Criteria

Text:
Topic:
Display:

Results

Viewing 181 to 1 of 1
2016-10-25
Technical Paper
2016-36-0224
Carla Lima, Filipe Andrade, Cristina Kawakami, Cristiane Gonçalves, Walmir Peraro
Abstract The microcellular foam injection molding process is being widely applied by the thermoplastics industry. This process consists in a melted polymer injection mixed with a processing solvent, that is an inert gas in the supercritical state, usually CO2 or N2 producing a microcellular foam. This technique offers many advantages such as weight reduction, dimensional uniformization and less warpage. Besides that, it offers a satisfactory property like acoustic and thermal insulation. On the other hand, the parts from this process have an inferior mechanical property like ductility and toughness if compared with solid injection molded parts. Nevertheless, the main issue for this process is the poor appearance quality. This paper presents a review of some existing methods for surface quality improvement as Co-injection process, where a skin is injected over the microcellular part, and Heat & Cool that consists in a control of mold temperature.
2016-10-25
Technical Paper
2016-36-0230
Guilherme Canuto da Silva, Paulo Carlos Kaminski
Abstract Automotive industries are undergoing a transformation of their manufacturing systems. Called by the German government as Industrie 4.0, this transformation is based on the evolution of traditional Embedded Systems-ES to Cyber-Physical Systems-CPS. In the next years such evolution will have to reach transitory stages, where ES and CPS should coexist for a determined period of time (ES-CPS). Based on this projection, this work compares ES with CPS, identifies the main differences between these systems and thus forms a transitory stage of automotive manufacturing for the next years. The work is structured as follows: Introduction section places the reader on the treated subject and presents the methodology of the work. Later, Industrie 4.0, Embedded Systems (ES) and Cyber-Physical systems (CPS) are defined. Once this is done, the analysis of ES-CPS transition is finished. Analysis results are presented and a representation of ES-CPS transition is proposed.
2016-10-25
Technical Paper
2016-36-0121
Raphael Gonçalves, Rubens Pinati, Rodrigo Godoi
Abstract Distortion is an intrinsic and undesired effect of the welding process, inducing residual stresses and hence, reducing the fatigue life of the welded structure. This distortion however, does not occurs simultaneously among the entire structure; instead, it occurs gradually during the execution of the welding chord. Due to this, equal structures, but composed by weld chords executed in a different sequencing, presents different residual stresses and therefore, different fatigue performances. This study proposes a method, using finite elements model (CAE), to capture the non-linear distortions of distinct welding sequences and contrast the diverse impacts in fatigue life.
2016-10-25
Technical Paper
2016-36-0159
Mauro Iurk Rocha, Ivna Oliveira da Cruz, Maria Clara Kremer Faller, Antônio Carlos Scardini Villela, Sergio Roberto Amaral, Frederico Braz Silva, Sillas Oliva Filho
Abstract Vehicles manufacturers, in search of cost reduction, fill the tanks of recently manufactured vehicles with the least volume of fuel necessary for future commercialization. The adoption of such practice, depending on the diesel fuel storage conditions, may lead to oxidation products formation in the fuel system and to problems during the first start of these vehicles. Some vehicles manufacturers, trying to minimize the occurrence of these problems, replace the diesel fuel in the vehicle tank with new fuel when vehicle storage time reaches 90 days. As a result of such occurrences, the opportunity for a first fill diesel fuel development, that presented better oxidation stability during storage, was identified.
2016-10-25
Technical Paper
2016-36-0169
Emilio C. Baraldi, Paulo Carlos Kaminski
Abstract The competition among automotive industries increases each year worldwide. Among their diverse needs, what can be highlighted are: market expansion, model diversification, competitive prices, customer-recognized quality, new products release in shorter time periods, among others. The occurrence of flaws that might compromise the health or safety of the product’s user is admittedly one of the largest issues for any manufacturer, especially if these flaws are identified after its commercialization (recall). In this work, a study on recall in the automotive industry in the Brazilian market will be presented, comprising the years of 2013 and 2014. Reasons and causes of recall are addressed, based on the sample of the aforementioned research, with special emphasis on flaws derived from the production process. The conclusion at the end of the work is that the final assembly in the automotive manufacturing process is what requires more attention from engineering area.
2016-10-25
Technical Paper
2016-36-0149
Edinilson Alves Costa
Abstract Mainly in the last 30 years so much research has been done on Fe-based calculation of seam welded thin-sheet structures fatigue life. However, available prediction methods have been developed for a limited range of geometries under ideal load conditions. Extrapolating to complex real world geometries and load conditions such those resultant from, for example, ground vehicles dislocation over rough surfaces, are least documented. One example of the application of seam welded thin-sheet structures in the ground vehicle industry is the powertrain installation bracketry. Such brackets are subject to variable amplitude loading sourced from powertrain and road surface irregularities and their fatigue strength is tightly dependent on the strength of their joints. In this paper, a FE-based force/moment method has been used for numerically predicting fatigue life of powertrain installation bracketry of a commercial truck submitted to variable amplitude loading.
2016-10-25
Technical Paper
2016-36-0171
Leandro Brasil Araujo, Juliano Tessaro, Renan Sardim
Abstract Due to financial global crisis started in 2008 and intensified in the past years in Brazil, the maintenance of a good company’s financial situation is a big challenge and it is more relevant in actual moment. Because of expected turbulent scenario for the next years, it is necessary to adopt strategies to mitigate risks that involve Supply Chain impacting industrial production. In this way, it is crucial adopt strategies and actions that assist to evaluate the performance of suppliers and its associate potential financial risk, what can be considered a companies’ success differential factor during crisis period as well. In this scenario, MWM Motores Diesel adopts an internal process of monitoring the risk of suppliers based on internally developed tools and others available at market.
2016-10-25
Technical Paper
2016-36-0511
Wilcker Neuwald Schinestzki, Daniel Gustavo Schreiner, Carlos Eduardo Guex Falcão
Abstract The drag reduction system, commonly used in Formula 1, has as task to reduce the drag force that acts in the vehicle’s airfoils, increasing considerably its speed. When it comes to Formula SAE competition, since the speeds are lower than in F1, the purpose of the DRS can easily become the cooling, despite its name. This paper comes to the development of a drag reduction system applied to the frontal wing whose major objective is to increase the mass flow rate of air through the radiator. Based on a preliminary work supported by computational fluid dynamics, a frontal wing DRS can increase the mass flow rate in approximately 65% at an average velocity of 12 meters per second, which allows the team to use a smaller and lightweight radiator. The challenge was to design a lightweight and reliable automatic system, since it cannot fail nor take away the driver’s attention.
2016-10-25
Technical Paper
2016-36-0515
Ana Carolina Rodrigues Teixeira, José Ricardo Sodré, Lilian Lefol Nani Guarieiro, Erika Durão Vieira, Fabiano Ferreira de Medeiros, Carine Tondo Alves
Abstract In a scenario with growing population, increasing demand for energy and volatile prices of fossil fuel, there is a high incentive for the use of biofuels, especially those produced from waste material. In this context, second and third generation bioethanol (2G/3G) are interesting alternatives, as they can be produced from different raw material such as corn and rice straw, sugarcane bagasse, waste from pulp industry and microalgae. This paper presents an overview of the available technologies for both 2G and 3G bioethanol production, including lignocellulosic biomass feedstock, biocatalysts and cogeneration processes.
2016-10-25
Technical Paper
2016-36-0406
Rafael Aguera Rezeno da Silva, Alex de Souza Rodrigues, José Elias Tomazini, Marcelo Sampaio Martins, Kauê Cruz Silva, Michele Santos
Abstract Connecting rod joint optimization is a well-known design procedure used for new cranktrains, not only for truck applications, but also for passenger cars. Big end bolted joint is one of the most critical connecting rods regions under engine operation, especially due to joint opening phenomenon and consequent engine failure. Thus, in order to have a robust design, it is usually applied safety factors to absorb this design margin. However, due to the continuous increase of engine loads to attend different emission regulations, this design condition became a vital parameter for connecting rods. thyssenkrupp developed a joint evaluation methodology to be applied during conrod design, presenting better accuracy when compared to the standard development procedure, the VDI 2230 part 1, thus leading to better performance for real engine application. This approach combines the VDI design algorithm with a simple and fast finite element model for force and moment extraction.
2016-10-25
Technical Paper
2016-36-0235
Juliana Lima da Silva Lopes, Cleber Albert Moreira Marques, Genildo de Moura Vasconcelos, Rafael Barreto Vieira, Flavio Fabricio Ventura de Melo Ferreira, Marcelo Henrique Souza Bomfim
Abstract This paper approaches the use of machine vision as an automation tool for verification tests in automotive Instrument Panel Cluster (IPC). A computer integrated with PXI modular instruments, machine vision software and Integrated Development Environment (IDE) composes the test system. The IPC is verified in closed-loop using the Hardware-in-the-Loop (HiL) technique in which the HiL system simulates all Electronic Control Units (ECUs) that interact with the IPC. Every simulated ECUs signals are sent to the IPC over CAN (Controller Area Network) bus or hardwired I/O using PXI modules integrated with IDE and its responses are captured by cameras. Using machine vision such images are subjected to Digital Image Processing (DIP) techniques as pattern matching, edge detection and Optical Character Recognition (OCR), which can be applied to interpret speedometer, tachometer, fuel gauges, display and warning lights.
2016-09-27
Technical Paper
2016-01-8116
Mrudula Uday Orpe, Monika Ivantysynova
Abstract Mobile Earth Moving Machinery like Skid-steer loaders have tight turning radius in limited spaces due to a short wheelbase which prevents the use of suspensions in these vehicles. The absence of a suspension system exposes the vehicle to ground vibrations of high magnitude and low frequency. Vibrations reduce operator comfort, productivity and life of components. Along with vibrations, the machine productivity is also hampered by material spillage which is caused by the tilting of the bucket due to the extension of the boom. The first part of the paper focuses on vibration damping. The chassis’ vibrations are reduced by the use of an active suspension element which is the hydraulic boom cylinder which is equivalent to a spring-damper. With this objective, a linear model for the skid steer loader is developed and a state feedback control law is implemented.
2016-09-27
Technical Paper
2016-01-8137
Amrut A. Patki
Abstract The overall cost of ownership of a product is dependent on the life of the product and the cost. To keep the cost of ownership down, it is important to understand how the life of the product can be increased while lowering the cost at the same time. We are also challenged to reduce the carbon footprint and improve energy requirements to become more sustainable and green. How can both of these necessities be achieved? “Remanufacturing” is a simple answer to this complex question. Remanufacturing can improve the useable life of a part or product by multiple times. It is cost effective compared to new part production and is reasonably inexpensive to end customer. The energy required for remanufacturing is less compared to its original manufacturing. Remanufacturing reuses/salvages most of the original content. Design for Remanufacturing is a fundamental change in design engineering process to meet remanufacturing requirements.
2016-09-27
Technical Paper
2016-01-8138
Pranav Shinde, K Ravi, Nandhini Nehru, Sushant Pawar, Balaji Balakrishnan, Vinit Nair
Abstract Body in white (BIW) forms a major structure in any automobile. It is responsible for safety and structural rigidity of the vehicle. Also, this frame supports the power plant, auxiliary equipments and all body parts of the vehicle. When it comes to judging the performance of the vehicle, BIW is analyzed not only for its strength and shape but also the weight. Light weight BIW structures have grown rapidly in order to fulfill the requirements of the best vehicle performance in dynamic conditions. Since then lot of efforts have been put into computer-aided engineering (CAE), materials research, advanced manufacturing processes and joining methods. Each of them play a critical role in BIW functionality. Constructional designing, development of light materials with improved strength and special manufacturing practices for BIW are few research areas with scope of improvement. This paper attempts to review various factors studied for BIW weight reduction.
2016-09-27
Technical Paper
2016-01-8128
Vladimir G. Shevtsov, Alexandr Lavrov, Zahid A. Godzhaev, Valentin M. Kryazhkov, Gennagy S. Gurulev
Abstract The objective of this study is to identify the most popular agricultural tractor models in Russia by their engine ratings and countries of origin. This review presents an analysis of changes in the composition of engine-ratings and sales volume of agricultural tractors in the Russian market between 2008 and 2014. Including knock-down kits, the countries of origin are Russia, the CIS-countries and non-CIS Countries. The variety of manufacturers, highlight the leading international companies which have supplied up to 200 units is discussed. The papers shows that CIS-manufactured tractors represent the greatest number in the market - up to 57 per cent, tractors from non-CIS countries occupy up to 12 per cent of the market, and the number of Russian models is quite limited - 3.0 per cent in 2012 and 3.4 per cent in 2014.
2016-09-27
Journal Article
2016-01-2081
Rodrigo Pinheiro, Robert Gurrola, Sead Dzebo
Abstract The installation of common threaded aerospace fasteners by the application of a torque to a nut or collar is made possible by an internal wrenching element or recess feature adapted to the threaded end of a pin, which accepts a mating anti-rotation key designed to partially balance the applied torque. In applications such as the mechanical joining of composite structures accomplished by wet clearance fit installations of permanent fasteners, high nut or collar seating torques not adequately opposed by frictional resistance at the contact surfaces of the fastener and joint members effectively shift a greater proportion of the torque reaction requirement onto the recess and mating anti-rotation key which in turn can experience high torsional stresses exceeding their design capability and result in frequent service failures.
2016-09-27
Journal Article
2016-01-2112
Hilmar Apmann
Abstract As a new material FML, made by aluminum foils and Glasfiber-Prepreg, is a real alternative to common materials for fuselages of aircrafts like monolithic aluminum or CFRP. Since experiences within A380 this material has some really good advantages and develops to the status as alternative to aluminum and composite structures. To become FML as a real alternative to aluminum and carbon structures there are many things to improve: design, material, costs and process chain. So following one of the main goals for an industrial application for high production rates of aircrafts is the automation of production processes inside the process chain for FML-parts like skins and panels for fuselages. To reach this goal for high production rates first steps of automation inside this new process chain have been developed in the last two years. Main steps is the automated lay-up of metallic foils and Glasfiber-Prepreg.
2016-09-27
Journal Article
2016-01-2116
Peter Mueller-Hummel
Abstract Drilling holes into metal with MQL (Minimal Quantity Lubrication) is a normal procedure, because the drill is designed for drilling metal and the malleable capability of the metal compensates for the insufficient cutting capability of a worn out drill. Drilling composite materials using the same drill (designed for drilling metal) is a different procedure, because composite fibers are not malleable like metal at all. Due to this fact the tools become very hot trying to forge composite fibers like metal. The elastic behavior of the composite and the delamination inside the hole makes the tool temporary smaller than the diameter of the drill. The hole in the metal part of the stack remains slightly larger due to the heat and the thermal expansion rate. This paper shows how to drill metal and composite with the same diameter, so that achieving H8 quality is no longer a dream.
2016-09-27
Journal Article
2016-01-2085
Kyle Pritz, Brent Etzel, Zheng Wei
The automation cycle time of wing assembly can be shortened by the automated installation of single-sided temporary fasteners to provide temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
2016-09-27
Journal Article
2016-01-2126
Ali Mohamed Abdelhafeez, Sein Leung Soo, David Aspinwall, Anthony Dowson, Dick Arnold
Abstract Despite the increasing use of carbon fibre reinforced plastic (CFRP) composites, titanium and aluminium alloys still constitute a significant proportion of modern civil aircraft structures, which are primarily assembled via mechanical joining techniques. Drilling of fastening holes is therefore a critical operation, which has to meet stringent geometric tolerance and integrity criteria. The paper details the development of a three-dimensional (3D) finite element (FE) model for drilling aerospace grade aluminium (AA7010-T7451 and AA2024-T351) and titanium (Ti-6Al-4V) alloys. The FE simulation employed a Coupled Eulerian Lagrangian (CEL) technique. The cutting tool was modelled according to a Lagrangian formulation in which the mesh follows the material displacement while the workpiece was represented by a non-translating and material deformation independent Eulerian mesh.
2016-09-27
Journal Article
2016-01-2118
Patrick Land, Luis De Sousa, Svetan Ratchev, David Branson, Harvey Brookes, Jon Wright
Abstract With increased demand for composite materials in the aerospace sector there is a requirement for the development of manufacturing processes that enable larger and more complex geometries, whilst ensuring that the functionality and specific properties of the component are maintained. To achieve this, methods such as thermal roll forming are being considered. This method is relatively new to composite forming in the aerospace field, and as such there are currently issues with the formation of part defects during manufacture. Previous work has shown that precise control of the force applied to the composite surface during forming has the potential to prevent the formation of wrinkle defects. In this paper the development of various control strategies that can robustly adapt to different complex geometries are presented and compared within simulated and small scale experimental environments, on varying surface profiles.
2016-09-27
Journal Article
2016-01-2120
David Judt, Kevin Forster, Helen Lockett, Craig Lawson, Philip Webb
Abstract In the civil aircraft industry there is a continuous drive to increase the aircraft production rate, particularly for single aisle aircraft where there is a large backlog of orders. One of the bottlenecks is the wing assembly process which is largely manual due to the complexity of the task and the limited accessibility. The presented work describes a general wing build approach for both structure and systems equipping operations. A modified build philosophy is then proposed, concerned with large component pre-equipping, such as skins, spars or ribs. The approach benefits from an offloading of the systems equipping phase and allowing for higher flexibility to organize the pre-equipping stations as separate entities from the overall production line. Its application is presented in the context of an industrial project focused on selecting feasible system candidates for a fixed wing design, based on assembly consideration risks for tooling, interference and access.
2016-09-27
Journal Article
2016-01-2139
Hendrik Susemihl, Christian Moeller, Simon Kothe, Hans Christian Schmidt, Nihar Shah, Christoph Brillinger, Jörg Wollnack, Wolfgang Hintze
Abstract A mobile robotic system is presented as a new approach for machining applications of large aircraft components. Huge and heavy workshop machines are commonly used for components with large dimensions. The system presented in this paper consists of a standard serial robot kinematics and a mobile platform as well as a stereo camera system for optical measurements. Investigations of the entire system show that the mechanical design of the mobile platform has no significant influence on the machining accuracy. With mobile machines referencing becomes an important issue. This paper introduces an optical method for determining the position of the mobile platform in relation to the component and shows its accuracy limits. Furthermore, a method for increasing the absolute accuracy of the robots end-effector with help of stereo camera vision is presented.
2016-09-27
Journal Article
2016-01-2080
Carter L. Boad, Kevin Brandenstein
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
2016-09-27
Journal Article
2016-01-2082
Ralf Schomaker, Björn Knickrehm, Jürgen Langediers
Abstract In the frame of incremental product improvement, AIRBUS has developed and implemented a new innovative rapid decompression / pressure relieve concept for the cargo compartment area. The core change lays with detaching the complete cargo lining panels from the substructure in case of a rapid decompression in the cargo area instead of using dedicated blow in panels. In that way, pressure equilibrium can be achieved by air flow through the opened areas around the cargo lining panels rather than through specific blow out / blow in venting areas. The key for this is a self-detaching fastener AIRBUS has developed in an outstanding cooperation with ARCONIC Fastening Systems & Rings (former Alcoa Fastening Systems & Rings) in Kelkheim, Germany. These fasteners are installed to keep the cargo lining panels in place and tight against smoke in case of fire which is one of the main purposes for their use.
2016-09-27
Journal Article
2016-01-2119
Gergis W. William, Samir N. Shoukry, Jacky C. Prucz, Mariana M. William
Abstract Air cargo containers are used to load freight on various types of aircrafts to expedite their handling. Fuel cost is the largest contributor to the total cost of ownership of an air cargo container. Therefore, a better fuel economy could be achieved by reducing the weight of such containers. This paper aims at developing innovative, lightweight design concepts for air cargo containers that would allow for weight reduction in the air cargo transportation industry. For this purpose, innovative design and assembly concepts of lightweight design configurations of air cargo containers have been developed through the applications of lightweight composites. A scaled model prototype of a typical air cargo container was built to assess the technical feasibility and economic viability of creating such a container from fiber-reinforced polymer (FRP) composite materials. The paper is the authoritative source for the abstract.
2016-09-27
Technical Paper
2016-01-2142
Pavel Lykov PhD, Artem Leyvi, Rustam M. Baytimerov, Aleksei Doikin, Evgeny Safonov
Abstract The treatment of solid surface by powerful streams of charged particles accelerated with power density ≥106 W/cm2 widely used for modification of different materials properties. The fast enter of electron beam power in the material of target causes the flow intense thermal and deformation processes. The changing of the structure, the phase composition, the microrelief of treated surface consequently happens. It is often accompanied by the hardening and increase of the wearing properties. The work proposed of using low-energy high-current electron beam as finish treatment of product obtained by selective laser melting of heat-resistant nickel alloy EP648. The subject of research was the surface properties of the product.
2016-09-27
Technical Paper
2016-01-2136
Oliver Pecat, Tebbe Paulsen, Philipp Katthöfer, Ekkard Brinksmeier, Sascha Fangmann
Abstract Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
2016-09-27
Technical Paper
2016-01-2137
Simon Kothe, Sven Philipp von Stürmer, Hans Christian Schmidt, Christian Boehlmann, Jörg Wollnack, Wolfgang Hintze
Abstract Strong market growth, upcoming global competition and the impact of customer-requirements in aerospace industry demand for more productive, flexible and cost-effective machining systems. Industrial robots have already demonstrated their advantages in smart and efficient production in a wide field of applications and industries. However, their use for machining of structural aircraft components is still obstructed by the disadvantage of low absolute accuracy and adverse reaction to process loads. This publication demonstrates and investigates different methods for performance assessment and optimization of robot-based machining systems. For conventional Cartesian CNC machining systems several methods and guidelines for performance assessment and error identification are available. Due to the attributes of a common 6-axis-robot serial kinematics these methods of decoupled and separated analysis fail, especially concerning optimization of the system.
2016-09-27
Technical Paper
2016-01-2130
Enkhsaikhan Boldsaikhan, Shintaro fukada, Mitsuo Fujimoto, Kenichi Kamimuki, Hideki Okada, Brent Duncan, Phuonghanh Bui, Michael Yeshiambel, Brian Brown, Alan Handyside
Abstract The Refill Friction Spot Joining (RFSJ) is an emerging solid-state spot welding technology that thermo-mechanically creates a molecular-level bond between the work-pieces. RFSJ does not consume any filler or foreign materials so that no additional weight is introduced to the assembly. As the solid-to-liquid phase transition is not involved in RFSJ in general, there is no lack of fusion or material deterioration caused by liquefaction and solidification. Unlike the conventional friction stir spot welding, RFSJ produces a spot joint with a perfectly flush surface finish without a key or exit hole. Currently, the aerospace industry employs solid rivets for fastening the primary structures as they meet the baseline requirements and have well-established standards and specifications.
Viewing 181 to 1 of 1