Display:

Results

Viewing 31 to 60 of 20488
2016-09-27
Technical Paper
2016-01-2145
Ryan Haldimann
Inspection of fasteners prior to installation is critical to the quality of aerospace parts. Fasteners must be inspected for length/grip and diameter at a minimum. Inspecting the fasteners mechanically just prior to insertion can cause additional cycle time loss if inspection cannot be performed at the same time as other operations. To decrease fastener inspection times and to ensure fastener cartridges contain the expected fastener a system was devised to measure the fastener as it travels down the fastener feed tube. The optics system is designed such that two views 90° apart are captured of the fastener. The fastener is backlit using telecentric illuminators and imaged using a telecentric lens. The processing of the image occurs on the camera. The information as to what fastener the operator has loaded into the bowl is sent to the camera including the expected diameter and overall length.
2016-09-27
Technical Paper
2016-01-2138
Gustavo Jose Giardini Lahr, José Savazzi, João Soares, Gustavo Barbosa, Tadeu Taketomi, Glauco A P Caurin
Cooperating robotic paradigm has received much attention lately as response to new demands for flexible automation and ability to meet small scales requirements. Robotic systems working in cooperation with users present new programming and implementations challenges, requiring new types of staff training, and may need the acquisition of additional tools, sensors, and robots. Additional costs ​​that may lead to infeasible projects. We show in this paper a number of resources currently available in industrial robots that allows robot integrators, but also the aeronautical industry, to exploit the equipment already available in their production lines, making them more collaborative and meeting the need for greater flexibility in cooperation with the user.
2016-09-27
Technical Paper
2016-01-2140
Long Yu, Yilian Zhang
Slug rivet is widely used in wing assembly due to its longer fatigue life and better sealing performance compared with other connection technologies. As countersinks with dual-angle are widely adopted in this connection, countersink diameter and depth are the key factors that affect assembly quality. As such, it is of great importance to inspect the drilling qualities with high accuracy and efficiency. However, the contact measurements are susceptible to loss of accuracy due to cutting debris and lube build-up, while scanning the hole using laser profilometry is time consuming and complex, in this paper, a non-contact method for countersink diameter and depth measurement based on machine vision system is proposed. The countersink diameter can be directly measured by this system, while the countersink depth is determined through countersink diameter indirectly. First, holes with different depths are countersunk, then the countersink depths are measured by 3D microscope.
2016-09-27
Technical Paper
2016-01-2108
Marc Fette, Kim Schwake, Jens Wulfsberg, Frank Neuhaus, Manila Brandt
The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
2016-09-27
Technical Paper
2016-01-2117
Rustam M. Baytimerov, Pavel Lykov PhD, Sergei Sapozhnikov, Dmitry Zherebtsov, Konstantin Bromer
The development of Additive technologies (SLS/SLM, EBM, DMD) suggests the increase of range expansion of materials used. One of the most promising directions is products manufacturing from composite materials. The technology of composite micro-powders production on the basis of heat-resistant nickel alloy EP648 and Al2O3 is proposed. The aim of this research is to develop a method of producing composite micropowders for additive technology application. This method is based on modification of the metal micro-powders surface as a second phase in a planetary mixer (mechanochemical synthesis). The obtained composite micropowders are compared with powders which are recommended for selective laser melting usage (produced by MTT Technology). The equipment used in the research: planetary mixer, scanning electron microscopy (SEM), optical granulomorphometer Occhio 500nano.
2016-09-27
Technical Paper
2016-01-2121
Rustam M. Baytimerov, Artem Leyvi, Pavel Lykov PhD, Dmitry Zherebtsov, Alexey Shultc
The Copper-Nickel alloys are widely used in various industries. The adding of nickel significantly enhances mechanical properties, corrosion resistance and thermoelectric properties of copper. The technology of producing Copper-Nickel composite micro-powders by gaseous deposition of Nickel on the surface of copper powder is proposed. The vaporization of nickel is implemented by using electric arc. The dependence between mode of processing and the ratio of phases in the powder is investigated. The possibility of the obtained composite powder application in additive technologies is investigated. The equipment used in the research: magnetron sprayer, scanning electron microscopy (SEM), optical granulomorphometer Occhio 500 nano.
2016-09-27
Technical Paper
2016-01-2125
Henry Hameister
This paper presents an approach to how existing production systems can benefit from Industry 4.0 driven concepts. This attempt is based on a communication gateway and a cloud-based system, that hosts all algorithms and models to calculate a prediction of the tool wear. Refill Friction Stir Spot Welding is a sub-section of friction welding, where a rotating tool that consists out of three parts is used to heat up material to a dough-like state. Since Refill Friction Stir Spot Welding produces a selective dot-shaped connection of overlapping materials, the production requirements are similar to riveting or resistance spot welding. In contrast to other bonding techniques, Refill Friction Stir Spot Welding can be integrated within the production process without major interferences or changes.
2016-09-27
Technical Paper
2016-01-2129
Antonio Rubio, Luis Calleja, Javier Orive, Ángel Mújica, Asunción Rivero
Aluminum skin milling is a very challenging process due to the high quality requirements needed in the aeronautic and aerospace industries. Nowadays, on these markets, there are just two technological approaches able to face the manufacturing of this sort of wide thin blanks: chemical and mechanical milling by means of highly complex machines. Both solutions lead to a high investment requirement that affect directly on the application profitability on these industrial sectors. This paper presents a flexible machining system that allows milling skin shaped parts within required tolerances by means of an innovative universal holding fixture combined with an adaptive toolpath development. This flexible holding fixture can be adapted to the required shape and can hold uniformly the whole sheet surface. Besides, the solution includes an implementation that can adapt the machining toolpath by means of the skin thickness online measurement.
2016-09-27
Technical Paper
2016-01-2133
Carl Landau
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of 0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact have designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
2016-09-27
Technical Paper
2016-01-2126
Ali Mohamed Abdelhafeez, Sein Leung Soo, David Aspinwall, Anthony Dowson PhD, Dick Arnold
Despite the increasing use of carbon fibre reinforced plastic (CFRP) composites, titanium and aluminium alloys still constitute a significant proportion of modern civil aircraft structures, which are primarily assembled via mechanical joining techniques. Drilling of fastening holes is therefore a critical operation, which has to meet stringent geometric tolerance and integrity criteria. The paper details the development of a three-dimensional (3D) finite element (FE) model for drilling aerospace grade aluminium (AA7010-T7451 and AA2024-T351) and titanium (Ti-6Al-4V) alloys. The FE simulation employed a Coupled Eulerian Lagrangian (CEL) technique. The cutting tool was modelled according to a Lagrangian formulation in which the mesh follows the material displacement while the workpiece was represented by a non-translating and material deformation independent Eulerian mesh.
2016-09-27
Technical Paper
2016-01-2083
Steven P. Smith
This paper traces the development of a single sided blind fastener at Airbus’ Broughton’s plant, commencing with the initial identification of the need for the A380XWB programme, through various prototypes testing early production trials. These requirements were further refined for A350XWB, resulting in a new contending fastener design, further evaluation and testing before pre-production trials and selection for A350XWB programme. Experience gained has led to further design development by the supplier leading to its current applications which are explained and the next steps of our Journey.
2016-09-27
Technical Paper
2016-01-2130
Enkhsaikhan Boldsaikhan, Shintaro fukada, Mitsuo Fujimoto, Kenichi Kamimuki, Hideki Okada, Brent Duncan, Phuonghanh Bui, Michael Yeshiambel, Brian Brown, Alan Handyside
The Refill Friction Spot Joining (RFSJ) is an emerging solid-state spot welding technology that creates a molecular-level bond between the work-pieces through a thermo-mechanical processing. The RFSJ process does not consume any filler or foreign materials so that no additional weight is introduced to the assembly. As the solid-to-liquid phase transition is not involved in RFSJ in general, there is no fusion lack or material deterioration caused by liquefaction and solidification. Unlike the conventional friction stir spot welding, RFSJ produces a spot joint with a perfectly flush surface finish without a key or exit hole. Currently, the aerospace industry employs solid rivets for fastening the primary structures as they meet the baseline requirements and have well-established standards and specifications.
2016-09-27
Technical Paper
2016-01-2085
Kyle Pritz, Brent Etzel, Zheng Wei
The automation takt time of wing assembly can be shortened with the use of single-sided temporary fasteners by providing temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
2016-09-27
Technical Paper
2016-01-2128
Henry Guo, Farid Ahdad, DeDong Xie
V-band joint is widely used in turbocharger industry. It is used to connect housings in turbocharger for both passenger vehicle and commercial vehicle applications, which can provide simple and robust solutions to replace bolt flanges. However, current issue for V-band joint in turbine side is the higher cost. The major cost for V-band joint comes from T-bolt which works in very hostile environment with high temperature and high vibration level. T-bolt is made from special stainless steel which takes around a half cost of total joint. This paper introduces a new V-band joint which replaces T-bolt from special bolt to standard bolt through changing bolt stress status from tension to compression, which provides possibility to reduce cost greatly. The prototype is made and performed static tests including anti-rotating torque test and salt spray test.
2016-09-27
Technical Paper
2016-01-2111
Juan Carlos Antolin-Urbaneja, Juan Livinalli, Mildred Puerto, Mikel Liceaga, Antonio Rubio, Angel San-Roman, Igor Goenaga
Gaps in composites structures can be more risky than metallic structures. For mechanically joined composite components, the geometrical conformance of the part can be problematic due to undesired or unknown re-distribution of loads within a composite component, typical in aeronautic assemblies. A shim is a thin piece of metal, plastic or composite used to fill in space between components, for adjustment or fit, in a mechanical assembly. To prevent unnecessary preloading of metallic structure, and the possibility of cracking and delaminations in composite structure, it is important to measure all gaps and then shim any gaps greater than 0.005 inches. A strategy to overcome the high relative tolerances for assemblies lies in the automatized shim manufacturing of the gaps previously predicted through the evaluation of their volumes via a simulation tool.
2016-09-27
Technical Paper
2016-01-2116
Peter Mueller-Hummel
ABSTRACT: Drilling holes into metal is a normal procedure, because the drill (metal drill) and the mal-leable capability of the metal compensate the insufficient cutting capability of a worn out drill. Drilling Composite by using the same drill (metal drill) is different procedure, because composite fibers are not mal-leable like metal at all. This fact is the reason why drills for metal are getting very hot by drilling Composite fibers. Even the diameter of the drilled holes in the carbon fiber parts are getting smaller than the drill them-selves afterwards. The hole in the metal part of the stack remains constant. This article explains the physical reason and characterizes the special features of a drill to realize a safe drilling Composite or CFRP/Aluminum stacks in H8 quality. Simplified theoretic models will show how CFRP/Aluminum stacks should be machined “Safe”, inside the cpk tolerance, without scratches even when the drill is worn.
2016-09-27
Technical Paper
2016-01-2099
Peter Mueller-Hummel, Thomas Langhorst
On CNC Machines drilling holes under perfect condition is possible. For drilling holes into Titan, Composite and Aluminium stacked materials the specific cutting condition can be selected. Furthermore surrounding conditions like peck cycle, MQL and force and torque monitoring can be adapted easily. Drilling holes in the final assembly CNC machine tools cannot be adapted because of sizes and accessibility. Power Feed Units or Automated Drill Units ADU are very handy, flexible and depending on the jig extremely rigid. Whenever a Machine tool does not fit, ADUs are highly recommended. In comparison to Machine tools conventional pneumatic ADUs can be used with one fixed set of feed, speed and micro peck only. Due to that a compromise in cutting condition has to be chosen in drilling stacked material with different layers.
2016-09-27
Technical Paper
2016-01-2079
Alexander Janssen, Thorsten Dillhoefer
The industry wide requirement of new highly flexible automated fastening systems in aircraft production has created the need for developing new fastening systems. This paper will focus on the development of the Frame Riveting Assembly Cell (FRAC) by BROETJE-Automation to meet this need. The new FRAC machine configuration is built for automated drilling and fastening of different aircraft type panels. It is highly flexible with a high speed positioning system mounted outer end effector. System travel is limited only by installed track length. The FRAC integrates well with conventional and reconfigurable automated fastening work holding tools.
2016-09-27
Technical Paper
2016-01-8137
Amrut A. Patki
The overall cost of ownership of a product is dependent on life of the product and cost. To keep the cost of ownership down, it is important to understand how to increase life of product and lower down the required cost at the same time. We are also challenged to reduce the carbon footprint, improved energy requirements to become more sustainable and green. How to achieve both of these necessities? “Remanufacturing” is a simple answer to this complex question. Remanufacturing can improve the useable life of a part or product by multiple times. It is cost effective compare to new part production and reasonably cheaper to end customer. The required energy for remanufacturing is lesser compare to its original manufacturing. Remanufacturing reuses/salvages most of the original contain. Design for Remanufacturing is a fundamental change in design engineering process to meet remanufacturing requirements.
2016-09-27
Technical Paper
2016-01-8138
Pranav Shinde, Ravi K, Nandhini Nehru, Sushant Pawar, Balaji Balakrishnan, Vinit Nair
Body in white forms a major structure in any automobile. It is responsible in providing structural rigidity to vehicle, safety, frame and a skeleton to support all body parts of vehicle. When it comes to judge the performance of vehicle, BIW is analyzed not only for its strength and shape but also weight. Light weight BIW structures have seen to be developed rapidly in order to fulfill requirement of best vehicle performance in dynamic conditions. Since then lot of efforts have been put into CAE, materials research, advanced manufacturing process and joining methods, each plays a critical role in BIW functionality. Constructional designing, development of light materials with improved strength and special manufacturing practices for BIW are few research areas with never ending questions. This paper attempts to review various factors studied for weight reduction and solutions provided so far. Some of the major findings are briefly discussed and suggestions are made for future research.
2016-09-27
Technical Paper
2016-01-2087
Hunter O'Folan, Peter B. Zieve
There is an ever present risk of the lower ram of a riveting machine crashing into and damaging stringers and clips. The risk becomes greater as the parts get deeper and fasteners move closer to the web. In designing a riveting machine for the Lockheed C-130 we were concerned about the long lower anvil working in a challenging environment. We wanted the lower ram to drop down without causing damage even if the upset ram is offset and wrapped around a part. But we also wanted the lower tool to crash from the side without causing damage. Once this is achieved we have crash protection from five of six sides. A competing requirement is the need to strip collars. At Electroimpact we prefer to use the up-down action in the lower ram to do the stripping. We checked for the most difficult collar to strip and found that a 3/8 GP collar can take up to 3000 pounds of force to strip. Therefore we had a target that the magnetic pull-down on the lower anvil should exceed 3000 pounds.
2016-09-27
Technical Paper
2016-01-2110
Ilker Erdem, Peter Helgosson, Ashwin Gomes, Magnus Engstrom
The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. In order to meet this challenge industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) – a European Union funded project with 31 partners – aims to address various aspects of aero-structure assembly with a special attention is directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the prospective assembly process.
2016-09-27
Technical Paper
2016-01-2105
Thomas G. Jefferson, Richard Crossley, Anthony Smith, Svetan Ratchev
This paper presents a novel reconfigurable assembly cell which can assemble multiple fuselage and wing variants. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in NRC and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution designed to have exactly the functionality necessary to produce a group of similar components. Components with similar geometries and processes are grouped into part families by iterating between design and manufacturing.
2016-09-27
Technical Paper
2016-01-2103
Eric Barton
This technical paper details an optimized Drivmatic machine design delivered to a Tier 1 aero structure supplier to automate drilling and installation of rivets, hi-loks, lockbolts & swage collars for individual fuselage panel assemblies with high throughput & strict quality requirements. While certain robot solutions continue to be explored for specific applications at many Tier 1 aero structure suppliers, robot payload capacity has limitations beyond certain criteria, which often times point towards an alternative machine design as in this case study. A typical approach for adding more automation is to allocate shop floor space based on the solution's foot print, however contrary to most approaches this solution had to be designed to fit within a pre-determined factory footprint over a geographic location with a high water table that would not permit a foundation.
2016-09-27
Technical Paper
2016-01-2096
Simon Schnieders, Dirk Eickhorst
Drilling of high-strength titan material and composites in combination creates complex challenges in order to achieve required productivity and quality. Long spiral chips are characteristically for the titan drilling process, which leads to e.g. chip accumulation, high thermomechanical load, surface damages and excessive tool wear. The basic approach is the substitution of today’s peck-drilling as current solution to this problem and the implementation of a vibration assisted drilling, so called micro-peck-drilling-process, to generate a kinematic chip breakage in a significant more efficient way. To meet perfectly the requirements regarding rates, quality and automation level, Broetje-Automation as system integrator has investigated and developed the implementation of different alternative high-performance systems and methods to approach the optimal oscillation movement of the tool.
2016-09-27
Technical Paper
2016-01-2095
Agata Suwala, Lucy Agyepong, Andrew Silcox
Reduction of overall drag to improve aircraft performance has always been one of the goals for aircraft manufacturers. One of the key contributors to decreasing drag is achieving laminar flow on a large proportion of the wing. Laminar flow requires parts to be manufactured and assembled within tighter tolerance bands than current build processes allow. Drilling of aircraft wings to the tolerances demanded by laminar flow requires machines with the stiffness and accuracy of a CNC machine while having the flexibility and envelope of an articulated arm. This paper describes the development and evaluation of high accuracy automated processes to enable the assembly of a one-off innovative laminar flow wing concept. This project is a continuation of a previously published SAE paper related to the development of advanced thermally stable and lightweight assembly fixture required to maintain laminar flow tolerances.
2016-09-27
Technical Paper
2016-01-2097
Sylvain Laporte, Cosme De Castelbajac, Mathieu Ladonne
The Vibration Assisted Drilling (VAD) process has been implemented in Automated Drilling Units (ADU) on an industrial scale for almost a decade. Today more than 11000 ADUs are equiped with VAD systems and currently used on aircraft assembly lines. As well as drawing up a short report on the use of this new process, the authors make an assessment on new challenges that VAD has to face up. Indeed production rates are increasing and ADU manufacturers improve their technologies, one of the most recent and major development concerning the electrical motorization of the machines. These evolutions are as many opportunities for the VAD provided you have a clever understanding as well as an expert knowledge of the process. Thus the authors propose a new dynamic model of the whole VAD system which integrates the behavior of the part, cutting tool/material pair and the machine. The confrontation of model results and experimental validation tests demonstrates the relevance of the works.
2016-09-27
Technical Paper
2016-01-2098
Christophe Vandaele, Didier Friot, Simon Marry, Etienne Gueydon
With more than 10 000 aircrafts in their order backlog, automated assembly is of critical importance to the progress for aircraft manufacturers. Moreover to obtain maximum benefit from automation, it is necessary to achieve not only an integrated fastener cell, but also a real breakthrough in fasteners technology. The optimum solution, known as "One Side Assembly", performs the whole assembly sequence from one side of the structure using an accurate robot arm equipped with a Multi function End effector and high performances fasteners. This configuration provides an efficient and flexible automated installation process, superior to current solutions which are typically, large scale, capital intensive, systems, which still require operators to complete or control the fastener installation. The search for a technological breakthrough in this domain has been targeted for more than 15 years by the majors aircrafts manufacturers.
2016-09-27
Technical Paper
2016-01-2084
Curtis Hayes
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at D2 (the exit of the skin) can often be a problem without exceeding the maximum interference at D4 (exit of the stringer). Softer base materials and harder, higher-strength rivets can compound the problem. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the tail side die dramatically reduces D4 interference, which in some instances resulted in a reduction of more than 30%. This allowed an increase in forming force to increase D2 interference and made for a much more robust process.
2016-09-27
Technical Paper
2016-01-2119
Gergis W. William, Samir N. Shoukry, Jacky C. Prucz, Mariana M. William
Air cargo containers are used to load freight on various types of aircrafts to expedite their handling. Fuel cost is the largest contributor to the total cost of ownership of an air cargo container. Therefore, a better fuel economy could be achieved by reducing the weight of such containers. This paper aims at developing innovative, lightweight design concepts for air cargo containers that would allow for weight reduction in the air cargo transportation industry. For this purpose, innovative design and assembly concepts of lightweight design configurations of air cargo containers have been developed through the applications of lightweight composites. A scaled model prototype of a typical air cargo container was built to assess the technical feasibility and economic viability of creating such a container from fiber-reinforced polymer (FRP) composite materials.
Viewing 31 to 60 of 20488

Filter