Criteria

Text:
Topic:
Display:

Results

Viewing 91 to 120 of 8952
2017-03-28
Journal Article
2017-01-0400
Theo Rickert
Abstract Hole drilling is a very common technique for measuring residual stresses. Adding an orbiting motion of the drill was found to improve hole quality in difficult to drill materials and has been in practice for decades. This study compares measurements using various orbiting amounts. Each measurement was repeated twice to evaluate measurement statistics. There is a distinct, though relatively small, effect of the hole shape when no orbiting is used. It disappears already when the hole is 50% larger than the tool size. Different orbiting amounts also produce systematically different results. These may be related to the absolute hole size.
2017-03-28
Journal Article
2017-01-0452
David A. Stephenson
Abstract Thermally sprayed engine bores require surface preparation prior to coating to ensure adequate adhesion. Mechanical roughening methods produce repeatable surfaces with high adhesion strength and are attractive for high volume production. The currently available mechanical roughening methods are finish boring based processes which require diameter-specific tooling and significant clearance at the bottom of the bore for tool overtravel and retraction. This paper describes a new mechanical roughening method based on circular interpolation. This method uses two tools: a peripheral milling tool, which cuts a series of concentric grooves in the bore wall through interpolation, and a second rotary tool which deforms the grooves to produce an undercut. This method produces equivalent or higher bond strength than current surface preparation methods, and does not require diameter-specific tooling or bottom clearance for tool retraction.
2017-03-28
Journal Article
2017-01-0478
Pai-Chen Lin, WeiNing Chen
Abstract Fatigue analysis of swept friction stir clinch (Swept-FSC) joints between 6061-T6 aluminum (Al) and S45C steel (Fe) sheets was conducted through experimental approaches. Before fatigue tests, a parametric study for the probe geometry of FSC tools was conducted in order to eliminate the hook structure inside the joint and improve the mechanical performance of the joint. Then a series of quasi-static and fatigue tests for Al/Fe Swept-FSC joints in lap-shear (LP) and cross-tension (CT) specimens were conducted. The fatigue data were recorded. The fatigue behavior of Al/Fe Swept-FSC joints in LP and CT specimens were examined through optical and scanning electron microscopes. Experimental results indicated that LP specimens have two failure modes, while CT specimens have only one failure mode. The dominant fatigue crack of each failure mode was identified.
2017-03-28
Journal Article
2017-01-1277
Jakobus Groenewald, Thomas Grandjean, James Marco, Widanalage Widanage
Abstract Increasingly international academic and industrial communities desire to better understand, implement and improve the sustainability of vehicles that contain embedded electrochemical energy storage. Underpinning a number of studies that evaluate different circular economy strategies for the electric vehicle (EV) battery system are implicit assumptions about the retained capacity or State-of-Health (SoH) of the battery. International standards and best-practice guides exist that address the performance evaluation of both EV and HEV battery systems. However, a common theme in performance testing is that the test duration can be excessive and last for a number of hours. The aim of this research is to assess whether energy capacity and internal resistance measurements of Li-ion based modules can be optimized, reducing the test duration to a value that may facilitate further End-of-Life (EoL) options.
2017-03-28
Journal Article
2017-01-1273
Qiang Dai, Jarod C. Kelly, Amgad Elgowainy
Abstract Vehicle lightweighting has been a focus of the automotive industry, as car manufacturers seek to comply with corporate average fuel economy (CAFE) and greenhouse gas (GHG) emissions standards for model year (MY) 2017-2025 vehicles. However, when developing a lightweight vehicle design, the automotive industry typically targets maximum vehicle weight reduction at minimal cost increase. In this paper, we consider the environmental impacts of the lightweighting technology options. The materials used for vehicle lightweighting include high-strength steel (HSS), aluminum, magnesium and carbon fiber reinforced plastic (CFRP). Except for HSS, the production of these light materials is more GHG-intensive (on a kg-to-kg basis) compared with the conventional automotive materials they substitute. Lightweighting with these materials, therefore, may partially offset the GHG emission reductions achieved through improved fuel economy.
2017-03-28
Journal Article
2017-01-1278
Keisuke Isomura
Abstract In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions.
2017-03-28
Technical Paper
2017-01-1665
Qigui Wang, Peggy Jones, Yucong Wang, Dale Gerard
Abstract With the increasing use of aluminum shape castings in structural applications in automobiles, assurance of cast product integrity and performance has become critical in both design and manufacturing. In this paper, the latest understanding of the relationship between casting quality and mechanical properties of aluminum castings is summarized. Examples of newly developed technologies for alloy design, melting and melt treatment, casting and heat treatment processes in aluminum casting are reviewed. Robust design and development of high integrity aluminum castings through an Integrated Computational Materials Engineering (ICME) approach is also discussed.
2017-03-28
Technical Paper
2017-01-0296
Oberti Dos Santos Almeida
One of the biggest challenges for the Product Development Engineers is to have a clear understanding of the Quality Principles and Disciplines they should follow while they are engineering. In general, the current Product Development System guides of the Automakers companies are mostly focused on provide guidance for the Engineers on the following areas: Design Efficiency; Design Rules for Product Robustness; Design Validation; Product Reliability; Testing Procedures. The introduction of a new/advanced technology system alone does not mean low incidence of customer complaints. The only way to get that is plan/execute Consumer Driven Design with excellence. Global Vehicles are more sensitive to Quality since they must satisfy diverse cultural customers without compromise reliability. When a new vehicle is being developed to be sold in many markets around the world – Global Product - this problem is even bigger. Different markets mean different customer expectations.
2017-03-28
Journal Article
2017-01-1707
C. Matthew Enloe, Jason Coryell, Jeff Wang
Abstract Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension.
2017-03-28
Journal Article
2017-01-1330
Youssef Ziada, Juhchin Yang, David DeGroat-Ives
Abstract Owing to decreased development cycle timing, designing components for manufacturability has never been as important. Assessing manufacturing feasibility has therefore become an increasingly important part of new product engineering. This manufacturing feasibility is conventionally assessed based on static stiffness of components and fixture assemblies. However, in many operations, excess vibration represents the actual limitation on processing a workpiece. Limits on how far into components a tool can reach or the amount of processing time required to machine a feature is commonly decreased significantly due to vibration. Critical time is spent resolving these vibration problems during product launches. Depending on the machining configurations these vibrations can be due to the part & work support structure or due to the tooling & spindle assembly.
2017-03-28
Journal Article
2017-01-1513
Young-Chang Cho, Chin-Wei Chang, Andrea Shestopalov, Edward Tate
Abstract The airflow into the engine bay of a passenger car is used for cooling down essential components of the vehicle, such as powertrain, air-conditioning compressor, intake charge air, batteries, and brake systems, before it returns back to the external flow. When the intake ram pressure becomes high enough to supply surplus cooling air flow, this flow can be actively regulated by using arrays of grille shutters, namely active grille shutters (AGS), in order to reduce the drag penalty due to excessive cooling. In this study, the operation of AGS for a generic SUV-type model vehicle is optimized for improved fuel economy on a highway drive cycle (part of SFTP-US06) by using surrogate models. Both vehicle aerodynamic power consumption and under-hood cooling performance are assessed by using PowerFLOW, a high-fidelity flow solver that is fully coupled with powertrain heat exchanger models.
2017-03-28
Technical Paper
2017-01-0224
Zhangxing Chen, Yi Li, Yimin Shao, Tianyu Huang, Hongyi Xu, Yang Li, Wei Chen, Danielle Zeng, Katherine Avery, HongTae Kang, Xuming Su
Abstract To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
2017-03-28
Technical Paper
2017-01-0227
Omar Al-Shebeeb, Bhaskaran Gopalakrishnan
Abstract Process planning, whether generative or variant, can be used effectively as through the incorporation of computer aided tools that enhance the evaluator impact of the dialogue between the design and manufacturing functions. Expert systems and algorithms are inherently incorporated into the software tools used herein. This paper examines the materials related implications that influence design for manufacturing issues. Generative process planning software tools are utilized to analyze the sensitivity of the effectiveness of the process plans with respect to changing attributes of material properties. The shift that occurs with respect to cost and production rates of process plans with respect to variations in specific material properties are explored. The research will be analyzing the effect of changes in material properties with respect to the design of a specific product that is prismatic and is produced exclusively by machining processes.
2017-03-28
Technical Paper
2017-01-0226
Vesna Savic, Louis Hector, Ushnish Basu, Anirban Basudhar, Imtiaz Gandikota, Nielen Stander, Taejoon Park, Farhang Pourboghrat, Kyoo Sil Choi, Xin Sun, Jun Hu, Fadi Abu-Farha, Sharvan Kumar
Abstract This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
2017-03-28
Journal Article
2017-01-0233
Weihong Guo, Shenghan Guo, Hui Wang, Xiao Yu, Annette Januszczak, Saumuy Suriano
Abstract The wide applications of automatic sensing devices and data acquisition systems in automotive manufacturing have resulted in a data-rich environment, which demands new data mining methodologies for effective data fusion and information integration to support decision making. This paper presents a new methodology for developing a diagnostic system using manufacturing system data for high-value assets in automotive manufacturing. The proposed method extends the basic attributes control charts with the following key elements: optimal feature subset selection considering multiple features and correlation structure, balancing the type I and type II errors in decision making, on-line process monitoring using adaptive modeling with control charts, and diagnostic performance assessment using shift and trend detection. The performance of the developed diagnostic system can be continuously improved as the knowledge of machine faults is automatically accumulated during production.
2017-03-28
Technical Paper
2017-01-0244
Joshua Lyon, Junheung Park, Yakov Fradkin, Jeff Tornabene
Abstract We describe an optimization model developed by Ford Motor Company to reallocate stamped parts between facilities when business conditions change. How can the business meet new targets when demand starts to exceed existing capacity? Likewise, how can it respond when demand is lower than expected? Sometimes the business can reduce costs by transferring production to a different location or by outsourcing parts. We describe in this paper how mathematical optimization can identify solutions that balance both logistical and outsourcing costs. We explain the algorithm and demonstrate with a small example how it recommends sourcing plans that minimize cost.
2017-03-28
Technical Paper
2017-01-0183
Mingyu Wang, Timothy Craig, Edward Wolfe, Tim J LaClair, Zhiming Gao, Michael Levin, Danrich Demitroff, Furqan Shaikh
Abstract It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
2017-03-28
Technical Paper
2017-01-0248
Fabian Jorg Uwe Koark, Arvind Korandla
Abstract Motivation - Ambiguous product targets, a global market, innovation pressure, changing process requirements and limited resources describe the situation for engineering management in the most R&D organizations. Achieving complex objective with limited resources is a question of performance. Performance in engineering departments is highly correlated to the existing capability of the engineering staff. When the reduction of engineering effort in development projects becomes additional goal for the management, an increase of engineering productivity is required. International engineering sites are established globally to push the capacity limits and to increase the productivity by the accessing big employment markets of engineering talents. By solving the conflict of limited resources and complex engineering goals, a need organizational challenge occurs - global co-engineering.
2017-01-10
Technical Paper
2017-26-0168
Ajeet Babu P K, Jibin Babu, M R Saraf
Abstract Forging is a metal forming process involving shaping of metal by the application of compressive forces using hammer or press. Forging load of equipment is an important function of forging process and the prediction of the same is essential for selection of appropriate equipment. In this study a hot forging material i.e. 42CrMo4 steel is selected which is used in automotive components like axle, crank shaft. Hot forging experiments at 750°C are carried out on cylindrical specimens of aspect ratio 0.75 and 1.5 with true height strain (ln (ho/hf)) of 0.6. Forging load for the experiments is calculated using slab and upper bound deformation models as well as Metal forming simulation using commercially available FEA software. The upper bound models with 30% deviation from the simulation results are found to be more accurate compared to the slab models.
2017-01-10
Technical Paper
2017-26-0173
Surbhi Bhagwat, Vinod Kumar Mannaru
Abstract Forging is one of the traditional bulk metal forming processes used extensively in the automotive industry. Forging has a distinct advantage versus other metal manufacturing processes in terms of strength, grain orientation, reliability, near net shape with lower material utilization, and machining requirements leading to cost effectiveness, etc. Today, the automotive industry is going through the critical phase of reducing component costs through material reduction and optimized tool consumption. With this challenge, process modeling is gaining more momentum in the industry to optimize blank size and improve the tool life with required part quality, while also evaluating press tonnage requirements for effective equipment usage. It also enables integrated process modeling by understanding the microstructure, residual stress/deformation built into the manufactured part, and integrating with material property changes for subsequent part performance prediction.
2017-01-10
Technical Paper
2017-26-0175
Muhammad Ali Siddiqui, Hein Koelman, Prashant Sharad Shembekar
Abstract Composite manufacturing in the automotive industry is striving for short cycle times to be competitive with conventional manufacturing methods, while enabling significant weight reductions. High Pressure Resin Transfer Molding (HP-RTM) is becoming one of the processes of choice for composite applications due to its ability to enable high speed part production. In this regard, researchers need to offer differentiated ultra-fast curing resin systems for carbon fiber composites for automotive structural and nonstructural applications to enable Original Equipment Manufacturers (OEMs) to meet their large volume lightweight targets in concert with present day low-carbon footprint legislations. In order to expand applications for composites in the automotive industry it is necessary to optimize all aspects of the production cycle using predictive modeling.
2017-01-10
Technical Paper
2017-26-0238
Abhijit Kumbhar, Jagannath M Paranjpe, Nagesh Karanth
Abstract New process development of forging component requires in-depth knowledge and experience related to the process. Also it requires number of physical trials to arrive at optimum process and initial billet dimensions. With the help of reliable computer simulation tool, it is possible to optimize the complete forging process and billet dimensions. Simulation provides much more insight about the process and possible forging defects. This saves considerable time and money. This paper describes about a complete forging process designed for a complex component. With the help of metal forming simulation software, complete forging process was simulated and optimized. Forging defects were removed during optimization of the process. Billet weight optimization was also carried out. Deciding the preforming shape of the billet was the main challenge. An innovative pre-forging shape was arrived which resulted in eliminating one process stage.
2017-01-10
Journal Article
2017-26-0222
Vishal Vasantrao Chaudhari, V Radhika, R Vijay
Abstract First time right vehicle performance and time to market, remains all automotive OEMs top priority, to remain competitive. NVH performance of product communicates impression to customer, remains one of the most important and complex attribute to meet, considering performances to be met for 20 Hz -6000 Hz. Frontloading techniques (FEM/BEM/SEA/MBD) for NVH are critical and necessary to achieve first time right NVH performance. Objective of this paper is to present a frontloading approach for automotive sound package optimization (absorber, barrier and damper elements) for SUV vehicle. Current process of designing sound package is mainly based on experience, competitive benchmarking of predecessor products. This process (current process) heavily depend on testing and validation at physical prototype and happens at later stages of program, especially on tooled up body.
2016-11-08
Journal Article
2016-32-0024
Daisuke Sugio, Shinpei Okazaki, Mitsuo Kaneko
Abstract Glass fiber reinforced plastic of polyamide is applied as one of the materials used for the high strength exterior parts of a motorcycle, such as a rear grab rail or a carrier, to which both strength and good exterior appearance are required. However, Glass Fiber reinforced Polypropylene (PPGF), which is relatively inexpensive material, has a property that the contained glass fibers are prone to be exposed at the surface and, therefore, the requirements for good appearance are hardly met by using PPGF. In this study, Heat and Cool molding method (H&C molding) was employed to realize a cost reduction by using PPGF yet without applying painting process, and the established method was applied to mass production while fulfilling the requirements for a good exterior appearance. In H&C molding, the metal molds are heated up by steam and cooled down by water after molding.
2016-10-25
Technical Paper
2016-36-0303
Frederico Fernandes Reis, Valdir Furlanetto, Gilmar Ferreira Batalha
Abstract To highlight the importance of resistance spot weld in the automotive industry, it's important know that a vehicle has on average 4,000 welding spots [BROWN; SCHWABER 2000] and based on worldwide vehicle production in 2015 with 90.78 million vehicles produced [OICA, 2015], were performed more than 363 billion welding spots. The number of machines in manual and automatic workstations (robots), based on 20 points by equipment and production of 45 vehicles / hour add up more than 20 million of welding machines in all over world. According new production lines are being introduced using the adaptive dynamic resistance control the welding constant current control are being replaced, so understand this technology and know implement it with efficiency needs a deep knowledge in how dynamic resistance works and correlate his behavior with the problems that causes failures in welding, so is necessary give for the welding engineers this knowledge.
2016-10-25
Technical Paper
2016-36-0515
Ana Carolina Rodrigues Teixeira, José Ricardo Sodré, Lilian Lefol Nani Guarieiro, Erika Durão Vieira, Fabiano Ferreira de Medeiros, Carine Tondo Alves
Abstract In a scenario with growing population, increasing demand for energy and volatile prices of fossil fuel, there is a high incentive for the use of biofuels, especially those produced from waste material. In this context, second and third generation bioethanol (2G/3G) are interesting alternatives, as they can be produced from different raw material such as corn and rice straw, sugarcane bagasse, waste from pulp industry and microalgae. This paper presents an overview of the available technologies for both 2G and 3G bioethanol production, including lignocellulosic biomass feedstock, biocatalysts and cogeneration processes.
2016-10-25
Technical Paper
2016-36-0230
Guilherme Canuto da Silva, Paulo Carlos Kaminski
Abstract Automotive industries are undergoing a transformation of their manufacturing systems. Called by the German government as Industrie 4.0, this transformation is based on the evolution of traditional Embedded Systems-ES to Cyber-Physical Systems-CPS. In the next years such evolution will have to reach transitory stages, where ES and CPS should coexist for a determined period of time (ES-CPS). Based on this projection, this work compares ES with CPS, identifies the main differences between these systems and thus forms a transitory stage of automotive manufacturing for the next years. The work is structured as follows: Introduction section places the reader on the treated subject and presents the methodology of the work. Later, Industrie 4.0, Embedded Systems (ES) and Cyber-Physical systems (CPS) are defined. Once this is done, the analysis of ES-CPS transition is finished. Analysis results are presented and a representation of ES-CPS transition is proposed.
2016-10-25
Technical Paper
2016-36-0121
Raphael Gonçalves, Rubens Pinati, Rodrigo Godoi
Abstract Distortion is an intrinsic and undesired effect of the welding process, inducing residual stresses and hence, reducing the fatigue life of the welded structure. This distortion however, does not occurs simultaneously among the entire structure; instead, it occurs gradually during the execution of the welding chord. Due to this, equal structures, but composed by weld chords executed in a different sequencing, presents different residual stresses and therefore, different fatigue performances. This study proposes a method, using finite elements model (CAE), to capture the non-linear distortions of distinct welding sequences and contrast the diverse impacts in fatigue life.
2016-10-25
Technical Paper
2016-36-0224
Carla Lima, Filipe Andrade, Cristina Kawakami, Cristiane Gonçalves, Walmir Peraro
Abstract The microcellular foam injection molding process is being widely applied by the thermoplastics industry. This process consists in a melted polymer injection mixed with a processing solvent, that is an inert gas in the supercritical state, usually CO2 or N2 producing a microcellular foam. This technique offers many advantages such as weight reduction, dimensional uniformization and less warpage. Besides that, it offers a satisfactory property like acoustic and thermal insulation. On the other hand, the parts from this process have an inferior mechanical property like ductility and toughness if compared with solid injection molded parts. Nevertheless, the main issue for this process is the poor appearance quality. This paper presents a review of some existing methods for surface quality improvement as Co-injection process, where a skin is injected over the microcellular part, and Heat & Cool that consists in a control of mold temperature.
2016-10-25
Technical Paper
2016-36-0370
André Baroni Selim, Bruno Aquino de Lyra
Abstract This work aims to demonstrate a cooling package selection for an agricultural machine equipped with Diesel engine considering different radiators area / material and fan blade angles, pursuing the best match of performance, cost and weight. It was investigated two types of radiators made from copper-brass and aluminum, two types of charge air cooler varying the dimensions and four types of fans varying the blade angle. The selection method chosen was the experimental testing. The tests were performed according to the standard SAE and internal procedures at MWM Motores Diesel laboratories located at São Paulo / Brazil. When compared with cooper-brass, the aluminum radiator presents worse heat exchange performance what makes its size increase in order to compensate the gap. Even with bigger size, the aluminum radiator keeps lighter and cheaper.
Viewing 91 to 120 of 8952