Criteria

Text:
Topic:
Display:

Results

Viewing 151 to 136 of 136
2016-09-27
Technical Paper
2016-01-2108
Marc Fette, Kim Schwake, Jens Wulfsberg, Frank Neuhaus, Manila Brandt
Abstract The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
2016-09-27
Technical Paper
2016-01-2109
Michael Morgan, Caroline McClory, Colm Higgins, Yan Jin, Adrian Murphy
Aerospace structures are typically joined to form larger assemblies using screw lock or swage lock fasteners or rivets. Countersunk fasteners are used widely in the aerospace industry on flying surfaces to reduce excrescence drag and increase aircraft performance. These fasteners are typically installed to a nominal countersink value which leaves them flush to the surface before being locked into position. The Northern Ireland Technology Centre (NITC) at Queen’s University Belfast has developed and demonstrated two processes which enable high tolerance flush fastening of countersunk fasteners: The ‘Flush Install’ process produces countersunk holes based on the specific geometry of each individual fastener; The ‘Fettle Flush’ process accurately machines fasteners to match the surrounding surface. Flushness values well within the allowable tolerances have been demonstrated for both Flush Install and Fettle Flush processes.
2016-09-27
Technical Paper
2016-01-2110
Ilker Erdem, Peter Helgosson, Ashwin Gomes, Magnus Engstrom
Abstract The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. To meet this challenge, industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) - a European Union funded project with 31 partners - aims to address various aspects of aero-structure assembly with a special attention directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the assembly process. The developed solution constitutes the use of synchronized hexapods for the assembly of front spar to upper cover whereas another hexapod was developed to install a rib by using of a force feedback sensor.
2016-09-27
Technical Paper
2016-01-2113
Raphael Reinhold
Abstract Resin transfer molding (RTM) is gaining importance as a particularly economical manufacturing method for composites needed in the automotive and aerospace industries. With this method, the component is first shaped with dry fiber reinforcements in a so-called “preforming process” before the mold is placed in a RTM tool, injected with resin and cured. In recent years, Broetje-Automation has been developing innovative product solutions that are specially designed for these preforming processes and suitable for industrial use. For the first time ever, Broetje’s Composite Preforming Cell (CPC) makes large-quantity serial production of complex and near-net-shape preforms for composite components using this RTM process possible. With the additional integration of the patented 3D Composite Handling System Broetje impressively demonstrates its service and product portfolio in the area of innovative composite manufacturing technology and its know-how as a complete system integrator.
2016-09-27
Technical Paper
2016-01-2114
Matthias Meyer
Carbon composites have been on an odyssey within the past 15 years. Starting on the highest expectations regarding the performance, reality was hitting a lot of programs hard. Carbon composites were introduced on a very high technical level and industry has shown of being capable to handle those processes in general. In particular, production never sleeps and processes undergo a continuous change. Within these changes costs remain the most critical driver. As products are improving during their lifetime, they usually increase the degree of complexity, too. According to the normal cost improvement, this has drastic consequences for production. When setting up the first generation of composite production, the part being produced has been in the centre of attention.
2016-09-27
Technical Paper
2016-01-2117
Rustam M. Baytimerov, Pavel Lykov, Sergei Sapozhnikov, Dmitry Zherebtsov, Konstantin Bromer
Abstract The development of Additive Technologies (SLS/SLM, EBM, DMD) suggests the increase of range expansion of materials used. One of the most promising directions is products manufacturing from composite materials. The technology of composite micro-powders production on the basis of heat-resistant nickel alloy EP648 and Al2O3 is proposed. The aim of this research is to develop a method of producing composite micropowders for additive technology application. This method is based on modification of the metal micropowders surface by the second phase in a planetary mixer (mechanochemical synthesis).The obtained composite micropowders are compared with powders which are recommended for selective laser melting usage (produced by MTT Technology). The equipment used in the research: planetary mixer, scanning electron microscopy (SEM), optical granulomorphometer Occio 500nano.
2016-09-27
Technical Paper
2016-01-2123
Matthias Busch, Benedikt Faupel
Abstract The integration of omega stringers to panels made of carbon fiber reinforced plastic (CFRP) by adhesive bonding, which is achieved by baking in an autoclave, must be subject to high quality standards. Failures such as porosity, voids or inclusion must be detected safely to guaranty the functionality of the component. Therefore, an inspection system is required to verify these bonds and detect different kinds of defects. In this contribution, the advantages of a robotic inspection system, which will be achieved through continuous testing, will be introduced. The testing method is the active thermography. The active thermography has major advantages compared with other non-destructive testing methods. Compared to testing with ultrasonic there is no coupling medium necessary, thus testing will be significantly enhanced.
2016-09-27
Technical Paper
2016-01-2121
Pavel Lykov, Rustam M. Baytimerov, Artem Leyvi, Dmitry Zherebtsov, Alexey Shultc
Abstract The copper-nickel alloys are widely used in various industries. The adding of nickel significantly enhances mechanical properties, corrosion resistance and thermoelectric properties of copper. The technology was proposed of production of copper-nickel composite micro-powders by the gaseous deposition of nickel on the surface of copper powder. The vaporization of nickel was implemented by using magnetron. The relationship between mode of processing and the ratio of phases in the powder was investigated. The proposed method allows to modify the powder surface without deformation of the particles. The possibility of using of obtained composite powder in selective laser melting (SLM) was evaluated. It is assumed that the structure of the obtained composite material (SLM) will have inclusions of nickel and continuous chain of copper. This structure will have high mechanical properties and high electrical conductivity.
2016-09-27
Technical Paper
2016-01-2125
Henry Hameister
This paper presents an approach to how existing production systems can benefit from Industry 4.0 driven concepts. This attempt is based on a communication gateway and a cloud-based system, that hosts all algorithms and models to calculate a prediction of the tool wear. As an example we will show the Refill Friction Stir Spot Welding (RFSSW), a solid state joining technique, which is examined at the Institute of Production Engineering (LaFT) of the Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg, for years. RFSSW is a sub-section of friction welding, where a rotating tool that consists out of three parts is used to heat up material to a dough-like state. Since Refill Friction Stir Spot Welding produces a selective dot-shaped connection of overlapping materials, the production requirements are similar to riveting or resistance spot welding.
2016-09-27
Technical Paper
2016-01-2127
Sylvain Guerin, Sylvain da Costa
Abstract The recent contribution rise in 3D printing is rapidly changing the whole industry. In aeronautics, it has 2 major domains of growth: Aircraft parts Tooling and portable tools Aircraft parts in metallic 3D printing have been highly publicized in the media, although they represent only a tiny share of the aircraft cell in the short term. On the other hand, metallic (and non-metallic) 3D printing in tooling and tools can bring immediate advantages compared to traditional methods. The advantages: Design made directly for the final function Optimized for strength vs weight Weight reduction Reduction in number of parts Short cycle time from design to use Low cost for customization The drawbacks Limited in size We have already applied this new manufacturing technique to obtain real breakthroughs in portable tools.
2016-09-27
Technical Paper
2016-01-2129
Antonio Rubio, Luis Calleja, Javier Orive, Ángel Mújica, Asunción Rivero
Abstract Aluminum skin milling is a very challenging process due to the high quality requirements needed in the aeronautic and aerospace industries. Nowadays, on these markets, there are just two technological approaches able to face the manufacturing of this sort of wide thin blanks: chemical and mechanical milling by means of highly complex machines. Both solutions lead to a high investment requirement that affect directly on the application profitability on these industrial sectors. This paper presents a flexible machining system that allows milling skin shaped parts within required tolerances by means of an innovative universal holding fixture combined with an adaptive toolpath development. This flexible holding fixture can be adapted to the required shape and can hold uniformly the whole sheet surface. Besides, the solution includes an implementation that can adapt the machining toolpath by means of the skin thickness online measurement.
2016-09-27
Technical Paper
2016-01-2133
Carl Landau
Abstract Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
2016-09-27
Technical Paper
2016-01-2136
Oliver Pecat, Tebbe Paulsen, Philipp Katthöfer, Ekkard Brinksmeier, Sascha Fangmann
Abstract Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
2016-09-27
Technical Paper
2016-01-2142
Pavel Lykov PhD, Artem Leyvi, Rustam M. Baytimerov, Aleksei Doikin, Evgeny Safonov
Abstract The treatment of solid surface by powerful streams of charged particles accelerated with power density ≥106 W/cm2 widely used for modification of different materials properties. The fast enter of electron beam power in the material of target causes the flow intense thermal and deformation processes. The changing of the structure, the phase composition, the microrelief of treated surface consequently happens. It is often accompanied by the hardening and increase of the wearing properties. The work proposed of using low-energy high-current electron beam as finish treatment of product obtained by selective laser melting of heat-resistant nickel alloy EP648. The subject of research was the surface properties of the product.
2016-09-27
Technical Paper
2016-01-2098
Christophe Vandaele, Didier Friot, Simon Marry, Etienne Gueydon
Abstract With more than 10 000 aircrafts in their order backlog Aircraft manufacturers focus on automated assembly is of critical importance for the future of efficient production assembly. Moreover to obtain maximum benefit from automation, it is necessary to achieve not only an automated assembly cell, but also a real breakthrough in fastener technology. The optimum solution, known as “One Side Assembly”, performs the whole assembly sequence from one side of the structure using an accurate robot arm equipped with a multifunction end effector and high performance fasteners. This configuration provides an efficient and flexible automated installation process, superior to current solutions which are typically, large scale, capital intensive systems, which still require operators to complete or control the fastener installation. The search for a technological breakthrough in this domain has been targeted for more than 15 years by many aircraft manufacturers.
2016-09-27
Technical Paper
2016-01-2124
Sara Nilsson, Jonas Jensen, Mats Björkman, Erik Sundin
Abstract Carbon fiber-reinforced plastic (CFRP) is one of the most commonly used materials in the aerospace industry today. CFRP in pre-impregnated form is an anisotropic material whose properties can be controlled to a high level by the designer. Sometimes, these properties make the material hard to predict with regards to how the geometry affects manufacturing aspects. This paper describes eleven design rules originating from different guidelines that describe geometrical design choices and deals with manufacturability problems that are connected to them, why they are connected and how they can be minimized or avoided. Examples of design choices dealt with in the rules include double curvature shapes, assembly of uncured CFRP components and access for non-destructive testing (NDT). To verify the technical content and ensure practicability, the rules were developed by, inter alia, studying literature and performing case studies at SAAB Aerostructures.
2016-09-27
Technical Paper
2016-01-2083
Steven P. Smith
Abstract This paper traces the development of a temporary blind fastener in the aircraft industry. These are used with automated drilling machines as part of an integrated assembly process where one-way assembly is inappropriate. Traditional blind temporary fasteners have a high protrusion (stand-off) on the side they are installed from, effectively preventing automated drilling. No suitable fastener was available on the market and existing suppliers were uninterested in development at the time. A set of requirements were created out of the need to improve efficiency of A380 wing assembly. However focus changed as the A350XWB programme demanded such a fastener. Testing, development and Stress approval are described leading to full deployment. Finally the paper looks at the additional factors which are required to successfully introduce a new standard of temporary fastening process.
2016-09-27
Technical Paper
2016-01-2111
Juan Carlos Antolin-Urbaneja, Juan Livinalli, Mildred Puerto, Mikel Liceaga, Antonio Rubio, Angel San-Roman, Igor Goenaga
Abstract Gaps in composite structures are a risky factor in aeronautical assemblies. For mechanically joined composite components, the geometrical conformance of the part can be problematic due to undesired or unknown re-distribution of loads within a composite component, with these unknowns being potentially destructive. To prevent unnecessary preloading of a metallic structure, and the possibility of cracking and delamination in a composite structure, it is important to measure all gaps and then shim any gaps greater than 127 microns. A strategy to overcome the high relative tolerances for assemblies lies in the automated manufacturing of shims for the gaps previously predicted through the evaluation of their volumes via a simulation tool. This paper deals with the development of a special end-effector prototype to enable the shimming of gaps in composites structures using a pre-processed geometry.
2016-09-27
Technical Paper
2016-01-2101
Burak Deger, Fazli Melemez, Aykut Kibar lng
Abstract A hybrid drilling process of multi material stacks with one shot drilling recently emerge as an economical and time efficient method in aerospace industry. Even though the comprehensive experience and knowledge is available for the cutting parameters of composites and metals alone, significant gap exist for the hybrid drilling parameters. Determination of these parameters such as feed rate, spindle speed and pecking depth has vital importance so as to provide a robust and optimal process to ensure dimensionally high quality, burr and delamination free holes. Main challenge of hybrid drilling operation is to obtain required hole diameter with adequate homogeneity and repeatability. In this study, effect of cutting parameters on dimensional hole quality was investigated. In addition to the hole diameter tolerances, CFRP hole enlargement phenomena which is encountered as a specific drawback of metal-exit stack configurations is also addressed within the scope of this study.
2016-09-27
Technical Paper
2016-01-2130
Enkhsaikhan Boldsaikhan, Shintaro fukada, Mitsuo Fujimoto, Kenichi Kamimuki, Hideki Okada, Brent Duncan, Phuonghanh Bui, Michael Yeshiambel, Brian Brown, Alan Handyside
Abstract The Refill Friction Spot Joining (RFSJ) is an emerging solid-state spot welding technology that thermo-mechanically creates a molecular-level bond between the work-pieces. RFSJ does not consume any filler or foreign materials so that no additional weight is introduced to the assembly. As the solid-to-liquid phase transition is not involved in RFSJ in general, there is no lack of fusion or material deterioration caused by liquefaction and solidification. Unlike the conventional friction stir spot welding, RFSJ produces a spot joint with a perfectly flush surface finish without a key or exit hole. Currently, the aerospace industry employs solid rivets for fastening the primary structures as they meet the baseline requirements and have well-established standards and specifications.
2016-09-27
Technical Paper
2016-01-8128
Vladimir G. Shevtsov, Alexandr Lavrov, Zahid A. Godzhaev, Valentin M. Kryazhkov, Gennagy S. Gurulev
Abstract The objective of this study is to identify the most popular agricultural tractor models in Russia by their engine ratings and countries of origin. This review presents an analysis of changes in the composition of engine-ratings and sales volume of agricultural tractors in the Russian market between 2008 and 2014. Including knock-down kits, the countries of origin are Russia, the CIS-countries and non-CIS Countries. The variety of manufacturers, highlight the leading international companies which have supplied up to 200 units is discussed. The papers shows that CIS-manufactured tractors represent the greatest number in the market - up to 57 per cent, tractors from non-CIS countries occupy up to 12 per cent of the market, and the number of Russian models is quite limited - 3.0 per cent in 2012 and 3.4 per cent in 2014.
2016-09-27
Technical Paper
2016-01-2128
Henry Guo, Farid Ahdad, DeDong Xie
Abstract In this work we have proposed an interesting clamping solution of V-band which has an important industrial impact by reducing the cost and assembly process as well compare to the traditional V-band. The design what we are focusing for is applied for all size of turbochargers which helps to connect the hot components such as manifold and turbine housing. The cost for V-band is mainly from T-bolt. It is made from special stainless steel which represents 50% of the total cost. In this work it is proposed a new V-band joint by changing bolt clamping status from tension to compression. From tension to compression we change the bolt material from high cost steel to low cost steel. The new total cost is reduced by 40%. The prototype is made and performed in static tests including anti-rotating torque test and salt spray test. The new joint meets the design requirements at static condition. Further work will focus on the dynamic qualification and at high temperature as well.
2016-09-27
Journal Article
2016-01-2139
Hendrik Susemihl, Christian Moeller, Simon Kothe, Hans Christian Schmidt, Nihar Shah, Christoph Brillinger, Jörg Wollnack, Wolfgang Hintze
Abstract A mobile robotic system is presented as a new approach for machining applications of large aircraft components. Huge and heavy workshop machines are commonly used for components with large dimensions. The system presented in this paper consists of a standard serial robot kinematics and a mobile platform as well as a stereo camera system for optical measurements. Investigations of the entire system show that the mechanical design of the mobile platform has no significant influence on the machining accuracy. With mobile machines referencing becomes an important issue. This paper introduces an optical method for determining the position of the mobile platform in relation to the component and shows its accuracy limits. Furthermore, a method for increasing the absolute accuracy of the robots end-effector with help of stereo camera vision is presented.
2016-09-27
Journal Article
2016-01-2119
Gergis W. William, Samir N. Shoukry, Jacky C. Prucz, Mariana M. William
Abstract Air cargo containers are used to load freight on various types of aircrafts to expedite their handling. Fuel cost is the largest contributor to the total cost of ownership of an air cargo container. Therefore, a better fuel economy could be achieved by reducing the weight of such containers. This paper aims at developing innovative, lightweight design concepts for air cargo containers that would allow for weight reduction in the air cargo transportation industry. For this purpose, innovative design and assembly concepts of lightweight design configurations of air cargo containers have been developed through the applications of lightweight composites. A scaled model prototype of a typical air cargo container was built to assess the technical feasibility and economic viability of creating such a container from fiber-reinforced polymer (FRP) composite materials. The paper is the authoritative source for the abstract.
2016-09-27
Journal Article
2016-01-2082
Ralf Schomaker, Björn Knickrehm, Jürgen Langediers
Abstract In the frame of incremental product improvement, AIRBUS has developed and implemented a new innovative rapid decompression / pressure relieve concept for the cargo compartment area. The core change lays with detaching the complete cargo lining panels from the substructure in case of a rapid decompression in the cargo area instead of using dedicated blow in panels. In that way, pressure equilibrium can be achieved by air flow through the opened areas around the cargo lining panels rather than through specific blow out / blow in venting areas. The key for this is a self-detaching fastener AIRBUS has developed in an outstanding cooperation with ARCONIC Fastening Systems & Rings (former Alcoa Fastening Systems & Rings) in Kelkheim, Germany. These fasteners are installed to keep the cargo lining panels in place and tight against smoke in case of fire which is one of the main purposes for their use.
2016-09-27
Journal Article
2016-01-2080
Carter L. Boad, Kevin Brandenstein
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
2016-09-27
Journal Article
2016-01-2116
Peter Mueller-Hummel
Abstract Drilling holes into metal with MQL (Minimal Quantity Lubrication) is a normal procedure, because the drill is designed for drilling metal and the malleable capability of the metal compensates for the insufficient cutting capability of a worn out drill. Drilling composite materials using the same drill (designed for drilling metal) is a different procedure, because composite fibers are not malleable like metal at all. Due to this fact the tools become very hot trying to forge composite fibers like metal. The elastic behavior of the composite and the delamination inside the hole makes the tool temporary smaller than the diameter of the drill. The hole in the metal part of the stack remains slightly larger due to the heat and the thermal expansion rate. This paper shows how to drill metal and composite with the same diameter, so that achieving H8 quality is no longer a dream.
2016-09-27
Journal Article
2016-01-2118
Patrick Land, Luis De Sousa, Svetan Ratchev, David Branson, Harvey Brookes, Jon Wright
Abstract With increased demand for composite materials in the aerospace sector there is a requirement for the development of manufacturing processes that enable larger and more complex geometries, whilst ensuring that the functionality and specific properties of the component are maintained. To achieve this, methods such as thermal roll forming are being considered. This method is relatively new to composite forming in the aerospace field, and as such there are currently issues with the formation of part defects during manufacture. Previous work has shown that precise control of the force applied to the composite surface during forming has the potential to prevent the formation of wrinkle defects. In this paper the development of various control strategies that can robustly adapt to different complex geometries are presented and compared within simulated and small scale experimental environments, on varying surface profiles.
2016-09-27
Journal Article
2016-01-2120
David Judt, Kevin Forster, Helen Lockett, Craig Lawson, Philip Webb
Abstract In the civil aircraft industry there is a continuous drive to increase the aircraft production rate, particularly for single aisle aircraft where there is a large backlog of orders. One of the bottlenecks is the wing assembly process which is largely manual due to the complexity of the task and the limited accessibility. The presented work describes a general wing build approach for both structure and systems equipping operations. A modified build philosophy is then proposed, concerned with large component pre-equipping, such as skins, spars or ribs. The approach benefits from an offloading of the systems equipping phase and allowing for higher flexibility to organize the pre-equipping stations as separate entities from the overall production line. Its application is presented in the context of an industrial project focused on selecting feasible system candidates for a fixed wing design, based on assembly consideration risks for tooling, interference and access.
2016-09-27
Journal Article
2016-01-2081
Rodrigo Pinheiro, Robert Gurrola, Sead Dzebo
Abstract The installation of common threaded aerospace fasteners by the application of a torque to a nut or collar is made possible by an internal wrenching element or recess feature adapted to the threaded end of a pin, which accepts a mating anti-rotation key designed to partially balance the applied torque. In applications such as the mechanical joining of composite structures accomplished by wet clearance fit installations of permanent fasteners, high nut or collar seating torques not adequately opposed by frictional resistance at the contact surfaces of the fastener and joint members effectively shift a greater proportion of the torque reaction requirement onto the recess and mating anti-rotation key which in turn can experience high torsional stresses exceeding their design capability and result in frequent service failures.
Viewing 151 to 136 of 136