Display:

Results

Viewing 61 to 90 of 21044
2017-03-28
Journal Article
2017-01-0303
Ran Cai, Xueyuan Nie, Jingzeng Zhang
Abstract Light-weighting of vehicles is one of the challenges for transportation industry due to the increasing pressure of demands in better fuel economy and environment protection. Advanced high strength steels (AHSS) are considered as prominent material of choice to realize lightweight auto body and structures at least in near term. Stamping of AHSS with conventional die materials and surface coatings, however, results in frequent die failures and undesired panel surface finish. A chromium nitride (CrN) coating with plasma nitriding case hardened layer on a die material (duplex treatment) is found to offer good wear and galling resistances. The coating failure initiates from fatigue cracking on the coating surface due to cyclic sliding frictions. In this work, cyclic inclined sliding wear test was used to imitate a stamping process for study on development of coating fatigue cracking, including crack length and spacing vs. sliding-cycles and sliding energy densities.
2017-03-28
Journal Article
2017-01-0342
Benjamin Möller, Alessio Tomasella, Rainer Wagener, Tobias Melz
Abstract The cyclic material behavior is investigated, by strain-controlled testing, of 8 mm thick sheet metal specimens and butt joints, manufactured by manual gas metal arc welding (GMAW). The materials used in this investigation are the high-strength structural steels S960QL, S960M and S1100QL. Trilinear strain-life curves and cyclic stress-strain curves have been derived for the base material and the as-welded state of each steel grade. Due to the cyclic softening in combination with a high load level at the initial load cycle, the cyclic stress-strain curve cannot be applied directly for a fatigue assessment of welded structures. Therefore, the transient effects have been analyzed in order to describe the time-variant material behavior in a more detailed manner. This should be the basis for the enhancement of the fatigue life estimation.
2017-03-28
Journal Article
2017-01-0400
Theo Rickert
Abstract Hole drilling is a very common technique for measuring residual stresses. Adding an orbiting motion of the drill was found to improve hole quality in difficult to drill materials and has been in practice for decades. This study compares measurements using various orbiting amounts. Each measurement was repeated twice to evaluate measurement statistics. There is a distinct, though relatively small, effect of the hole shape when no orbiting is used. It disappears already when the hole is 50% larger than the tool size. Different orbiting amounts also produce systematically different results. These may be related to the absolute hole size.
2017-03-28
Journal Article
2017-01-0452
David A. Stephenson
Abstract Thermally sprayed engine bores require surface preparation prior to coating to ensure adequate adhesion. Mechanical roughening methods produce repeatable surfaces with high adhesion strength and are attractive for high volume production. The currently available mechanical roughening methods are finish boring based processes which require diameter-specific tooling and significant clearance at the bottom of the bore for tool overtravel and retraction. This paper describes a new mechanical roughening method based on circular interpolation. This method uses two tools: a peripheral milling tool, which cuts a series of concentric grooves in the bore wall through interpolation, and a second rotary tool which deforms the grooves to produce an undercut. This method produces equivalent or higher bond strength than current surface preparation methods, and does not require diameter-specific tooling or bottom clearance for tool retraction.
2017-03-28
Journal Article
2017-01-0478
Pai-Chen Lin, WeiNing Chen
Abstract Fatigue analysis of swept friction stir clinch (Swept-FSC) joints between 6061-T6 aluminum (Al) and S45C steel (Fe) sheets was conducted through experimental approaches. Before fatigue tests, a parametric study for the probe geometry of FSC tools was conducted in order to eliminate the hook structure inside the joint and improve the mechanical performance of the joint. Then a series of quasi-static and fatigue tests for Al/Fe Swept-FSC joints in lap-shear (LP) and cross-tension (CT) specimens were conducted. The fatigue data were recorded. The fatigue behavior of Al/Fe Swept-FSC joints in LP and CT specimens were examined through optical and scanning electron microscopes. Experimental results indicated that LP specimens have two failure modes, while CT specimens have only one failure mode. The dominant fatigue crack of each failure mode was identified.
2017-03-28
Journal Article
2017-01-1277
Jakobus Groenewald, Thomas Grandjean, James Marco, Widanalage Widanage
Abstract Increasingly international academic and industrial communities desire to better understand, implement and improve the sustainability of vehicles that contain embedded electrochemical energy storage. Underpinning a number of studies that evaluate different circular economy strategies for the electric vehicle (EV) battery system are implicit assumptions about the retained capacity or State-of-Health (SoH) of the battery. International standards and best-practice guides exist that address the performance evaluation of both EV and HEV battery systems. However, a common theme in performance testing is that the test duration can be excessive and last for a number of hours. The aim of this research is to assess whether energy capacity and internal resistance measurements of Li-ion based modules can be optimized, reducing the test duration to a value that may facilitate further End-of-Life (EoL) options.
2017-03-28
Journal Article
2017-01-1273
Qiang Dai, Jarod C. Kelly, Amgad Elgowainy
Abstract Vehicle lightweighting has been a focus of the automotive industry, as car manufacturers seek to comply with corporate average fuel economy (CAFE) and greenhouse gas (GHG) emissions standards for model year (MY) 2017-2025 vehicles. However, when developing a lightweight vehicle design, the automotive industry typically targets maximum vehicle weight reduction at minimal cost increase. In this paper, we consider the environmental impacts of the lightweighting technology options. The materials used for vehicle lightweighting include high-strength steel (HSS), aluminum, magnesium and carbon fiber reinforced plastic (CFRP). Except for HSS, the production of these light materials is more GHG-intensive (on a kg-to-kg basis) compared with the conventional automotive materials they substitute. Lightweighting with these materials, therefore, may partially offset the GHG emission reductions achieved through improved fuel economy.
2017-03-28
Journal Article
2017-01-1278
Keisuke Isomura
Abstract In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions.
2017-03-28
Technical Paper
2017-01-1665
Qigui Wang, Peggy Jones, Yucong Wang, Dale Gerard
Abstract With the increasing use of aluminum shape castings in structural applications in automobiles, assurance of cast product integrity and performance has become critical in both design and manufacturing. In this paper, the latest understanding of the relationship between casting quality and mechanical properties of aluminum castings is summarized. Examples of newly developed technologies for alloy design, melting and melt treatment, casting and heat treatment processes in aluminum casting are reviewed. Robust design and development of high integrity aluminum castings through an Integrated Computational Materials Engineering (ICME) approach is also discussed.
2017-03-28
Journal Article
2017-01-1707
C. Matthew Enloe, Jason Coryell, Jeff Wang
Abstract Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension.
2017-03-28
Journal Article
2017-01-1330
Youssef Ziada, Juhchin Yang, David DeGroat-Ives
Abstract Owing to decreased development cycle timing, designing components for manufacturability has never been as important. Assessing manufacturing feasibility has therefore become an increasingly important part of new product engineering. This manufacturing feasibility is conventionally assessed based on static stiffness of components and fixture assemblies. However, in many operations, excess vibration represents the actual limitation on processing a workpiece. Limits on how far into components a tool can reach or the amount of processing time required to machine a feature is commonly decreased significantly due to vibration. Critical time is spent resolving these vibration problems during product launches. Depending on the machining configurations these vibrations can be due to the part & work support structure or due to the tooling & spindle assembly.
2017-03-28
Journal Article
2017-01-1513
Young-Chang Cho, Chin-Wei Chang, Andrea Shestopalov, Edward Tate
Abstract The airflow into the engine bay of a passenger car is used for cooling down essential components of the vehicle, such as powertrain, air-conditioning compressor, intake charge air, batteries, and brake systems, before it returns back to the external flow. When the intake ram pressure becomes high enough to supply surplus cooling air flow, this flow can be actively regulated by using arrays of grille shutters, namely active grille shutters (AGS), in order to reduce the drag penalty due to excessive cooling. In this study, the operation of AGS for a generic SUV-type model vehicle is optimized for improved fuel economy on a highway drive cycle (part of SFTP-US06) by using surrogate models. Both vehicle aerodynamic power consumption and under-hood cooling performance are assessed by using PowerFLOW, a high-fidelity flow solver that is fully coupled with powertrain heat exchanger models.
2017-03-28
Technical Paper
2017-01-0224
Zhangxing Chen, Yi Li, Yimin Shao, Tianyu Huang, Hongyi Xu, Yang Li, Wei Chen, Danielle Zeng, Katherine Avery, HongTae Kang, Xuming Su
Abstract To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
2017-03-28
Technical Paper
2017-01-0227
Omar Al-Shebeeb, Bhaskaran Gopalakrishnan
Abstract Process planning, whether generative or variant, can be used effectively as through the incorporation of computer aided tools that enhance the evaluator impact of the dialogue between the design and manufacturing functions. Expert systems and algorithms are inherently incorporated into the software tools used herein. This paper examines the materials related implications that influence design for manufacturing issues. Generative process planning software tools are utilized to analyze the sensitivity of the effectiveness of the process plans with respect to changing attributes of material properties. The shift that occurs with respect to cost and production rates of process plans with respect to variations in specific material properties are explored. The research will be analyzing the effect of changes in material properties with respect to the design of a specific product that is prismatic and is produced exclusively by machining processes.
2017-03-28
Technical Paper
2017-01-0226
Vesna Savic, Louis Hector, Ushnish Basu, Anirban Basudhar, Imtiaz Gandikota, Nielen Stander, Taejoon Park, Farhang Pourboghrat, Kyoo Sil Choi, Xin Sun, Jun Hu, Fadi Abu-Farha, Sharvan Kumar
Abstract This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
2017-03-28
Journal Article
2017-01-0233
Weihong Guo, Shenghan Guo, Hui Wang, Xiao Yu, Annette Januszczak, Saumuy Suriano
Abstract The wide applications of automatic sensing devices and data acquisition systems in automotive manufacturing have resulted in a data-rich environment, which demands new data mining methodologies for effective data fusion and information integration to support decision making. This paper presents a new methodology for developing a diagnostic system using manufacturing system data for high-value assets in automotive manufacturing. The proposed method extends the basic attributes control charts with the following key elements: optimal feature subset selection considering multiple features and correlation structure, balancing the type I and type II errors in decision making, on-line process monitoring using adaptive modeling with control charts, and diagnostic performance assessment using shift and trend detection. The performance of the developed diagnostic system can be continuously improved as the knowledge of machine faults is automatically accumulated during production.
2017-03-28
Technical Paper
2017-01-0244
Joshua Lyon, Junheung Park, Yakov Fradkin, Jeff Tornabene
Abstract We describe an optimization model developed by Ford Motor Company to reallocate stamped parts between facilities when business conditions change. How can the business meet new targets when demand starts to exceed existing capacity? Likewise, how can it respond when demand is lower than expected? Sometimes the business can reduce costs by transferring production to a different location or by outsourcing parts. We describe in this paper how mathematical optimization can identify solutions that balance both logistical and outsourcing costs. We explain the algorithm and demonstrate with a small example how it recommends sourcing plans that minimize cost.
2017-03-28
Technical Paper
2017-01-0183
Mingyu Wang, Timothy Craig, Edward Wolfe, Tim J LaClair, Zhiming Gao, Michael Levin, Danrich Demitroff, Furqan Shaikh
Abstract It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
2017-03-28
Technical Paper
2017-01-0248
Fabian Jorg Uwe Koark, Arvind Korandla
Abstract Motivation - Ambiguous product targets, a global market, innovation pressure, changing process requirements and limited resources describe the situation for engineering management in the most R&D organizations. Achieving complex objective with limited resources is a question of performance. Performance in engineering departments is highly correlated to the existing capability of the engineering staff. When the reduction of engineering effort in development projects becomes additional goal for the management, an increase of engineering productivity is required. International engineering sites are established globally to push the capacity limits and to increase the productivity by the accessing big employment markets of engineering talents. By solving the conflict of limited resources and complex engineering goals, a need organizational challenge occurs - global co-engineering.
2017-03-28
Technical Paper
2017-01-0286
Amrinder Singh, Abhishek Ramakrishnan, Guru Dinda
Abstract Additive manufacturing (AM) of metals is finding numerous applications in automotive industry. In 21st century, aluminum is second to steel in automotive sector, because of its high strength to weight ratio. Hence developing AM for aluminum alloys become necessary to make sure industry gains maximum benefit from AM. This study specifically deals with the manufacturing of Al 7050 alloy, which is quite hardest alloy to manufacture using AM. The ultimate goal is to optimize the laser deposition parameters to deposit defect free Al 7050 alloy on rolled aluminum alloy substrate. Parameter optimization (laser power, powder flow rate, and scanning speed) gets difficult with the presence of various low melting and boiling point alloying elements such as Zn, Mg etc. Numerous other challenges faced while depositing Al 7050 alloy, are also briefly discussed in this article.
2017-03-28
Technical Paper
2017-01-0295
Silvio César Bastos
Abstract Automotive industries have been seeking quality excellence as a key factor in competitiveness. Product characteristics and functions should meet the expectations of customers in terms of warranty and reliability. The objective of this paper is to present a method to improve the synchronization of customer’s product requirements with their suppliers in terms of key performance indicators. The improvement allows suppliers to take corrective and preventive actions through knowledge of component applications in engines and vehicles. Engine assembly lines maintain records and meet daily meet to explore trends of productivity, and supplier quality performance is measured based on engine failure instead of parts supplied. This methodology integrates Lean Manufacturing and Supplier Quality Engineering and respective targets, combining efforts towards Quality Assurance.
2017-03-28
Technical Paper
2017-01-0296
Oberti Dos Santos Almeida
Abstract One of the biggest challenges for the Product Development Engineers is to have a clear understanding of the Quality Principles and Disciplines they should follow while they are engineering. In general, the current Product Development System guides of the Automakers companies are mostly focused on provide guidance for the Engineers on the following areas: Design Efficiency; Design Rules for Product Robustness; Design Validation; Product Reliability; Testing Procedures. The introduction of a new/advanced technology system alone does not mean low incidence of customer complaints. The only way to get that is plan/execute Consumer Driven Design with excellence. Global Vehicles are more sensitive to Quality since they must satisfy diverse cultural customers without compromise reliability. When a new vehicle is being developed to be sold in many markets around the world - Global Product - this problem is even bigger. Different markets mean different customer expectations.
2017-03-28
Technical Paper
2017-01-0300
Hong Yao, Sriram Sadagopan, Min Kuo, Liang Huang, Evangelos Liasi
Abstract The risk of skid lines for Class A panels has to be assessed before releasing the die development for hard tooling. Criteria are needed to predict skid lines in the formability evaluation stage to avoid expensive changes to tooling and process for resolving skid line issue in production. In this study, criteria using three different measured parameters were developed and validated. A draw-stretch-draw (DSD) test procedure was developed to generate skid lines on lab samples for the physical evaluation. This was done using tooling with various die entry radii and different draw beads. The skid line severity of lab samples was rated by specialists in the inspection of automotive outer panel surface quality. The skid line rating was correlated with geometric measurements of the lab samples after the DSD test. The sensitivity of the appearance of skid lines to tooling and process parameter variations was identified.
2017-03-28
Technical Paper
2017-01-0301
Lu Huang, Ming Shi
Abstract Digital image correlation (DIC) technique has been proved as a potent tool to determine the forming limit curve (FLC) of sheet metal. One of the major technical challenges using the DIC to generate FLC is to accurately pinpoint the onset of localized necking from the DIC data. In addition to the commonly applied ISO 12004-2 standard, a plethora of other DIC data analysis approaches have been developed and used by various users and researchers. In this study, different approaches, including spatial, temporal and hybrid approaches, have been practiced to determine the limit strains at the onset of localized necking. The formability of a 980GEN3 sheet steel was studied in this work using the Marciniak cup test coupled with a DIC system. The resulting forming limits determined by different approaches were compared. Strengths and limitations of each approach were discussed.
2017-03-28
Technical Paper
2017-01-0305
Liang Huang, Charles Yuan
Abstract This paper focus on the design approach of mapping the equivalent bead to the physical bead geometry. In principle, the physical character and geometry of equivalent bead is represented as restraining force (N/mm) and a line (bead center line). During draw development, the iterations are performed to conclude the combination of restraining force that obtains the desired strain state of a given panel. The objective of physical bead design to determine a bead geometry that has the capacity to generate the same force as specified in 2D plane strain condition. The software package ABAQUS/CAE/Isight with python script is utilized as primary tool in this study. In the approach, the bead geometry is sketched and parameterized in ABAQUS/CAE and optimized with Isight to finalize the bead geometry.
2017-03-28
Technical Paper
2017-01-0307
Xiaohua Hu, Xin Sun, Sergey Golovashchenko
Abstract The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.
2017-03-28
Technical Paper
2017-01-0308
Hyunok Kim, Jianhui Shang, James Dykeman, Anoop Samant, Clifford Hoschouer
Abstract Practical evaluation and accurate prediction of edge cracking are challenging issues in stamping AHSS for automotive body structures. This paper introduces a new hole-expansion testing method that could be more relevant to the edge cracking problem observed in stamping AHSS. A new testing method adopted a large hole diameter of 75 mm compared to the ISO standard hole diameter of 10 mm. A larger hole diameter was determined to be sensitive to edge cracking using the finite element method (FEM) based sensitivity analyses with various hole sizes. A die punching tool was developed to replicate typical production blanking conditions. An inline monitoring system was developed to visually monitor the hole edge cracking during the test and synchronize with the load-displacement data. Two AHSS materials, DP980 and TRIP780, and an aluminum alloy, A1 5182-O, were experimentally evaluated.
2017-03-28
Technical Paper
2017-01-0309
Mitchell Rencheck, Paul Zelenak, Jianhui Shang, Hyunok Kim
Abstract Aluminum alloys are increasingly utilized in automotive body panels and crash components to reduce weight. Accurately assessing formability of the sheet metal can reduce design iteration and tooling tryouts to obtain the desired geometry in aluminum stampings. The current ISO forming limit curve (FLC) procedure is a position dependent technique which produces the FLC based on extrapolation at the crack location. As aluminum sheet metal use increases in manufacturing, accurate determination of the forming limits of this material will be necessary prior to production. New time dependent methods using digital imaging correlation (DIC) account for variations in material behavior by continuously collecting strain data through the material necking point. This allows more accurate FLC determination that is necessary for efficient design in the automotive stamping industry.
2017-03-28
Technical Paper
2017-01-0311
Pedro Stemler, Anoop Samant, Dennis Hofmann, Taylan Altan
Abstract The capabilities of the servo press for varying the ram speed during stroke and for adjusting the stroke length are well known. Various companies installed servo presses for blanking. Some of the considerations may include increase in productivity and flexibility in adjusting the ram stroke, noise reduction and improvement of edge quality of blanked edge. The objectives of this study are to determine the effect of ram (blanking) speed upon the edge quality, and the effect of multiple step blanking using several punch motions, during one blanking stroke.
2017-03-28
Technical Paper
2017-01-0312
ZiQiang Sheng, Pankaj Mallick
Abstract Based on findings from micromechanical studies, a Ductile Failure Criterion (DFC) was proposed. The proposed DFC treats localized necking as failure and critical damage as a function of strain path and initial sheet thickness. Under linear strain path assumption, a method to predict Forming Limit Curve (FLC) is derived from this DFC. With the help of predetermined effect functions, the method only needs a calibration at uniaxial tension. The approach was validated by predicting FLCs for sixteen different aluminum and steel sheet metal materials. Comparison shows that the prediction matches quite well with experimental observations in most cases.
Viewing 61 to 90 of 21044

Filter