Display:

Results

Viewing 31 to 60 of 19893
2015-04-14
Journal Article
2015-01-0518
Hirokuni Fuchigami
Abstract In this research, a new wire material made using surface-reforming heat treatment was developed in order to enhance the corrosion fatigue resistance of suspension springs. The aim of surface reforming is to improve hydrogen embrittlement characteristics through grain refinement and to improve crack propagation resistance by partial softening of hardness. The grain refinement method used an α'→γ reversed transformation by rapid short-term heating in repeated induction heating and quenching (R-IHQ) to refine the crystal grain size of SAE 9254 steel spring wire to 4 μm or less. In order to simultaneously improve the fatigue crack propagation characteristics, the possibility of reducing the hardness immediately below the spring surface layer was also examined. By applying contour hardening in the second IHQ cycle, a heat affected zone (HAZ) is obtained immediately below the surface.
2015-04-14
Journal Article
2015-01-0514
Sugrib K. Shaha, Frank Czerwinski, Wojciech Kasprzak, Jacob Friedman, Daolun Chen
Abstract The uniaxial compression test was used to assess the influence of strain amount on the behavior of precipitates and texture of the Al-7%Si-1%Cu-0.5%Mg alloy, modified with micro-additions of V, Zr and Ti. As revealed through metallographic examinations, fracturing and re-orientation of the second-phase particles increased with increasing compression strain. However, the intermetallic particles experienced substantially more frequent cracking than the eutectic silicon. The crystallographic texture was measured and correlated with deformation behavior of the alloy. The weak texture of 11<211> and 111<110> components, detected after casting transformed to a mixture of 1<110>, 112<110> and 111<110> components after room-temperature compression deformation. The intensity of the texture components depended on the strain amount. It is concluded that the texture formation in the studied alloy is controlled by the precipitates formed during solidification of the alloy.
2015-04-14
Journal Article
2015-01-0519
Susumu Maeda, Atsushi Kobayashi, Yuichiro Shimizu, Masao Kanayama, Masato Yuya, Hideki Imataka
Abstract A new nitriding technology and material technology have been developed to increase the strength of microalloyed gears. The developed nitriding technology makes it possible to freely select the phase composition of the nitride compound layer by controlling the treatment atmosphere. The treatment environment is controlled to exclude sources of supply of [C], and H2 is applied as the carrier gas. This has made it possible to control the forward reaction that decomposes NH3, helping to enable the stable precipitation of γ′-phase, which offers excellent peeling resistance. A material optimized for the new nitriding technology was also developed. The new material is a low-carbon alloy steel that makes it possible to minimize the difference in hardness between the compound layer and the substrate directly below it, and is resistant to decline in internal hardness due to aging precipitation in the temperature range used in the nitriding treatment.
2015-04-14
Technical Paper
2015-01-0531
Hiroyuki Yamashita, Hiroaki Ueno, Hiroyuki Nakai, Takahiro Higaki
Abstract When the strain is temporarily stopped during tensile testing of a metal, a stress relaxation phenomenon is known to occur whereby the stress diminishes with the passage of time. This phenomenon has been explained as the change of elastic strain into plastic strain. A technique was devised for deliberately causing strain dispersion to occur by applying the stress relaxation phenomenon during stamping. A new step motion that pause the die during forming was devised; it succeeded in modifying the deep-draw forming limit by a maximum of 40%. This new technique was verified through tensile and actual stamping tests. It was confirmed that the use of step motion causes the strain to disperse, thereby modifying the deep draw forming limit. The degree to which the forming limit is modified is dependent on the stop time and the temperature.
2015-04-14
Journal Article
2015-01-0602
Shin-Jang Sung, Jwo Pan, Mohammed Yusuf Ali, Jagadish Sorab, Cagri Sever
Abstract In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity.
2015-04-14
Journal Article
2015-01-0604
Jibrin Sule, Supriyo Ganguly
Abstract In a multi-pass weld, the development of residual stress to a large extent depends on the response of the weld metal, heat affected zone and parent material to complex thermo-mechanical cycles during welding. Previous investigations on this subject mostly focused on mechanical tensioning or heat treatment to modify the residual stress distribution in and around the weld. In this research, microstructural refinement with modification of residual stress state was attempted by applying post weld cold rolling followed by laser processing. The hardening of the weld metal was evaluated after welding, post weld cold rolling and post weld cold rolling followed by laser processing. The residual stress was determined non-destructively by using neutron diffraction. Hardness results showed evidence of plastic deformation up to 4 mm below the weld surface.
2015-04-14
Technical Paper
2015-01-0715
Terry Lynn Chapin, Van Thomas Walworth
Abstract Balancing the fill sequence of multiple cavities in a rubber injection mold is desirable for efficient cure rates, optimized cure times, and consistent quality of all molded parts. The reality is that most rubber injection molds do not provide a consistent uniform balanced fill sequence for all the cavities in the mold - even if the runner and cavity layout is geometrically balanced. A new runner design technique, named “The Vanturi Effect”, is disclosed to help address the inherent deficiencies of traditional runner and cavity layouts in order to achieve a more balanced fill sequence. Comparative analysis of molded runner samples reveals a significant and positive improvement in runner and cavity fill balancing when the Vanturi Effect is integrated into the runner design.
2015-04-14
Journal Article
2015-01-0708
Catherine M. Amodeo, Jwo Pan
Abstract In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
2015-04-14
Journal Article
2015-01-1611
Wei Liu, Gangfeng Tan, Xuexun Guo, Jiafan Li, Yuanqi Gao, Wei Li
When the hydraulic retarder is working in the heavy-duty vehicle, almost all the braking power is transformed into the thermal energy of the transmission oil. The spare heat removal capacity of engine’s cooling system could be taken full advantage for cooling the retarder. However, the relative long distance of the engine and the retarder increases the risky leakage of the cooling circuit. Furthermore, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power. Conventional engine cooling system could not meet the demand of the hydraulic retarder heat rejection within the same installation space. In this research, independent two-phase evaporator was adopted to strengthen the coolant heat absorption capacity from the transmission fluid at the oil outlet of the retarder by means of the vacuum flow boiling heat transfer.
2015-04-14
Journal Article
2015-01-1311
Leland Decker, James Truskin
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within Chrysler, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from Chrysler’s BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of Chrysler vehicles.
2015-04-14
Technical Paper
2015-01-0551
Qiuren Chen, Haiding Guo, John V. Lasecki, John Hill, Xuming Su, John J. Bonnen
The fatigue strength and failure behavior of A5754-O adhesively bonded single lap joints by a hot-curing epoxy adhesive were investigated in this paper. The single lap joints tested include balanced substrate joints (meaning same thickness) and unbalanced substrate joints, involving combinations of different substrate thicknesses. Cyclic fatigue test results show that the fatigue strength of bonded joints increase with the increasing substrate thickness. SEM and Energy Dispersive X-ray(EDX) were employed to investigate the failure mode of the joints. Two fatigue failure modes, substrate failure and failure within the adhesive were found in the testing. The failure mode of the joint changes from cohesive failure to substrate failure as the axial load is decreased, which reveals a fatigue resistance competition between the adhesive layer and the aluminum substrate.
2015-03-13
Standard
USCAR41
This document describes the assessment methods and physical requirements associated with the manual handling of carts and dollies, specific to material handling systems. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an "off-the shelf" design, always consult the responsible Ergonomics Department. Force guidelines were primarily developed referencing the push/pull psychophysical Snook data contained in A Guide to Manual Materials Handling (second edition) by Mital, Nicholson and Ayoub (NY: Taylor & Francis, 1997). The force guidelines accommodate 75% of female capabilities and 99% of male capabilities. Factors that were included in the established guideline include: push / pull distances, vertical hand height, horizontal hand height, frequency and wheel / castor alignment and load rating. These factors were used to develop a conservative force guideline.
2015-03-10
Technical Paper
2015-01-0030
Aditya Mulemane, Lachlan Hurst, Alex Fraser, Jarrod Sinclair
Using conventional solvers, the simulation of a complex and large system such as the automotive paint ovens can be quite time consuming - of the order of a several weeks or even months. A reduced order computational model of the oven that can predict thermal distribution quicker is useful in performing optimization studies and in directing finer design changes to the oven and the car body. This research focuses on the development of such a lumped capacitance thermal model (defined here in as the reduced order model: ROM) for predicting the heat of curing of an object that is inside an industrial oven. Essentially, the heat transfer modes are computed through a set of linear ordinary differential equations, by conceptualising the the physical object is conceptualised as a series of inter-connecting nodes that are linked by thermal resistors.
2015-03-10
Technical Paper
2015-01-0063
Ambarish Kulkarni, Ajay Kapoor, Shashank Arora
Abstract Increased demands on rare earth fossil fuels and the global warming have led to development of alternative technology vehicles. Electrical vehicle (EV) is chosen as one of the alternative technology to overcome these hindrances. In EVs the battery and the motor are the two most critical components used for generating the required power output. In this paper, work was done for selection battery technology and relevant packaging for a small car. The work done is described in four stages: i) battery selection based on literature, ii) car selection based on virtual reality (VR) study iii) battery package design, and iv) finally specification sheet was developed for an EV. Key Objectives considered for the battery selection are: i) minimal maintenance, ii) modular and scalable, iii) high energy density, iv) optimized thermal management, and v) low cost implications.
2015-03-10
Technical Paper
2015-01-0078
John Christensen
Abstract The Curtin Motorsport Team (CMT) currently utilise a 4130 alloy steel space frame chassis for their entry into the Formula SAE-A competition (FSAE). According to SolidWorks models, the current chassis has a weight of 32kg with a torsional stiffness of 744Nm/degree. Although this is an adequate system proven to be cost effective, relatively easy to manufacture and is torsionally stiff enough for a chassis in FSAE, CMT wish to investigate the feasibility of a carbon fibre monocoque chassis. The main goals of this paper are to benchmark the current space frame chassis design, and investigate feasibility of a carbon fibre monocoque, while reducing the chassis' weight, and increasing its torsional stiffness without increasing manufacture time. Preliminary modelling indicates that a transition to a half monocoque will yield a weight drop of 18kg, and a full monocoque will yield a drop of 23kg.
2015-03-10
Technical Paper
2015-01-0072
Sahil Kakria, Daljeet Singh
Abstract Suspension and chassis play a vital role in the structural performance of a Formula SAE vehicle. This paper focuses on CAE modeling and simulation study of the FSAE vehicle structure to analyze and improve its characteristics; and also the fabrication of the structure. This has been done for the current vehicle prepared according to 2014 Formula SAE rules; as part of Thapar University (TU) Formula student team - Team Fateh. The study started with Multi Body Dynamic (MBD) model building of front and rear suspension system using ADAMS/Car and Finite Element (FE) model building of space frame type chassis using HyperMesh for the current (2014) and previous (2011 and 2012) TU FSAE vehicles. The MBD model was used for carrying out kinematic analysis (suspension wheel travel) to calculate and analyze the roll centers using Design of Experiments (DOE) study.
2015-03-04
WIP Standard
AMS4824E
This specification covers bearings of a leaded bronze cast on one or both faces of a steel backing with a layer of babbitt metal cast on the leaded bronze.
2015-03-03
WIP Standard
ARP9034A
This document describes requirements for standardized processes (and associated technologies) that ensure type design data are retrievable and usable for the life of a type certificate (50+ years). These processes are primarily concerned with, but not limited to, digital type design data retained in three-dimensional representations and associated data that is required for complete product definition, such as tolerances, specification call-outs, product structure and configuration control data, etc. This process standard includes process requirements for managing the evolution of technologies required to ensure the availability of the data for the life of the product. This data must be available to meet regulatory, legal, contractual and business requirements. This process standard is not intended to incorporate every company specific requirement and does not dictate specific organizational structures within a company.
2015-03-03
Magazine
Virtual casting improves powertrain design As designers continue to look for ways to cut weight and increase performance, casting simulations are helping optimize designs through faster, more accurate predictions of the casting process used to create key components. Horse racing America's pony cars are a favorite of racers and fans alike, so racing them against each other is natural. SAE 2015 World Congress Preview Tech trends and exhibitor products are highlighted. Tech trends and exhibitor products are highlighted in this special section, which features an exclusive interview with Honda R&D America's Jim Keller. Replicating the racing experience Professional driving simulators can be successfully exploited to shorten the traditional design-prototype testing-production process relative to a new racecar.
2015-03-02
WIP Standard
AMS5621G
This specification covers a corrosion-resistant steel in the form of bars, wire, forgings, and forging stock.
2015-03-02
WIP Standard
AMS5922B
This specification covers a corrosion-resistant, premium aircraft-quality alloy steel in the form of bars, forgings, and stock for forging.
2015-03-02
WIP Standard
AMS6417H
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
2015-03-02
WIP Standard
AMS6419H
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
2015-03-02
WIP Standard
AMS6517A
This specification covers a premium aircraft-quality alloy steel in the form of bars, forgings, and forging stock.
2015-03-02
WIP Standard
AMS6425D
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
2015-03-02
Standard
AMSQQS763D
This specification covers corrosion-resistant steel bars, wire, shapes, and forgings.
2015-03-01
WIP Standard
AMS5397E
This specification covers a corrosion and heat-resistant nickel alloy in the form of investment castings.
2015-03-01
Standard
EIA933B
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document.
2015-02-27
Standard
AMS4323C
This specification covers an aluminum alloy in the form of hand forgings up to 6 inches (152 mm) inclusive, in nominal as-forged thickness and having a cross-sectional area of not more than 156 square inches (1006 cm2).
Viewing 31 to 60 of 19893

Filter