Criteria

Text:
Topic:
Display:

Results

Viewing 121 to 150 of 8952
2016-10-25
Technical Paper
2016-36-0230
Guilherme Canuto da Silva, Paulo Carlos Kaminski
Abstract Automotive industries are undergoing a transformation of their manufacturing systems. Called by the German government as Industrie 4.0, this transformation is based on the evolution of traditional Embedded Systems-ES to Cyber-Physical Systems-CPS. In the next years such evolution will have to reach transitory stages, where ES and CPS should coexist for a determined period of time (ES-CPS). Based on this projection, this work compares ES with CPS, identifies the main differences between these systems and thus forms a transitory stage of automotive manufacturing for the next years. The work is structured as follows: Introduction section places the reader on the treated subject and presents the methodology of the work. Later, Industrie 4.0, Embedded Systems (ES) and Cyber-Physical systems (CPS) are defined. Once this is done, the analysis of ES-CPS transition is finished. Analysis results are presented and a representation of ES-CPS transition is proposed.
2016-10-25
Technical Paper
2016-36-0224
Carla Lima, Filipe Andrade, Cristina Kawakami, Cristiane Gonçalves, Walmir Peraro
Abstract The microcellular foam injection molding process is being widely applied by the thermoplastics industry. This process consists in a melted polymer injection mixed with a processing solvent, that is an inert gas in the supercritical state, usually CO2 or N2 producing a microcellular foam. This technique offers many advantages such as weight reduction, dimensional uniformization and less warpage. Besides that, it offers a satisfactory property like acoustic and thermal insulation. On the other hand, the parts from this process have an inferior mechanical property like ductility and toughness if compared with solid injection molded parts. Nevertheless, the main issue for this process is the poor appearance quality. This paper presents a review of some existing methods for surface quality improvement as Co-injection process, where a skin is injected over the microcellular part, and Heat & Cool that consists in a control of mold temperature.
2016-10-25
Technical Paper
2016-36-0235
Juliana Lima da Silva Lopes, Cleber Albert Moreira Marques, Genildo de Moura Vasconcelos, Rafael Barreto Vieira, Flavio Fabricio Ventura de Melo Ferreira, Marcelo Henrique Souza Bomfim
Abstract This paper approaches the use of machine vision as an automation tool for verification tests in automotive Instrument Panel Cluster (IPC). A computer integrated with PXI modular instruments, machine vision software and Integrated Development Environment (IDE) composes the test system. The IPC is verified in closed-loop using the Hardware-in-the-Loop (HiL) technique in which the HiL system simulates all Electronic Control Units (ECUs) that interact with the IPC. Every simulated ECUs signals are sent to the IPC over CAN (Controller Area Network) bus or hardwired I/O using PXI modules integrated with IDE and its responses are captured by cameras. Using machine vision such images are subjected to Digital Image Processing (DIP) techniques as pattern matching, edge detection and Optical Character Recognition (OCR), which can be applied to interpret speedometer, tachometer, fuel gauges, display and warning lights.
2016-10-25
Technical Paper
2016-36-0149
Edinilson Alves Costa
Abstract Mainly in the last 30 years so much research has been done on Fe-based calculation of seam welded thin-sheet structures fatigue life. However, available prediction methods have been developed for a limited range of geometries under ideal load conditions. Extrapolating to complex real world geometries and load conditions such those resultant from, for example, ground vehicles dislocation over rough surfaces, are least documented. One example of the application of seam welded thin-sheet structures in the ground vehicle industry is the powertrain installation bracketry. Such brackets are subject to variable amplitude loading sourced from powertrain and road surface irregularities and their fatigue strength is tightly dependent on the strength of their joints. In this paper, a FE-based force/moment method has been used for numerically predicting fatigue life of powertrain installation bracketry of a commercial truck submitted to variable amplitude loading.
2016-10-25
Technical Paper
2016-36-0159
Mauro Iurk Rocha, Ivna Oliveira da Cruz, Maria Clara Kremer Faller, Antônio Carlos Scardini Villela, Sergio Roberto Amaral, Frederico Braz Silva, Sillas Oliva Filho
Abstract Vehicles manufacturers, in search of cost reduction, fill the tanks of recently manufactured vehicles with the least volume of fuel necessary for future commercialization. The adoption of such practice, depending on the diesel fuel storage conditions, may lead to oxidation products formation in the fuel system and to problems during the first start of these vehicles. Some vehicles manufacturers, trying to minimize the occurrence of these problems, replace the diesel fuel in the vehicle tank with new fuel when vehicle storage time reaches 90 days. As a result of such occurrences, the opportunity for a first fill diesel fuel development, that presented better oxidation stability during storage, was identified.
2016-10-25
Technical Paper
2016-36-0169
Emilio C. Baraldi, Paulo Carlos Kaminski
Abstract The competition among automotive industries increases each year worldwide. Among their diverse needs, what can be highlighted are: market expansion, model diversification, competitive prices, customer-recognized quality, new products release in shorter time periods, among others. The occurrence of flaws that might compromise the health or safety of the product’s user is admittedly one of the largest issues for any manufacturer, especially if these flaws are identified after its commercialization (recall). In this work, a study on recall in the automotive industry in the Brazilian market will be presented, comprising the years of 2013 and 2014. Reasons and causes of recall are addressed, based on the sample of the aforementioned research, with special emphasis on flaws derived from the production process. The conclusion at the end of the work is that the final assembly in the automotive manufacturing process is what requires more attention from engineering area.
2016-10-25
Technical Paper
2016-36-0171
Leandro Brasil Araujo, Juliano Tessaro, Renan Sardim
Abstract Due to financial global crisis started in 2008 and intensified in the past years in Brazil, the maintenance of a good company’s financial situation is a big challenge and it is more relevant in actual moment. Because of expected turbulent scenario for the next years, it is necessary to adopt strategies to mitigate risks that involve Supply Chain impacting industrial production. In this way, it is crucial adopt strategies and actions that assist to evaluate the performance of suppliers and its associate potential financial risk, what can be considered a companies’ success differential factor during crisis period as well. In this scenario, MWM Motores Diesel adopts an internal process of monitoring the risk of suppliers based on internally developed tools and others available at market.
2016-10-25
Technical Paper
2016-36-0303
Frederico Fernandes Reis, Valdir Furlanetto, Gilmar Ferreira Batalha
Abstract To highlight the importance of resistance spot weld in the automotive industry, it's important know that a vehicle has on average 4,000 welding spots [BROWN; SCHWABER 2000] and based on worldwide vehicle production in 2015 with 90.78 million vehicles produced [OICA, 2015], were performed more than 363 billion welding spots. The number of machines in manual and automatic workstations (robots), based on 20 points by equipment and production of 45 vehicles / hour add up more than 20 million of welding machines in all over world. According new production lines are being introduced using the adaptive dynamic resistance control the welding constant current control are being replaced, so understand this technology and know implement it with efficiency needs a deep knowledge in how dynamic resistance works and correlate his behavior with the problems that causes failures in welding, so is necessary give for the welding engineers this knowledge.
2016-10-25
Technical Paper
2016-36-0515
Ana Carolina Rodrigues Teixeira, José Ricardo Sodré, Lilian Lefol Nani Guarieiro, Erika Durão Vieira, Fabiano Ferreira de Medeiros, Carine Tondo Alves
Abstract In a scenario with growing population, increasing demand for energy and volatile prices of fossil fuel, there is a high incentive for the use of biofuels, especially those produced from waste material. In this context, second and third generation bioethanol (2G/3G) are interesting alternatives, as they can be produced from different raw material such as corn and rice straw, sugarcane bagasse, waste from pulp industry and microalgae. This paper presents an overview of the available technologies for both 2G and 3G bioethanol production, including lignocellulosic biomass feedstock, biocatalysts and cogeneration processes.
2016-10-25
Technical Paper
2016-36-0511
Wilcker Neuwald Schinestzki, Daniel Gustavo Schreiner, Carlos Eduardo Guex Falcão
Abstract The drag reduction system, commonly used in Formula 1, has as task to reduce the drag force that acts in the vehicle’s airfoils, increasing considerably its speed. When it comes to Formula SAE competition, since the speeds are lower than in F1, the purpose of the DRS can easily become the cooling, despite its name. This paper comes to the development of a drag reduction system applied to the frontal wing whose major objective is to increase the mass flow rate of air through the radiator. Based on a preliminary work supported by computational fluid dynamics, a frontal wing DRS can increase the mass flow rate in approximately 65% at an average velocity of 12 meters per second, which allows the team to use a smaller and lightweight radiator. The challenge was to design a lightweight and reliable automatic system, since it cannot fail nor take away the driver’s attention.
2016-10-25
Technical Paper
2016-36-0370
André Baroni Selim, Bruno Aquino de Lyra
Abstract This work aims to demonstrate a cooling package selection for an agricultural machine equipped with Diesel engine considering different radiators area / material and fan blade angles, pursuing the best match of performance, cost and weight. It was investigated two types of radiators made from copper-brass and aluminum, two types of charge air cooler varying the dimensions and four types of fans varying the blade angle. The selection method chosen was the experimental testing. The tests were performed according to the standard SAE and internal procedures at MWM Motores Diesel laboratories located at São Paulo / Brazil. When compared with cooper-brass, the aluminum radiator presents worse heat exchange performance what makes its size increase in order to compensate the gap. Even with bigger size, the aluminum radiator keeps lighter and cheaper.
2016-10-25
Technical Paper
2016-36-0372
Bahr Rogerio, Weller Tiago
Abstract The product development process in the automotive industry is constantly subject to several studies focused on trying to minimize the costs and reduce the time to product. However, it can be said that there's very little focus on the opportunity that lays in the CAD Automation possibilities through the use of a method called Knowledge Based Engineering (KBE), which consists in its core essence on the reuse of knowledge gained during previous projects, as well as a set of best design practices, applied through automation methods and artificial intelligence in the CAD models. The CAD process automation could represent a significant reduction in the project hours in the automotive product development, mainly because the processes related to it are well defined and structured. Besides that, new automotive products are usually predictable and systemic, allowing room for an efficient CAD automation.
2016-10-25
Technical Paper
2016-36-0360
Lucas Pintol Nishikawa, André Caetano Melado, Hélio Goldenstein, Luiz Felipe Bauri, Dinecio dos Santos Filho, Eduardo Nunes
Abstract The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
2016-10-25
Technical Paper
2016-36-0406
Rafael Aguera Rezeno da Silva, Alex de Souza Rodrigues, José Elias Tomazini, Marcelo Sampaio Martins, Kauê Cruz Silva, Michele Santos
Abstract Connecting rod joint optimization is a well-known design procedure used for new cranktrains, not only for truck applications, but also for passenger cars. Big end bolted joint is one of the most critical connecting rods regions under engine operation, especially due to joint opening phenomenon and consequent engine failure. Thus, in order to have a robust design, it is usually applied safety factors to absorb this design margin. However, due to the continuous increase of engine loads to attend different emission regulations, this design condition became a vital parameter for connecting rods. thyssenkrupp developed a joint evaluation methodology to be applied during conrod design, presenting better accuracy when compared to the standard development procedure, the VDI 2230 part 1, thus leading to better performance for real engine application. This approach combines the VDI design algorithm with a simple and fast finite element model for force and moment extraction.
2016-09-27
Technical Paper
2016-01-2079
Alexander Janssen, Thorsten Dillhoefer
The industry wide requirement of new highly flexible automated fastening systems in aircraft production has created the need for developing new fastening systems. This paper will focus on the development of the Frame Riveting Assembly Cell (FRAC) by BROETJE-Automation to meet this need. The new FRAC machine configuration is built for automated drilling and fastening of different aircraft type parts. It is highly flexible with a high speed positioning system mounted multifunction end effector. System travel is limited only by installed track length. The FRAC integrates well with conventional and reconfigurable automated fastening work holding tools.
2016-09-27
Journal Article
2016-01-2080
Carter L. Boad, Kevin Brandenstein
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
2016-09-27
Journal Article
2016-01-2082
Ralf Schomaker, Björn Knickrehm, Jürgen Langediers
Abstract In the frame of incremental product improvement, AIRBUS has developed and implemented a new innovative rapid decompression / pressure relieve concept for the cargo compartment area. The core change lays with detaching the complete cargo lining panels from the substructure in case of a rapid decompression in the cargo area instead of using dedicated blow in panels. In that way, pressure equilibrium can be achieved by air flow through the opened areas around the cargo lining panels rather than through specific blow out / blow in venting areas. The key for this is a self-detaching fastener AIRBUS has developed in an outstanding cooperation with ARCONIC Fastening Systems & Rings (former Alcoa Fastening Systems & Rings) in Kelkheim, Germany. These fasteners are installed to keep the cargo lining panels in place and tight against smoke in case of fire which is one of the main purposes for their use.
2016-09-27
Journal Article
2016-01-2081
Rodrigo Pinheiro, Robert Gurrola, Sead Dzebo
Abstract The installation of common threaded aerospace fasteners by the application of a torque to a nut or collar is made possible by an internal wrenching element or recess feature adapted to the threaded end of a pin, which accepts a mating anti-rotation key designed to partially balance the applied torque. In applications such as the mechanical joining of composite structures accomplished by wet clearance fit installations of permanent fasteners, high nut or collar seating torques not adequately opposed by frictional resistance at the contact surfaces of the fastener and joint members effectively shift a greater proportion of the torque reaction requirement onto the recess and mating anti-rotation key which in turn can experience high torsional stresses exceeding their design capability and result in frequent service failures.
2016-09-27
Technical Paper
2016-01-2078
Torsten Logemann
The demand of flexible and cost-efficient solutions for automated fastening systems inspired us, the BROETJE-Automation, to develop the robot and end-effector technology to fulfil the customer’s requirement for a highly accurate, automated robot based drill and fastening system for an aerospace application. This paper describes an innovative mobile robot platform for multiple uses in aviation industry. The base platform will be equipped with suitable modular units to meet the requirements of each customer exactly. The required absolute positioning accuracy is reached by using a special compensation package for the robot that was developed by BROETJE Automation. Several aircraft manufacturers are operating with this mobile cell works on single aisle and twin aisle programs. This solution demonstrates how standard robots equipped with a mature compensation method resulted in a highly flexible and cost-efficient light weight automation response.
2016-09-27
Technical Paper
2016-01-2077
Fatih Burak Sahin, Hans-Juergen Borchers, Cagatay Ucar
Abstract CFRP has been widely used in aerospace industries because of its high strength-to-weight ratio. However, drilling CFRP laminates is difficult due to the highly abrasive nature of the carbon fibers and low thermal conductivity of CFRP. Therefore for the manufacturers it is a challenge to drill CFRP materials without causing any delamination within the high quality requirements while also considering the costs of the process. This paper will discuss the process of drilling CFRP-Al stack ups within tight tolerances using a seven axis drilling robot. All components required for drilling are integrated in the drill end-effector. The pressure foot is extended in order to clamp the work piece, and then holes are drilled. The drilling process has four steps: moving to the fast approach level, controlled drill feed, countersink depth reach and drill retract. The cutter diameter range chosen for this paper is Ø 4.0 mm and Ø 7.9 mm.
2016-09-27
Technical Paper
2016-01-2101
Burak Deger, Fazli Melemez, Aykut Kibar lng
Abstract A hybrid drilling process of multi material stacks with one shot drilling recently emerge as an economical and time efficient method in aerospace industry. Even though the comprehensive experience and knowledge is available for the cutting parameters of composites and metals alone, significant gap exist for the hybrid drilling parameters. Determination of these parameters such as feed rate, spindle speed and pecking depth has vital importance so as to provide a robust and optimal process to ensure dimensionally high quality, burr and delamination free holes. Main challenge of hybrid drilling operation is to obtain required hole diameter with adequate homogeneity and repeatability. In this study, effect of cutting parameters on dimensional hole quality was investigated. In addition to the hole diameter tolerances, CFRP hole enlargement phenomena which is encountered as a specific drawback of metal-exit stack configurations is also addressed within the scope of this study.
2016-09-27
Technical Paper
2016-01-2099
Peter Mueller-Hummel, Thomas Langhorst
Abstract On CNC Machines, drilling holes under perfect condition is possible. For drilling holes into titanium, composite and aluminum stacked materials the specific cutting condition can be selected. Furthermore surrounding conditions such as peck cycle, MQL and force and torque monitoring can be easily adapted. When drilling holes in the final assembly, CNC machine tools cannot be employed due to sizes and accessibility. Power Feed Units or Automated Drill Units ADUs are very handy, flexible and depending upon the jig extremely rigid. Whenever a machine tool does not fit, ADUs are highly recommended. In comparison to machine tools, conventional pneumatic ADUs can be used with one fixed set of feed, speed and micro peck only. Due to that a compromise in cutting condition has to be chosen in drilling stacked material with different layers.
2016-09-27
Technical Paper
2016-01-2104
Robert Flynn, Kevin Payton-Stewart, Patrick Brewer, Ryan W. Davidge
Abstract Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
2016-09-27
Technical Paper
2016-01-2096
Simon Schnieders, Dirk Eickhorst
Abstract Drilling of high-strength titan material and composites in combination creates complex challenges in order to achieve required productivity and quality. Long spiral chips are characteristically for the titan drilling process, which leads to e.g. chip accumulation, high thermomechanical load, surface damages and excessive tool wear. The basic approach is the substitution of today’s peck drilling as current solution to this problem and the implementation of a vibration assisted drilling, so called micro-peck-drilling-process, to generate a kinematic chip breakage in a significant more efficient way. To meet perfectly the requirements regarding rates, quality and automation level, Broetje-Automation as system integrator has investigated and developed the implementation of different alternative high-performance systems and methods to approach the optimal oscillation movement of the tool.
2016-09-27
Technical Paper
2016-01-2103
Eric Barton
This technical paper details an optimized Drivmatic machine design delivered to a Tier 1 aero structure supplier to automate drilling and installation of rivets, hi-loks, lockbolts & swage collars for individual fuselage panel assemblies with high throughput & strict quality requirements. While certain robot solutions continue to be explored for specific applications at many Tier 1 aero structure suppliers, robot payload capacity has limitations beyond certain criteria, which often times point towards an alternative machine design as in this case study. A typical approach for adding more automation is to allocate shop floor space based on the solution’s foot print, however contrary to most approaches this solution had to be designed to fit within a pre-determined factory footprint over a geographic location with a high water table that would not permit a foundation.
2016-09-27
Technical Paper
2016-01-2095
Agata Suwala, Lucy Agyepong, Andrew Silcox
Abstract Reduction of overall drag to improve aircraft performance has always been one of the goals for aircraft manufacturers. One of the key contributors to decreasing drag is achieving laminar flow on a large proportion of the wing. Laminar flow requires parts to be manufactured and assembled within tighter tolerance bands than current build processes. Drilling of aircraft wings to the tolerances demanded by laminar flow requires machines with the stiffness and accuracy of a CNC machine while having the flexibility and envelope of an articulated arm. This paper describes the development and evaluation of high accuracy automated processes to enable the assembly of a one-off innovative laminar flow wing concept. This project is a continuation of a previously published SAE paper related to the development of advanced thermally stable and lightweight assembly fixture required to maintain laminar flow tolerances.
2016-09-27
Technical Paper
2016-01-2098
Christophe Vandaele, Didier Friot, Simon Marry, Etienne Gueydon
Abstract With more than 10 000 aircrafts in their order backlog Aircraft manufacturers focus on automated assembly is of critical importance for the future of efficient production assembly. Moreover to obtain maximum benefit from automation, it is necessary to achieve not only an automated assembly cell, but also a real breakthrough in fastener technology. The optimum solution, known as “One Side Assembly”, performs the whole assembly sequence from one side of the structure using an accurate robot arm equipped with a multifunction end effector and high performance fasteners. This configuration provides an efficient and flexible automated installation process, superior to current solutions which are typically, large scale, capital intensive systems, which still require operators to complete or control the fastener installation. The search for a technological breakthrough in this domain has been targeted for more than 15 years by many aircraft manufacturers.
2016-09-27
Technical Paper
2016-01-2090
Sergey Lupuleac, Margarita Petukhova, Julia Shinder, Alexander Smirnov, Mariia Stefanova, Nadezhda Zaitseva, Tatiana Pogarskaia, Elodie Bonhomme
Abstract The paper is devoted to description of features and functionalities of special software complex aimed at global simulation of junction process using efficient numerical algorithms. The paper presents the concept of developed software and its structure. Types of problems, which the complex is applicable for, are enumerated.
2016-09-27
Technical Paper
2016-01-2097
Sylvain Laporte, Cosme De Castelbajac, Mathieu Ladonne
Abstract The Vibration Assisted Drilling (VAD) process has been implemented in Automated Drilling Equipment (ADE) on an industrial scale since 2011. Today more than 11000 ADEs are currently used on aircraft assembly lines. As well as drawing up a short report on the use of this new process, the authors make an assessment on new challenges that VAD has to face up. Indeed production rates are increasing and ADE manufacturers improve their technologies, one of the most recent and major development concerning the electrical motorization of the machines. These evolutions are as many opportunities for the VAD provided you have a clever understanding as well as an expert knowledge of the process. Thus the authors propose a new dynamic model of the whole VAD system which integrates the behavior of the part, cutting tool/material pair and the machine. The confrontation of model results and experimental validation tests demonstrates the relevance of the works.
2016-09-27
Technical Paper
2016-01-2089
Jose Guerra cEng, Miguel Angel Castillo
Abstract Aernnova experience on automatic drilling operations started in 1,999. The company signed a new contract with Embraer, to design, manufacture and assembly several structures of the model 170. It was big news for the company. But after that minute of pride, manufacturing engineering people of the company started to think about the process to assemble those big panels of the Horizontal Stabilizer, Vertical Stabilizer and Rear Fuselages in the best Quality and Cost. There were a lot of rows of rivets to install. Some ideas arisen, but the final decision was to forget the available processes at that time and think about to automate the drilling, countersink and riveting of the stringers, doublers and window frames to the panels. There were a lot of doubts, figures to do and obstacles, but the company took the decision of going ahead with that process. That step changed the state of the art at that time in the company.
Viewing 121 to 150 of 8952