIP), 2) transformation induced plasticity (TRIP), and 3) twinning induced plasticity (TWIP).
2016-04-04
Article
This past November Caterpillar opened its new Additive Manufacturing (AM) Factory at its Tech Center in Mossville, IL, to consolidate and expand its 3D printing activities. AM engineer Brittany Hancock recently gave Off-Highway Engineering a tour of the new facility and discussed the company’s current and future plans regarding the use of 3D printing technology.
2016-04-04
Standard
ARP1836C
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a b self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds. Additional considerations and requirements may legally apply in other countries. As an example, for operation in Europe (E.U. and E.F.T.A.), the applicable EN standards shall be complied with.
2016-03-31
Standard
AMS5080K
This specification covers a carbon steel in the form of bars, forgings, mechanical tubing, and forging stock.
2016-03-31
WIP Standard
AMS2371K

This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable specification requirements of wrought corrosion and heat-resistant steel and alloy products and of forging stock.

2016-03-31
Standard
AMS5069G
This specification covers a low-carbon steel in the form of bars, forgings, mechanical tubing, and forging stock.
2016-03-29
WIP Standard
B16AA
This specification covers the requirements for brush plating of nickel-tungsten by electrodeposition. This process has been used as a chromium alternative for repair and OEM applications that require exceptionaly hard elcectroplated deposits. It’s typically used in aerospace, automotive and oil and gas to improve hardness and wearability and to repair damaged or worn parts, but usage is not limited to such applications.
2016-03-28
Standard
AMS4195D
This specification covers an aluminum alloy in the form of flat sheet and plate 0.500 inch (12.70 mm) and under in nominal thickness.
2016-03-28
Standard
AMS5645S
This specification covers a corrosion and heat resistant steel in the form of forgings over 0.50 inch (12.7 mm) in nominal diameter or least distance between parallel sides, wire, bars, and mechanical tubing, flash welded rings, and stock of any size for forging or flash welded rings (see 8.6).
2016-03-24
WIP Standard
AMS2759/3G
This specification, in conjunction with the general requirements for steel heat treatment covered in AMS2759, establishes the requirements for heat treatment of precipitation-hardening corrosion- resistant and maraging steel parts. Parts are defined in AMS2759.
2016-03-23
WIP Standard
J371
This SAE Recommended Practice applies to off-road, self-propelled work machines as defined in SAE J1116, Categories 1, 2, 4, and 5. Plugs are extensively used in off-road, self-propelled work machines as defined in SAE J1116. Loss of these plugs, stripping of the threads, or failure to tighten because of difficulty in finding the right tool can result in serious damage and/or increased down time. All the plugs listed are nominal inch sizes pending the development of metric plug standards. The purpose of this document is to standardize and, therefore, minimize the number of sizes and types of drain, fill, and level plugs required. It also establishes types and sizes of pipe thread and straight thread plugs requiring commercially available hand tools for removal and installation. It is not intended to establish dimensions and materials.
Viewing 121 to 150 of 20378

Filter