Criteria

Text:
Topic:
Display:

Results

Viewing 211 to 240 of 8952
2016-04-05
Technical Paper
2016-01-0328
Scott Curran, Paul Chambon, Randall Lind, Lonnie Love, Robert Wagner, Steven Whitted, David Smith, Brian Post, Ronald Graves, Craig Blue, Johney Green, Martin Keller
Abstract Rapid vehicle powertrain development has become a technological breakthrough for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer. Recently, advances in large scale additive manufacturing have provided the means to bridge hardware-in-the-loop with preproduction mule chassis testing. This paper details a case study from Oak Ridge National Laboratory bridging the powertrain-in-the-loop development process with vehicle systems implementation using big area additive manufacturing (BAAM). For this case study, the use of a component-in-the-loop laboratory with math-based models is detailed for the design of a battery electric powertrain to be implemented in a printed prototype mule. The ability for BAAM to accelerate the mule development process via the concept of computer-aided design to part is explored.
2016-04-05
Technical Paper
2016-01-0396
Prasad S. Mehta, Jennifer Solis Ocampo, Andres Tovar, Prathamesh Chaudhari
Abstract Biologically inspired designs have become evident and proved to be innovative and efficacious throughout the history. This paper introduces a bio-inspired design of protective structures that is lightweight and provides outstanding crashworthiness indicators. In the proposed approach, the protective function of the vehicle structure is matched to the protective capabilities of natural structures such as the fruit peel (e.g., pomelo), abdominal armors (e.g., mantis shrimp), bones (e.g., ribcage and woodpecker skull), as well as other natural protective structures with analogous protective functions include skin and cartilage as well as hooves, antlers, and horns, which are tough, resilient, lightweight, and functionally adapted to withstand repetitive high-energy impact loads. This paper illustrates a methodology to integrate designs inspired by nature, Topology optimization, and conventional modeling tools.
2016-04-05
Technical Paper
2016-01-0389
Mingchao Guo, Ramchandra Bhandarkar, Weidong Zhang, Guofei Chen, Zhenke Teng
Abstract This paper describes static and fatigue behavior of resistance spot welds with the stack-up of conventional mild and advanced high strength steels, with and without adhesive, based on a set of lap shear and coach peel coupon tests. The coupons were fabricated following specified spot welding and adhesive schedules. The effects of similar and dissimilar steel grade sheet combinations in the joint configuration have been taken into account. Tensile strength of the steels used for the coupons, both as-received and after baked, and cross-section microstructure photographs are included. The spot weld SN relations between this study and the study by Auto/Steel Partnership are compared and discussed.
2016-04-05
Technical Paper
2016-01-0384
Andrew Cox, Jeong Hong
Lightweight, optimized vehicle designs are paramount in helping the automotive industry meet reduced emissions standards. Self-piercing rivets are a promising new technology that may play a role in optimizing vehicle designs, due to their superior fatigue resistance compared with spot welds and ability to join dissimilar materials. This paper presents a procedure for applying the mesh-insensitive Battelle Structural Stress Method to self-piercing riveted joints for fatigue life prediction. Additionally, this paper also examines the development of an interim fatigue design master S-N curve for self-piercing rivets. The interim fatigue design master S-N curve accounts for factors such as various combinations of similar and dissimilar metal sheets, various sheet thicknesses, stacking sequence, and load ratios. A large amount of published data was collapsed into a single interim S-N curve with reasonable data scattering.
2016-04-05
Technical Paper
2016-01-0106
Michael Stamper
Abstract One of the many critical design criteria for vehicle harness design is circuit protection. This process typically involves calculating the maximum load on each wire manually and then comparing the result to a spreadsheet that may be quite old. Testing physical prototypes occurs so late in the design process that problems found can be very expensive to rectify. Using simulation to detect faults, such as short circuits or the time for the fuse to blow vs. the time for the wire to smoke is an effective solution that can not only save a great deal in costs, but shorten the development cycle as well.
2016-04-05
Technical Paper
2016-01-1130
Mike Johns, Heinz Kamping, Kristian Krueger, James Mynderse, Chris Riedel
Abstract Tapered roller bearings used to support pinion and differential gears in automotive drive axles perform best with accurate assembled preload. One of the most common high volume production assembly methods relies on bearing friction to adjust preload; however torque is an indirect measure of load, can be influenced by the raceway condition, and is difficult to control. A new method to measure preload utilizes frequency response to estimate axial preload from system stiffness. The stiffness can be measured dynamically and an assembly method automated to set preload without the need for torque or dimensional measurements. By eliminating the need for a torque signal, the raceway conditions which contribute to setting torque do not contribute to the preload setting accuracy. This study demonstrates the effectiveness of using frequency response to measure stiffness and estimate preload.
2016-04-05
Technical Paper
2016-01-1380
S. Khodaygan, Amir Ghasemali, Hamed Afrasiab
Abstract One of the most important characteristics of industrial products, especially mechanical set-ups, is considering the tolerances of production and assembly of these set-ups, which directly influences the products’ operations. In sheet metal structures, due to the high flexibility of the sheets, the errors appeared while assembly will be as highly influential as the errors due to the production tolerance of the sheets. As a result, having a comprehensive model which could analyze the assembly process of these structures and also clarifies the relation between the tolerance of the parts and the ultimate changes of the set-up will be of considerable importance. During the assembly process, the contact effect between the components is inevitable. If such effect is not considered, the contact surfaces will permeate. The purpose of this paper is to present a method to analyze the tolerance of flexible sheet structures, considering the contact effect between surfaces.
2016-04-05
Technical Paper
2016-01-1366
Sivanandi Rajadurai, Guru Prasad Mani
Abstract Tube bends are critical in an exhaust system. The acceptability of tube bends is based on the induced level of shape imperfections considered. An analysis is presented for the performance tuning of the genetic algorithm including the importance of raw material selection, ovality and elongation property. This study is an attempt to analyze the ovality effect of STAC 60/60 material. CAE tools are essential to exploit the design of experiments and find out the optimum values of the design parameters in comparison with full factorial designs. Especially the effects of materials, dimensions and geometry shape of the ultimate strength were discussed by both CAE and experiments. The ultimate strength of steel tube was evaluated at least 20-30% as a local strain independent of the materials. The dependency of ultimate bending angle on original centre angle of the tube bend was clarified.
2016-04-05
Technical Paper
2016-01-1331
Shingo Hanano, Kanehiro Nagata, Yusuke Murase
Abstract The need to add more color variations to the traditional black gloss has increased globally in recent years. The intention is for automobile manufacturers to differentiate their products in terms of appearance design. The most noticeable trend is to add embellishment around the front grill. The same trend can be seen in the areas around vehicle doors. It is most common to use a coating material to emphasize the black gloss. However, in overseas countries it is a challenge to meet the required appearance quality, and under the current circumstances CKD is imported from Japan to meet such requirements. Recently, a new film-transfer technique has been established that can express black gloss as well as any coating material by transferring the roughness of the film surface. It is achieved by crimping the PET film onto the vinyl-chloride surface after the extrusion molding is performed. Moreover, we have successfully localized this technique and reduced the manufacturing cost.
2016-04-05
Technical Paper
2016-01-1279
Ko Wei Lin, Ya Lun Chen, Yong-Yuan Ku, Ta-Wei Tang
Abstract Biodiesel, Fatty Acid Methyl Esters (FAME), can be made from different types of animal and vegetable oils. Its characteristics are different from those of fossil diesel, such as oxygen content, higher cold filter plugging point, and so on. Compared with fossil diesel, biodiesel can be oxidized more easily. If the fuel is oxidized, there might be product to cause some problems, like blocking filters. Therefore, the information of the storage life of the fuel is very important to vehicle owners. Moreover, the storage condition of the fuels is related to the types of source materials, additives, local weather or quality control of biodiesel. This research had used D100 and B2 fuels as experiment samples. (Blending B100 made by two different companies and represented A and B.)
2016-04-05
Technical Paper
2016-01-1291
Greig Latham
Abstract Applying the Economic Input-Output Life Cycle Assessment (EIOLCA) method to the question of fielding newly manufactured or remanufactured vehicles provides an illuminating view of the economic and environmental advantages of remanufacturing. Sustained accomplishments of policy and engineering have reduced vehicle emissions such that current work has reached the point of diminishing returns. The macroeconomic, global, unprecedented, debt-supercycle-combined with increasing costs of natural resource extraction and vehicle production-demands improved asset and resource utilization. Expanding and exploiting the entire vehicle life cycle is a profitable and sustainable extension of work to date; such extension calls for remanufacturing to move from vehicle components to the entire vehicle. Stretching service lifetimes delay traditional end-of-life recovery practices while radically challenging the status quo.
2016-04-05
Technical Paper
2016-01-1290
J. Groenewald, James Marco, Nicholas Higgins, Anup Barai
Abstract While a number of publications have addressed the high-level requirements of remanufacturing to ensure its commercial and environmental sustainability, considerably less attention has been given to the technical data and associated test strategies needed for any evidence-based decision as to whether a vehicle energy storage system should be remanufactured - extending its in-vehicle life, redeployed for second-life (such as domestic or grid storage) or decommissioned for recycling. The aim of this paper is to critically review the strategic requirements for data at the different stages of the battery value-chain that is pertinent to an Electric Vehicle (EV) battery remanufacturing strategy. Discussed within the paper is the derivation of a feasible remanufacturing test strategy for the vehicle battery system.
2016-04-05
Technical Paper
2016-01-1347
S. Khodaygan
Abstract Fixtures play a key role in locating workpieces to manufacture high quality products within many processes of the product lifecycle. Inaccuracies in workpiece location lead to errors in position and orientation of machined features on the workpiece, and strongly affect the assemblability and the final quality of the product. The accurate positioning of workpiece on a fixture is influenced by rigid body displacements and rotations of the workpiece. In this paper, a systematic approach is introduced to investigate the located workpiece position errors. A new mathematical formulation of fixture locators modeling is proposed to establish the relationship between the workpiece position error and its sources. Based on the proposed method, the final locating errors of the workpiece can be accurately estimated by relating them to the specific dimensional and geometric errors or tolerances of the workpiece and the related locators.
2016-04-05
Technical Paper
2016-01-1352
Venkata Suresh Yaparala, B. S. Guru Prasad, Harsha Mottedoddi Puttaswamy
Abstract Residual stresses and thermal distortion are a common phenomenon observed in any welding method. This is a result of non-uniform stresses generated due to highly localized heating at the joint edges, which fuses the base material and leads to considerable amount of changes in mechanical properties. Thus, it is very important to evaluate these effects in any welded structural members before designing for actual loading condition. Therefore, accurate prediction of these stresses and distortion is of critical importance to ensure the in-service structural integrity of welded structures. The recent advancement in Computational simulation and numerical techniques helps in evaluating the weld distortion and residual stresses. The moving heat flux approach and Element birth/death method makes it easier to analyze the weld distortion. This is done with the use of ANSYS® Commercial FE software.
2016-04-05
Technical Paper
2016-01-1358
Jerry Lai, Youssef Ziada, Juhchin Yang
Abstract During the planetary gear assembly, staking is a widely-used method for affixing pinion shafts onto the position. A reliable staking process not only prevents the movement of shaft during transmission operation, but also minimizes the distortion of the assembly due to the staking process. The quality of staking operations is determined by the component designs, the process parameters, and the staking tool geometry. It would be extremely time-consuming and tedious to evaluate these factors empirically; not even mention the requirement of prototypes in the early stage of a new program. A Finite Element methodology is developed to simulate the complete staking process including shaft press in, staking, and after staking tool release. The critical process parameters, such as staking force, staking length, shaft and holes interference amount, etc., are then evaluated systematically.
2016-04-05
Technical Paper
2016-01-0394
Minghuang Cheng, Norihiko Sawa
Abstract This paper describes the development of a fatigue life prediction method for Laser Screw Welding (LSW). Fatigue life prediction is used to assess the durability of automotive structures in the early design stages in order to shorten the vehicle development time. The LSW technology is a spot-type joining method similar to resistance spot welding (RSW), and has been developed and applied to body-inwhite structures in recent years. LSW can join metal panels even when a clearance exists between the panels. However, as a result of this favorable clearance-allowance feature of LSW, a concave shape may occur at the nugget part of the joint. These LSW geometric features, the concavity of nuggets and the clearance between panels, are thought to affect the local stiffness behavior of the joint. Therefore, while assessing the fatigue life of LSW, it is essential to estimate the influence of these factors adequately for the representation of the local stiffness behavior of the joint.
2016-04-05
Technical Paper
2016-01-0139
Andreas Himmler, Klaus Lamberg, Tino Schulze, Jann-Eve Stavesand
Abstract Increasing productivity along the development and verification process of safety-related projects is an important aspect in today’s technological developments, which need to be ever more efficient. The increase of productivity can be achieved by improving the usability of software tools and decreasing the effort of qualifying the software tool for a safety-related project. For safety-critical systems, the output of software tools has to be verified in order to ensure the tools’ suitability for safety-relevant applications. Verification is particularly important for test automation tools that are used to run hardware-in-the-loop (HIL) tests of safety-related software automatically 24/7. This qualification of software tools requires advanced knowledge and effort. This problem can be solved if a tool is suitable for developing safety-related software. This paper explains how this can be achieved for a COTS test automation tool.
2016-04-05
Technical Paper
2016-01-0306
Heeseung Yang, Hyunkwon Jo, Hyunchul Lee, Hyunmin Park, JaeMin Park
Abstract The Automotive Interior Parts offer convenience and riding comfort for passengers. One of its main features is that it is placed in a conspicuous place. Therefore, automotive interior part manufacturer attach importance to appearance quality. Additionally, appearance quality of Interior Parts is more important as the senses of passenger heighten. Most Automotive Interior Parts manufactured by Injection Molding to mass produce it with complex geometry. But there are numerous defects in method of Injection Molding. Especially, large products like automotive interior parts are disadvantage. A typical example of defects is weld line, sink mark, short shot. These are having an adverse effect on the appearance quality as well as another quality like BSR (Buzz Squeak Rattle) and Side impact performance. In order to improve problem, molding has been modified and spray coating has been done over the past.
2016-04-05
Technical Paper
2016-01-0348
Nan Wang, Sergey Golovashchenko
Abstract Stamping die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower trimming edges. For aluminum automotive exterior panels, this translates to a clearance less than 0.1 mm. However, quality of sheared edge and its stretchability are affected by stiffness of the cutting tool against opening of the clearance between the shearing edges. The objective of the study is to investigate the influence of stiffness of trimming or piercing dies against opening of the cutting clearance on sheared edge stretchability of aluminum blanks 6111-T4. For experimental study, one side of the sample had sheared surface obtained by the trimming process while the other side of the sample had a smooth surface achieved by metal finish. Burr heights of the sheared edge after different trimming configurations with 10% clearance were measured.
2016-04-05
Technical Paper
2016-01-0370
Zhigang Wei, Yunfei Qu, Dongying Jiang, Limin Luo, Jason Hamilton, Kay Ellinghaus, Markus Pieszkalla
Fatigue life assessment is an integral part of the durability and reliability evaluation process of vehicle exhaust components and systems. The probabilistic life assessment approaches, including analytical, experimental, and simulation, CAE implementation in particular, are attracting significant attentions in recent years. In this paper, the state-of-the-art probabilistic life assessment methods for vehicle exhausts under combined thermal and mechanical loadings are reviewed and investigated. The loading cases as experienced by the vehicle exhausts are first categorized into isothermal fatigue, anisothermal fatigue, and high-temperature thermomechanical fatigue (TMF) based on the failure mechanisms. Subsequently, the probabilistic life assessment procedures for each category are delineated, with emphasis on product validation.
2016-04-05
Technical Paper
2016-01-0500
Akira Kato, Masayuki Takano, Kohei Hase, Satoko Inuzuka, Toshiyuki Dobashi, Tsuyoshi Sugimoto, Nobuaki Takazawa
Abstract In this report, adhesion mechanism between epoxy resin and primer and between primer and Ni platting in Hybrid vehicle (HV) was investigated. Adhesion forces are thought to be a combination of mechanical bond forces (such as anchor effect), chemical bond forces and physical bond forces (such as hydrogen bonding and Van der Waals force). Currently there is insufficient understanding of the adhesion mechanism. In particular, the extent to which the three bond forces contribute to adhesion strength. So the adhesion mechanism of polyimide primers was analyzed using a number of different methods, including transmission electron microscope (TEM) and atomic force microscope (AFM) observation, to determine the contributions of the three bonding forces. Molecular simulation was also used to investigate the relationship between adhesion strength and the molecular structure of the primer.
2016-04-05
Technical Paper
2016-01-1074
Takamichi Hirasawa, Michihiro Yamamoto
Abstract Although burr removal after machining generates no value, it is a factor to add major processing cost. While our final goal is to remove the deburring process, development of minimizing the variance in the amount and type of burr after machining was promoted this time as our first step. This report presents how we reduced deburring time significantly by minimizing burr as much as possible from optimization of a blade release angle and development of a relevant tool.
2016-04-05
Technical Paper
2016-01-1394
Anuj Anand, Hari Prasad Konka, Peter Fritz
Abstract Light weight structures give significant advantages to products in the Industrial sector. Component weight-saving plays a major role in improving the efficiency and performance of assembled systems. The introduction of lighter materials into products using dissimilar material joining techniques can create more weight savings and leads to lighter structures. Structural optimization is another method to optimize the material layout without affecting overall performance of the product. This paper discusses the methods to create lighter structures by the introduction of lighter materials in structures and structural optimization methods. Lighter materials are introduced in the structure using dissimilar material joining techniques. Joining processes such as thermal shrink-fit and mechanical press-fit are useful for metal to metal components. Similarly, adhesively bonded joints are useful for both metal and non-metal (plastics and composites) components.
2016-04-05
Technical Paper
2016-01-1538
Vaibhav V. Gokhale, Carl Marko, Tanjimul Alam, Prathamesh Chaudhari, Andres Tovar
Abstract This work introduces a new Advanced Layered Composite (ALC) design that redirects impact load through the action of a lattice of 3D printed micro-compliant mechanisms. The first layer directly comes in contact with the impacting body and its function is to prevent an intrusion of the impacting body and uniformly distribute the impact forces over a large area. This layer can be made from fiber woven composites imbibed in the polymer matrix or from metals. The third layer is to serve a purpose of establishing contact between the protective structure and body to be protected. It can be a cushioning material or a hard metal depending on the application. The second layer is a compliant buffer zone (CBZ) which is sandwiched between two other layers and it is responsible for the dampening of most of the impact energy.
2016-04-05
Technical Paper
2016-01-0335
Samuel M. Odeyinka, Ana M. Djuric
Abstract Inverse kinematic solutions of six degree of freedom (DOF) robot manipulation is a challenging task due to complex kinematic structure and application conditions which affects and depend on the robot’s tool frame position, orientation and different possible configurations. The robot trajectory represents a series of connected points in three dimensional space. Each point is defined with its position and orientation related to the robot’s base frames or users teach pendant. The robot will move from point to point using the desired motion type (linear, arc, or joint). This motion requires inverse kinematic solution. This paper presents a detailed inverse kinematic solution for Fanuc 6R (Rotational) robot family using a geometrical method. Each joint angular position will be geometrically analyzed and all possible solutions will be included in the decision equations. The solution will be developed in a parametric manner to cover the complete Fanuc six DOF family.
2016-04-05
Journal Article
2016-01-0296
Monika Minarcin
Abstract Increasing electrification of the vehicle as well as the demands of increased connectivity presents automotive manufacturers with formidable challenges. Automakers and suppliers likely will encounter three practices that will influence how they develop and manufacture highly connected vehicles and future e-mobility platforms: 1) hierarchical production processes in fixed footprints that do not share data freely; 2) lack of real-time, in-line quality inspection and correction processes for complex miniaturized electronic components; and 3) floor to enterprise resource and execution systems that can collect, analyze and respond to rapidly changing production needs.
2016-04-05
Journal Article
2016-01-0338
R.J. Urbanic, Ana M. Djuric
Abstract The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
2016-04-05
Journal Article
2016-01-0340
Tina Hull, Monika A. Minarcin
Abstract Applications using industrial robotics have typically led to establishing a safeguarded space encompassing a wide radius around the robot. Operator access to this hazard zone was restricted by a combination of means, such as hard guarding, safeguarding, awareness means, and personal protective equipment. The introduction of collaborative robots is redefining safeguarding requirements. Many collaborative robots have inherently safe designs that enable an operator and a robot to work within a shared, collaborative workspace. New technology in industrial robotics has opened up opportunities for collaborative operation. Collaborative operation could include either industrial or collaborative robots, depending on its application. The current defined modes of collaborative operation are hand guiding; speed and separation monitoring; safety-rated monitored stop; and, power and force limiting.
2016-04-05
Journal Article
2016-01-0336
R.J. Urbanic, R. Hedrick, Ana M. Djuric
Abstract When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
2016-04-05
Journal Article
2016-01-0359
Jeff Wang, Charles Enloe, Jatinder Singh, Curt Horvath
Abstract Impact toughness (or resistance to fracture) is a key material property for press hardened steel used in construction of the safety-critical elements of automotive body structures. Prior austenite grain size, as primarily controlled by the incoming microstructure and austenitization process, is a key microstructural feature that influences the impact toughness of press hardened steel. In this paper, a special Charpy V-notch impact test is developed to quantify the impact toughness of press hardened steel sheets with various prior austenite grain sizes, by stacking a number of thin sheets via mechanical riveting. Both the ductile-to-brittle transition temperature and upper shelf energy are analyzed in an effort to establish a correlation between impact toughness and prior austenite grain size. Within tested conditions, impact performance shows only a slight decrease as the prior austenitic grain size increases from 18 to 38 microns.
Viewing 211 to 240 of 8952