Criteria

Text:
Topic:
Display:

Results

Viewing 181 to 210 of 8952
2016-09-27
Journal Article
2016-01-2112
Hilmar Apmann
Abstract As a new material FML, made by aluminum foils and Glasfiber-Prepreg, is a real alternative to common materials for fuselages of aircrafts like monolithic aluminum or CFRP. Since experiences within A380 this material has some really good advantages and develops to the status as alternative to aluminum and composite structures. To become FML as a real alternative to aluminum and carbon structures there are many things to improve: design, material, costs and process chain. So following one of the main goals for an industrial application for high production rates of aircrafts is the automation of production processes inside the process chain for FML-parts like skins and panels for fuselages. To reach this goal for high production rates first steps of automation inside this new process chain have been developed in the last two years. Main steps is the automated lay-up of metallic foils and Glasfiber-Prepreg.
2016-09-27
Journal Article
2016-01-2085
Kyle Pritz, Brent Etzel, Zheng Wei
The automation cycle time of wing assembly can be shortened by the automated installation of single-sided temporary fasteners to provide temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
2016-09-27
Journal Article
2016-01-2126
Ali Mohamed Abdelhafeez, Sein Leung Soo, David Aspinwall, Anthony Dowson, Dick Arnold
Abstract Despite the increasing use of carbon fibre reinforced plastic (CFRP) composites, titanium and aluminium alloys still constitute a significant proportion of modern civil aircraft structures, which are primarily assembled via mechanical joining techniques. Drilling of fastening holes is therefore a critical operation, which has to meet stringent geometric tolerance and integrity criteria. The paper details the development of a three-dimensional (3D) finite element (FE) model for drilling aerospace grade aluminium (AA7010-T7451 and AA2024-T351) and titanium (Ti-6Al-4V) alloys. The FE simulation employed a Coupled Eulerian Lagrangian (CEL) technique. The cutting tool was modelled according to a Lagrangian formulation in which the mesh follows the material displacement while the workpiece was represented by a non-translating and material deformation independent Eulerian mesh.
2016-09-27
Technical Paper
2016-01-2137
Simon Kothe, Sven Philipp von Stürmer, Hans Christian Schmidt, Christian Boehlmann, Jörg Wollnack, Wolfgang Hintze
Abstract Strong market growth, upcoming global competition and the impact of customer-requirements in aerospace industry demand for more productive, flexible and cost-effective machining systems. Industrial robots have already demonstrated their advantages in smart and efficient production in a wide field of applications and industries. However, their use for machining of structural aircraft components is still obstructed by the disadvantage of low absolute accuracy and adverse reaction to process loads. This publication demonstrates and investigates different methods for performance assessment and optimization of robot-based machining systems. For conventional Cartesian CNC machining systems several methods and guidelines for performance assessment and error identification are available. Due to the attributes of a common 6-axis-robot serial kinematics these methods of decoupled and separated analysis fail, especially concerning optimization of the system.
2016-09-20
Technical Paper
2016-01-1996
David R. Markham, J. Michael Cutbirth
Abstract Modern military electronics systems are generating increasingly higher heat loads, necessitating larger capacity thermal management systems (TMSs). These high-capacity TMSs must meet the strict size and weight requirements of these advancing platforms. Commercially available compressor technology can generate sufficient cooling for these systems; however, they are too heavy and expansive. Mainstream Engineering Corporation has developed a compact, lightweight, high-speed screw compressor that can provide a large cooling capacity with a small package envelope. The compressor housing material is light-weight with a low coefficient of thermal expansion (CTE), allowing a wide operating temperature range. The compressor, with a nominal cooling capacity from 20 kW to 60 kW, was tested over a range of saturated suction conditions, pressure ratios, rotational speeds, and oil lubrication conditions.
2016-09-20
Technical Paper
2016-01-2060
Vijay Jagdale, Jagadeesh Tangudu
Abstract It is desired to reduce stator end winding length and mass to reduce associated resistive losses, increase efficiency and power density of an induction motor. With recent advancements in additive manufacturing technology, it is possible to deposit copper conductive paths and insulation layers in a selective controlled manner. This enables more compact end winding designs. The objective of this paper is to present a topology optimization based approach for design of stator end winding to minimize its overall length, volume and mass. Design approach and parametric study results for a representative stator design are presented in this paper. By reducing length of end winding, efficiency and power density of the induction motor can be increased enabling benefit realization for weight critical aerospace applications, incorporation in electric vehicle market and potentially reducing rare-earth dependency.
2016-09-20
Technical Paper
2016-01-2063
Beata I. Wawrzyniak, Jagadeesh Tangudu
Abstract Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
2016-09-18
Technical Paper
2016-01-1957
Seonho Lee, Heejae Kang, Ohchul Kwon, Chirl Soo Shin
Abstract A trend in automotive parts development is the pursuit of long life, high quality and reliability. The increase in service life of automotive wheel bearings, by improving the rolling contact fatigue (RCF) life of bearing steels, was investigated. Conventional studies of bearing steels and heat treatments have dealt with quenching and tempering (Q/T) in 52100 steel. This study is a new trial to increase the strength of bearing steels by special austempering in phases after general Q/T heat treatments.
2016-09-14
Technical Paper
2016-01-1878
Yuxiang Feng, Pejman Iravani, Chris Brace
Abstract The major contribution of this paper is the general description of a complete integrating procedure of autonomous vehicle system. Using Robot Operating System (ROS) as the framework, process from senor integration to path planning and path tracking were performed. Based on an off-road All-Terrain Vehicle, an Extended Kalman filter based autonomous control strategy was developed on the ROS. Both the position estimation and autonomous control were performed on the ROS platform. For the position estimation phase, sensory measurements from GPS, IMU and wheel odometry were acquired and processed on ROS. In accordance with the ROS architecture, separate packages were developed for each sensor to gather and publish corresponding measurements. Furthermore, Extended Kalman filtering was performed to fuse all sensory measurements to achieve an optimizing accuracy.
2016-05-11
Technical Paper
2016-36-0064
V. R. M. Gonçalves, L. C. F. Canale, V. Leskovšek, B. Podgornik
Abstract Spring steels are the materials most commonly used in suspensions of vehicles and are subject to heavy efforts in terms of load, impact and also under intense fatigue solicitation. Required mechanical performance depends mainly on the chemical composition and heat treatments. Therefore, the aim of the present work was to compare SAE 5160 steel with one Super Clean steel developed in Slovenia. Searches improving mechanical properties of these steels are constantly present in the automotive industry, reducing vehicle weight and maintaining safety. In this scenario, cryogenic treatment in combination with quenching and tempering has shown interesting results in the scientific literature for tool steels and the best results for cryogenics are achieved when the treatment occurs for long duration as 24 hours.
2016-04-05
Technical Paper
2016-01-0271
David A. Warren
Abstract The objective of the paper is to outline the steps taken to change the reliability and maintenance environment of a plant from completely reactive to proactive. The main systems addressed are maintenance function fulfillment with existing staffing; work order management, planning, and scheduling; preventive maintenance (PM) definition and frequency establishment; predictive maintenance (PdM) scheduling and method definition; and shutdown planning and execution. The work order management methods were evaluated and modified to provide planning and scheduling of work orders on a weekly basis. The computerized maintenance and management system (CMMS) was updated to automatically insert work orders into the backlog of work for completion. A failure modes and effects analysis (FMEA) was performed and the results of the FMEA led to implementation of the following PM and PdM activities: vibration analysis, thermal imaging, and temperature monitoring.
2016-04-05
Technical Paper
2016-01-0334
Lucas e Silva, Tennakoon Mudiyanselage Tennakoon, Mairon Marques, Ana M. Djuric
Abstract A collaborative robot or cobot is a robot that can safely and effectively interact with human workers while performing industrial tasks. The ability to work alongside humans has increased the importance of collaborative robots in the automation industry, as this unique feature is a much needed property among robots nowadays. Rethink Robotics has pioneered this unique discipline by building many robots including the Baxter Robot which is exclusive not only because it has collaborative properties, but because it has two arms working together, each with 7 Degrees Of Freedom. The main goal of this research is to validate the kinematic equations for the Baxter collaborative robot and develop a unified reconfigurable kinematic model for the Left and Right arms so that the calculations can be simplified.
2016-04-05
Technical Paper
2016-01-0346
Patrick Garcia, Jiri Radous, Artur Krol, Jacek Bosek, Caroline Baeten
During the 4 last years, Lean has been successfully implemented in one of the Tenneco’s Business Units: Ride Performance. This paper reflects on the results and more specifically on the third principle of Lean [1] “How to make flow” and on the fifth principle “To strive for perfection” obtained in the fields of “Product Development” related to Processes, Tools and People. Processes and Hard Tools. How to improve the flow in the engineering processes? It will be shown that In general standardized processes supported by some integrated tools and, more specifically Some workload leveling in testing, CAD Departments, Standardization in design processes, testing procedures and prototypes development processes and Standardization and availability of components and parts for prototype building are key enablers to enhance flow in the Product Development.
2016-04-05
Technical Paper
2016-01-0342
Rushil Batra, Sahil Nanda, Shubham Singhal, Ranganath Singari
Abstract This research is an attempt to investigate the significance of Value Stream Mapping (VSM) in the lean transformation of manufacturing units (largely automotive) and then apply the same in a tool room. It is an essential tool used to interpret both material and information flow in a system. The tool room under study specializes in production of a large variety of high precision tools for the automotive industry. A product family is chosen to map and analyze various stages of its production process, starting from the raw material (R/M) to the finished goods’ (F/G) stage. VSM is then implemented in the tool room to correctly identify wastes and thus improvement areas to bridge gaps between current and future states. Both current and future state maps are drafted along with usage of other lean tools to justify its implementation in a small setup like tool room.
2016-04-05
Technical Paper
2016-01-0378
John George, Daniel Gross, Hamid Jahed, Ali Roostaei
Abstract The choice of an appropriate material model with parameters derived from testing and proper modeling of stress-strain response during cyclic loading are the critical steps for accurate fatigue-life prediction of complex automotive subsystems. Most materials used in an automotive substructure, like a chassis system, exhibit combined hardening behavior and it is essential to capture this behavior in the CAE model in order to accurately predict the fatigue life. This study illustrates, with examples, the strain-controlled testing of material coupons, and the calculations of material parameters from test data for the combined hardening material model used in the Abaqus solver. Stress-strain response curves and fatigue results from other simpler material models like the isotropic hardening model and the linear material model with Neuber correction are also discussed in light of the respective fatigue theories.
2016-04-05
Technical Paper
2016-01-0416
Eduardo Bustillos, Haley Linkous, Xin Xie, Laila Guessous, Lianxiang Yang
This paper presents the measurement and analysis of the edge stretching limit of aluminum alloy using digital image correlation. The edge stretching limit, also known as the “edge thinning limit,” is the maximum thinning strain at a point of edge failure resulting from tension; which may be predisposed by edge quality. Edge fracture is a vital failure mode in sheet metal forming, however it is very difficult to measure. A previous study enabled the measurement of edge thinning strain by using advanced digital image correlation but it did not consider how the edge quality could affect the edge stretching limit of aluminum alloy. This paper continues to measure edge thinning strain by comparing polished to unpolished AA5754, thus determining the effect edge quality has on the edge stretching limit. To enable the measurement by optical method for a very long and thin sample, a notch is used to localize where edge failure occurs.
2016-04-05
Technical Paper
2016-01-0503
Evandro Giuseppe Betini, Francisco Carlos Cione, Cristiano Stefano Mucsi, Marco Antonio Colosio, Jesualdo Luiz Rossi, Marcos Tadeu D'Azeredo Orlando
Abstract This paper reports the experimental efforts in recording the 2-dimensional temperature distribution on autogenous thin plates of UNS S32304 steel during welding. The butt-welded autogenous joints were experimentally performed by the GTAW (Gas Tungsten Arc Welding) process with either argon or argon-2%nitrogen atmospheres. The temperatures cycles were recorded by means of thermocouples embedded by spot welding on the plate's surfaces and connected to a multi-channel data acquisition system. The laser flash method (LFM) was also used for the determination thermal diffusivity of the material in the thickness direction. The temperature curves suggest a relationship between the microstructures in the solidified and the heat affected zone with the diffusivity variation. This is a region where there had been a major incidence of heat. The obtained results validate the reliability of the experimental used apparatus.
2016-04-05
Technical Paper
2016-01-0392
HongTae Kang, Abolhassan Khosrovaneh, Xuming Su, Mingchao Guo, Yung-Li Lee, Sai Boorgu, Chonghua Jiang
Abstract Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
2016-04-05
Technical Paper
2016-01-0386
HongTae Kang, Abolhassan Khosrovaneh, Xuming Su, Mingchao Guo, Yung-Li Lee, Shyam Pittala, Chonghua Jiang, Brian Jordon
Abstract Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
2016-04-05
Technical Paper
2016-01-0353
Suleman Ahmad, Dimitry Sediako, Anthony Lombardi, C. (Ravi) Ravindran, Robert Mackay, Ahmed Nabawy
Abstract Aluminum alloys have been replacing ferrous alloys in automotive applications to reduce the weight of vehicles. The engine block is a striking example of weight reduction, and is made of Al-Si-Cu-Mg (319 type) alloys. The wear resistance in the engine block is enabled by cast iron liners, and these liners introduce tensile residual stress due to a thermo-mechanical mismatch. Typically, an artificial aging treatment effectively reduces residual stress. In this study, neutron diffraction was used to measure the residual stress profiles along the cylinder bridge of a T5 treated 319 aluminum alloy engine block. Results indicated high tensile residual stresses (200-300 MPa) in the hoop and axial orientation at depths of 50-60 mm below the head deck. The high residual stresses were likely due to a combination of minimal stress relief during artificial aging and stress development during post process cooling.
2016-04-05
Technical Paper
2016-01-0355
Takashi Iwama
Abstract Although reduction of the thickness of materials used in the automobile body is important for weight reduction, reducing the thickness of outer panels deteriorates dent resistance and surface distortion. To investigate the potential for weight reduction, the factors which influence the surface distortion and dent resistance properties were evaluated quantitatively with the aim of securing these properties. The materials used in these experiments were a tensile strength (TS) 340MPa grade bake hardenable (BH) steel sheet, which is often used in door outers, and a TS 440MPa grade BH steel sheet for outer panels. Surface distortion increases as a result of higher yield point (YP). It is possible to suppress the increase in surface distortion by increasing the blank holding force (BHF) in press forming. However, because this reduces the BHF range to the forming limit, application of low YP material is considered to be more advantageous for suppressing surface distortion.
2016-04-05
Technical Paper
2016-01-0364
Guobiao Yang, Tian Bai, Wan Xu, Junrui Li, Lianxiang Yang, Dajun Zhou, Changqing Du
Abstract Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
2016-04-05
Technical Paper
2016-01-0406
Akihiko Asami, Tomoyuki Imanishi, Yukio Okazaki, Tomohiro Ono, Kenichi Tetsuka
Abstract High-tensile steel plates and lightweight aluminum are being employed as materials in order to achieve weight savings in automotive subframe. Closed-section structures are also in general use today in order to efficiently increase parts stiffness in comparison to open sections. Aluminum hollow-cast subframe have also been brought into practical use. Hollow-cast subframe are manufactured using sand cores in gravity die casting (GDC) or low-pressure die casting (LPDC) processes. Using these manufacturing methods, it is difficult to reduce product thickness, and the limitations of the methods therefore make the achievement of weight reductions a challenge. The research discussed in this paper developed a lightweight, hollow subframe technology employing high-pressure die casting (HPDC), a method well-suited to reducing wall thickness, as the manufacturing method. Hollow-casting using HPDC was developed as a method of forming water jackets for water-cooled automotive engines.
2016-04-05
Technical Paper
2016-01-0395
Anindya Deb, Clifford C. Chou, Gunti R. Srinivas, Sanketh Gowda, Goutham Kurnool
Abstract An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar.
2016-04-05
Technical Paper
2016-01-0358
Saeid Nasheralahkami, Sergey Golovashchenko, Kaicen Pan, Lindsay Brown, Bindiya Gugnani
Abstract In recent years, implementation of dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) is increasing in automotive components due to their superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Tool wear is another major issue in the trimming of UHSS because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic in the microstructure. The objective of the present paper is to study the influence of trimming conditions and tool wear on quality of trimmed edge of DP980 steel sheet. For this purpose, mechanically trimmed edges were characterized for DP980 steel, sheared with six different cutting clearances (from 4% to 40% of the sheet thickness).
2016-04-05
Technical Paper
2016-01-0502
Yuyang Song, Umesh Gandhi
Abstract The application of adhesively bonded joints has increased significantly in order to improve the integrity of structural components in vehicle design. In this paper, finite element analysis is used to model the adhesive behavior of the adhesive joining between steel and composite. The cohesive element modeling techniques in Abaqus is used to model the adhesive interface. The standard lap shear and peeling test are first conducted to estimate the adhesive properties using reverse engineering. Next, these adhesive properties are applied and validated on the FE model of a 3D part for complex loading condition. The FEA model using reverse engineered cohesive interface properties get closed match to the test results for joining of the complex shape parts.
2016-04-05
Technical Paper
2016-01-0341
Jan-Friedrich Brand, Patrick Garcia, Laxman Nalage, Pradip Ithape
Abstract Several factors influence a company working culture including its industry, its geographical region, as well as the cultural and the educational background of its employees. Despite these, Japanese companies have successfully transferred a company’s working culture from Japan to other countries [2], so that only minor regional differences in productivity remain. Such transfer is possible with a strong process oriented mind set and working style. This paper examines the change in a working culture associated with the prototyping of exhaust systems in India. That change required a shift from a reactive “firefighting” mode of working to a structured, projectable and reliable working environment. The goal was to achieve increased in-time delivery, higher quality, greater flexibility, more innovation and reduced cost. The same process approach may be transferred from India to other parts of the world, while allowing for country-specific influences on a company’s working culture.
2016-04-05
Technical Paper
2016-01-0531
Pulkit Batra, Arpit Bansal, V Jeganathan ArulMoni
Abstract Friction stir processing (FSP) is a method of changing the properties of metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into a workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. It comprises of a rotating tool with pin and shoulder which are inserted into a single piece of material and traversed along the desired path to cover the region of interest. Friction between the shoulder and work piece results in localized heating which raises the temperature of the material to the range where it is plastically deformed. During this process, severe plastic deformation occurs and due to thermal exposure of material, it results in a significant evolution in the local microstructure. Carbon nanotubes were dispersed into Al matrix by multipass FSP to fabricate Al6082 T0/Fe-MWCNT.
2016-04-05
Technical Paper
2016-01-0357
Daniel J. Branagan, Andrew E. Frerichs, Brian E. Meacham, Sheng Cheng, Alla V. Sergueeva
Abstract The historical development of autobody steels has demonstrated a paradoxical relationship between strength and ductility, with increasing strength necessary for lightweighting commensurate with reductions in ductility necessary for cold formability. This in turn creates geometric constraints in part design and manufacturing, ultimately limiting usage of these higher strength steel grades in automobiles. Quench and tempering including variants such as quench, partitioning, and tempering are known approaches to increase strength while attempts to overcome the paradox have focused on increasing ductility through three distinct deformation mechanisms including; 1) shear band induced plasticity (SIP), 2) transformation induced plasticity (TRIP), and 3) twinning induced plasticity (TWIP).
2016-04-05
Technical Paper
2016-01-0333
Pavel Lykov, Rustam Baytimerov, Sergey Vaulin, Evgeny Safonov, Dmitry Zherebtsov
Abstract Due to its unique physical properties (high thermal and electric conductivity) copper is one of the most interesting materials in point of view of additive manufacturing in particular of Selective Laser Melting (SLM). But because of the low laser radiation absorption, low melting point and high thermal conductivity it is difficult to fabricate of copper components without pores. Results of many research have been shown that for successful Selective Laser Melting of copper powder is needed high laser power (more than 300 W) and high laser scanning speed (more than 600 mm/s). However now most SLM machines are equipped with laser plants with output power up to 200 W.In this research, SLM machine with 200 W maximum power CO2 laser has been used. For determination of the influence of SLM process parameters on quality of copper parts cubic specimens have been fabricated. The point distance, exposure time and base plate preheating temperature have been changing.
Viewing 181 to 210 of 8952