Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 8366
2015-03-30
Technical Paper
2015-01-0105
Perakit Viriyarattanasak
Farm trucks, otherwise known as a light truck, is a vehicle used to transport agricultural products from farmers in the farm fields. Originally, farm trucks are assembled by local truck workshops using used parts of cars scrapped from abroad. It causes a serious problem in terms of quality and safety, since conventional truck garages are lack of correct engineering principles in the assembly and there has a potential risk of accidents that may occur during use. This study is focused on enhancement of life quality and safety of farm truck users from different regions in Thailand. One problem encountered in the operation is that a clutch case to cover the flywheel-clutch-module, consisting of the engine flywheel and the clutch, is mostly fabricated without applying engineering understanding. This leads to time-consuming trial and errors manufacturing process and overweight parts.
2015-01-14
Technical Paper
2015-26-0061
Sanjay Nibandhe
The paper presents innovative approach for Automobile Assembly Process solution. The approach describes about production simulation for new products under development. This work leads towards the assembly process establishment for newly developed automobile vehicle and its control plan which compares to final production practices. In recent years Indian automotive business is expanding and with growing needs of fast new product development, the cycle time reduction becomes very crucial for environmental and economical reasons. Lean production assembly process and robust engineering process are optimized in this new approach. It’s an advance mechanism to identify process failures during final production setup. The experimentation has resulted to establish micro level study and the critical stages to be captured well in advances for better planning. This new approach takes care of all types of vehicles, product mix, end deliverables of vehicles in terms of quality.
2015-01-14
Technical Paper
2015-26-0204
Satyajeet Kulkarni, Abhijit Kumbhar, Jagannath M Paranjpe, Nagesh Voderahobli Karanth
To achieve first time right in any new part development process requires number of trials,skilled manpower, huge cost and massive time. In case of forging process,to develop new component lot of physical trialsrequired to be conducted due to process variations.Need of hour is shorter development time with highest quality.All these requirements can be achieved with the help of reliable computer simulation. With computer simulation, process can be optimized, crack analysis can be carried out, Additionally use of computer simulation in forging process reduces no. of trials, ultimately saves time, energy and product cost. The paper deals with forging process optimization by effective use of computer simulation. Existing forging process and modified forging process wassimulated. Forging process was able to simulate crack generation due to improper metal flow as observed in existing forging simulation process, and good co-relation was established.
2015-01-14
Technical Paper
2015-26-0165
Sivaprasad Koralla, Ganesh Bhagwant Gadekar, V Ramana Pavan Nadella, Susanta Dey
Spot welding is the primary joining method used in automobiles. Spot-weld plays a major role to maintain vehicle structural integrity during impact tests. Robust spot weld failure definitions is critical for accurate predictions of structure performance in safety simulations. Spot welds have a complex metallurgical structure, mainly consisting of fusion and heat affected zones. For accurate material property definitions in simulation models, huge no of inputs from test data is required. Multiple tests, using different spot weld joinery configurations, have to be conducted. In order to accurately represent the spot-weld behavior in CAE, detailed modeling is required using fine mesh. The current challenge in spot-weld failure assessment is developing a methodology having a better trade-off between prediction accuracy, testing efforts and computation time. In view of the above, cohesive zone models have been found to be very effective and accurate.
2015-01-14
Technical Paper
2015-26-0019
Werner Bick, Cagri Cevik, Christoph Steffens
Abstract In order to minimize the development and production costs in the automotive industry, despite steadily increasing variety of models and applications offered by the OEMs, the pressure on standardization of components and production processes is increasing continuously. As a direct consequence, modular engine families are already established with high degrees of common parts and kits as well as standardized interfaces for all vehicle platforms by most manufacturers these days. At the same time, the world adopted and announced massive legal demands concerning the reduction of CO2 emissions for the entire vehicle fleet. In addition to the optimization of the combustion process, the exhaust gas aftertreatment and thermal management, the use of improved and more resilient materials for higher reduction of mechanical friction leads to a significant amount of the realized lowering in fuel consumption respective CO2 emissions.
2015-01-14
Technical Paper
2015-26-0187
Venu Ganti, Yogesh Dewangan, Saurabh Arvariya, Shyamsananth Madhavan
Abstract Scuffing is an instantaneous failure which occurs when the meshed gear flanks undergo adhesive wear under extreme operating temperatures at medium- or high-speed conditions. It is one of the common failures in transmission gears, which tend to operate under long-duty cycle hours. The tip and the root regions often experience higher contact pressures because of the loading and surface curvature. These higher pressures, coupled with higher sliding velocities and heat generation, make the tip and root regions in the gear susceptible to scuffing. Gear geometry, material composition and lubricant properties influence scuffing. A balanced gear tooth design with lower sliding velocities is often chosen as an approach to avoid scuffing. However, in the current scenarios of transmissions with high power density requirements, achieving a balanced gear tooth design is rare. Lubricants with higher viscosity avoid scuffing, but have adverse effects on the transmission efficiency.
2015-01-14
Technical Paper
2015-26-0115
MV Rajasekhar, J Perumal, Samir Rawte, Nabin Nepal
Abstract In current scenario importance of fuel efficient vehicles, lesser emissions & energy efficiency are the major considerations for any vehicle manufacturer. To meet these expectations vehicle manufacturer are exploring alternate powertrains to reduce emissions and produce better fuel efficient vehicles. For any vehicle manufacturer component cost, weight and package volume are the major driving factors for success. This is even true for latest upcoming hybrid and electric vehicles as well. To gain advantage and introduce products faster, OEMs are inclined to electrify their existing platforms to compete with other manufacturers. To convert existing vehicles into hybrid vehicles, all the major components like e machine, High voltage battery, power electronics etc. needs to be carefully packaged along with existing components in the same package space.
2015-01-14
Technical Paper
2015-26-0175
Sajeev Silvester, Alex Lakic, Michael Buckley
Abstract Dimensional distortion, cosmetic distortion issues can arise during heating and cooling in the paint shop processing of car bodies. A car body can be in perfect cosmetic condition as it leaves the BIW facility, yet develop distortion defects during painting. Traditionally such issues have only been detectable on new car body designs by building and painting prototypes of a new design. The timing of such activities, by their very nature, mean that precious little time is available to address these issues by design changes in today's condensed new vehicle programmes. The result is often a vehicle entering production with partial resolution of an issue, accompanied by on-going product rework and rectification activities throughout the lifecycle of the product. This created the need for developing a CAE simulation tool which could predict these issues very early during the virtual CAE build phases of a vehicle program itself.
2015-01-14
Technical Paper
2015-26-0183
Aditya Malladi, Sridhar lingan Sr, Hari Sudhan
Abstract Crush box in an automotive passenger car has become an integral part of structural design performing various functions like optimizing energy absorption in high speed impacts, replaceable part during low speed impacts etc. Design of crush box for high speed impacts is very important as it is the first major energy absorbing component in the load path and its deformation significantly affects the overall vehicle crash behavior. The present paper explains development of a hydro-formed crush box in the front end of a sports utility vehicle. Hydro-formed components have residual plastic strains and non - uniform thickness variation throughout their length which is difficult to measure from a physical test coupon. It is critical to add hydro-forming effects onto crash FE models as it significantly affects the deformation under high speed impact. But detailed forming simulations need mature design and material data which is not available during early phases of product development.
2015-01-14
Technical Paper
2015-26-0239
Azeez Ahmed, Gopalakrishna Deshpande, Varghese Manu Varghese, Ramakrishnan Rangaswamy, Prakash Prashanth Ravi
Abstract The engine research and development has a significant contribution to meet the stringent emission norms and the changing global market demands. Leveraging the available virtual engineering methods to improve performance, velocity, quality and diminish the lead time is the key for any global brand to stay in the competition. It is the key element to reduce the research and development costs substantially by virtually developing the idea as it is conceived. Engine development test cells consist of expensive test and measurement systems which demand skilled labor and advanced equipment. Effective utilization of the test cells is essential to meet the scheduled project deadlines and cost targets. Engine Design process and tools when used effectively can increase the efficiency and lower the test cell operation costs substantially. This paper discusses the examples for this application in the area of engine installation, sensitive instrumentation/assembly.
2015-01-14
Technical Paper
2015-26-0074
Dhiyaneswar Rani, A K Saravanan, Mohammad Rafiq Agrewale, B Ashok
Abstract Material handling is a major section in all the industries especially for delicate and huge components. Here in this industry they are using pneumatics system to tilt the component for certain angle so that operator will be able to do the further operation in the line. Pneumatic system needs compressed air for running the system, which in turn requires electricity to compress the air using an air compressor. Due to frequent power shutdowns many industries are facing problem to run their manufacturing unit peacefully. As an alternate they are using generators which require fuel to generate power. This adds excess cost for manufacturing the products and demand for fuel is also increasing day by day. So to avoid all this problem with a one step solution, dependability of energy resources has to be minimized. For avoiding the usage of energy resources the usage of pneumatics and compressed air has to be reduced.
2015-01-14
Technical Paper
2015-26-0191
Pablo Cruz, Jose Antonio Muñoz, Jordi Viñas
Abstract Robust and reliable FE-model spotweld characterization has been a challenge since spotweld technology was incorporated extensively into the automotive industry. The innovation required leads to constant enhancement of product performance; reduced time-tomarket, cost and weight. The need for quality requires robust development tools, consistency of design decisions, andrepeatability of the development process. Proper spotweld characterization has a clear impact on the above-mentioned needs and carmakers invest in efforts to increase the efficiency of the development process. Furthermore, the continuoususage of new steel grades increases the complexity of the topic. This paper presents an in-depth spotweld study that involves three different spotweld specimens: KSII; lap shear and peeling, for automotive steel grades and usual part thicknesses for each steel grade.
2015-01-01
Journal Article
2014-01-9101
Susan Sawyer-Beaulieu, Edwin K.L. Tam
Abstract Life-cycle assessments (LCAs) conducted, to date, of the end-of-life phase of vehicles rely significantly on assumed values and extrapolations within models. The end phase of vehicles, however, has become all the more important as a consequence of increasing regulatory requirements on materials recovery, tightening disposal restrictions, and the rapid introduction of new materials and electronics, all potentially impacting a vehicle's efficacy for achieving greater levels of sustainability. This article presents and discusses selected research results of a comprehensive gate-to-gate life-cycle-inventory (LCI) of end-of-life vehicle (ELV) dismantling and shredding processes, constructed through a comprehensive and detailed case study, and argues that managing and implementing creative dismantling practices can improve significantly the recovery of both reusable and recyclable materials from end-of-life vehicles.
2015-01-01
Journal Article
2014-01-9104
Salah A. Elmoselhy
The lean production system has been successful in the cost-based winning order criterion markets. However, the automotive market has been volatile and the new criterion of winning orders has been availability, which has called for an agile system. The present paper argues that because of fierce competition the current automotive market winning order criterion is now a blend of cost and availability. It shows how a hybrid lean-agile system can strategically meet such a challenging criterion. The study presents the drivers, attributes and providers in lean manufacturing, agile manufacturing, and hybrid lean-agile manufacturing systems. It investigates how the strategic facet of the proposed hybrid lean-agile manufacturing system addresses the six manufacturing competitive dimensions. It presents as well the hybrid lean-agile manufacturing key performance indicators.
2015-01-01
Journal Article
2014-01-9105
Akram Faqeeh, Ahmed Sherif El-Gizawy
The present paper aims at optimization of multiple quality characteristics (dimensional accuracy and surface roughness) in dry drilling Ti-6Al-4V using TiAlN-coated carbide tool while the controllable factors are spindle speed and feed rate. To do so, desirability methodology is used to explore optimum conditions for concurrent optimization of the addressed quality characteristics. Central composite design (CCD) is used for experimentation. In order to create reliable models describing the process behavior, response surface methodology (RSM) is used.
2014-10-13
Technical Paper
2014-01-2584
Krisada Wannatong, Sompach Kongviwattanakul, Thananchai Tepimonrat, Thanadech Priroon
Abstract End of line test (EOL) of Engine Control Units (ECU) is the process of ECU functions validation before releasing ECUs to the car assembly process. Examples of ECU function that need to be validated are idle control, air path control and faults manager function. To perform EOL, a vehicle and a chassis dynamometer are used to enable control functions validation inside the ECU. However, this poses high operating cost and long setup time. This paper presents the development of Hardware-in-the-Loop (HiL) system, which imitates real vehicle behavior on a chassis dynamometer. The diesel high pressure pump model was developed using an empirical dynamic modeling approach. The engine model was developed using AVL BOOST RT software, an engine cycle simulation modeling approach. The vehicle model was developed using AVL CRUISE software. In order to interface the engine and vehicle models with the ECU, HiL system was implemented.
2014-10-13
Technical Paper
2014-01-2805
Benjamin Kingsbury, Jonathan Stewart, Zhentao Wu, Roy Douglas, Kang Li
Abstract This study describes an innovative monolith structure designed for applications in automotive catalysis using an advanced manufacturing approach developed at Imperial College London. The production process combines extrusion with phase inversion of a ceramic-polymer-solvent mixture in order to design highly ordered substrate micro-structures that offer improvements in performance, including reduced PGM loading, reduced catalyst ageing and reduced backpressure. This study compares the performance of the novel substrate for CO oxidation against commercially available 400 cpsi and 900 cpsi catalysts using gas concentrations and a flow rate equivalent to those experienced by a full catalyst brick when attached to a vehicle. Due to the novel micro-structure, no washcoat was required for the initial testing and 13 g/ft3 of Pd was deposited directly throughout the substrate structure in the absence of a washcoat.
2014-10-01
Journal Article
2014-01-9027
Berna Balta, Onur Erk, H. Ali Solak, Numan Durakbasa
Rear underrun protection device is crucial for rear impact and rear under-running of the passenger vehicles to the heavy duty trucks. Rear underrun protection device design should obey the safety regulative rules and successfully pass several test conditions. The objective and scope of this paper is the constrained optimization of the design of a rear underrun protection device (RUPD) beam of heavy duty trucks for impact loading using correlated CAE and test methodologies. In order to minimize the design iteration phase of the heavy duty truck RUPD, an effective, real-life testing correlated, finite element model have been constructed via RADIOSS software. Later on, Pareto Optimization has been applied to the finite element model, by constructing designed experiments. The best solution has been selected in terms of cost, manufacturing and performance. Finally, real-life verification testing has been applied for the correlation of the optimum solution.
2014-10-01
Journal Article
2014-01-9028
Theodoros Kosmanis, Georgios Koretsis, Athanasios Manolas
Abstract The implementation of an electronic differential system in a delta-type, electrically assisted, three wheel Human Powered Vehicle is the subject of this paper. The electronic differential algorithm is based on the turning angle of the vehicle and its geometrical characteristics. The theoretical analysis is applied in a realistic human powered tricycle constructed in the premises of the Alexander Technological Educational Institute of Thessaloniki. The system's efficiency is validated through test measurements performed on the rear wheels during vehicle's operation in appropriately selected routes. The measurements are performed for both typical cornering and oversteering.
2014-09-30
Technical Paper
2014-01-2428
Burcu Guleryuz, Cagkan Kocabas, Erkan Ozturk
Abstract Remanufacturing is a process in which used products are disassembled, and their components are repaired and used in the production of new products. This study investigates the impact of various remanufacturing decisions on Original Equipment Manufacturer (OEM) profitability and market cannibalization in an infinite-horizon production scenario for heavy duty vehicle (HDV) clutches. A discrete event simulation model is developed for benchmarking of different scenarios using various factors and their levels. There are two consumer segments as primary customer and grey customer in the market. Three different end of life (EOL) clutch quality conditions are defined, and three different percentages of clutch collect strategies are defined for all EOL products in the market.
2014-09-30
Technical Paper
2014-01-2430
Rajendra Vivekananda Hosamath, Muralidhar Nagarkatte
Abstract All top ranking automobile companies in the world believe in single word “Quality” and maintaining quality standards is a philosophy, a belief in which we live, a task which cannot be put aside for another day. To achieve the world class quality standards Divgi-Warner meticulously follows a highly effective tool known as Quality System Basics (QSB).QSB helps Divgi-Warner to preserve integrity of commitment to achieve manufacturing excellence. This case study covers the Quality System Basics implementation experience of Divgi-Warner Pvt. Ltd. (DWPL) India, a BorgWarner's plants located at Pune and Sirsi in India.
2014-09-30
Technical Paper
2014-01-2434
Paul Salama, Adam Lubinsky, Bryan Roy, Ziga Ivanic, Paul Lipson, Luis Torres, Joseph Tario, Robert Ancar
Abstract The emergence of electric vehicle (EV) delivery trucks is resulting in health and environmental benefits, less noise, reduction of foreign energy dependency, and economic development opportunities. Green Loading Zones (GLZs) are dedicated curbside spaces for commercial delivery EVs meant to incentivize and accelerate market adoption. This study examined the impact and potential benefits of this strategy for New York City. Discussions with fleets revealed that while they are realizing operational savings and other benefits from the use of EVs, their incremental costs over diesel vehicles can take a very long time to recover, even with existing subsidy programs. Complementary incentives like GLZs can provide further justification for the investment in cleaner technology. Most fleets interviewed would place a high monetary value on guaranteed delivery locations and reduced parking violation expenses.
2014-09-30
Technical Paper
2014-01-2335
Balakrishnan Natesan
Abstract Phosphorous is an important alloying element in powder metallurgy applications. It is used in Powder metal parts for effective Sintering, dimensional stability, improved machinability, corrosion resistance etc. However it does have some negative effects on properties of Powder metal parts. The purpose of the paper is to study the effect of phosphorous on Powder metal gear of Mix A and Mix B having identical composition differing only in phosphorous content. The samples were detailed on each stage, viz. sintering & Heat treatment. In addition two defective samples were studied to observe the extent to which phosphorous may deteriorate the Powder metal Gear.
2014-09-30
Technical Paper
2014-01-2319
Iman Hazrati Ashtiani, Mehrnoosh Abedi
Abstract Road train vehicles have been applied as one of the common and efficient ways for transportation of goods, specifically hazardous liquid cargos, in different nations. These vehicles have a wide variety of lengths and towing systems such as the fifth wheel or the dolly draw-bar. Based upon specific regulations, they could be authorized to move on specific roads. In order to avoid hazard and danger in case of accidents, safety performance of a B-train vehicle as a specific type of road train vehicles is investigated in this paper. A Multi-Body Dynamic (MBD) model, which consists of a prime mover and two trailers coupled by fifth wheels, are simulated in the initial phase of the study. The developed dynamic model is capable of simulating required tests as well as the SAE lane change, along with a constant radius turn for the purpose of roll and yaw stability analysis and safety evaluation. The effects of variation of the fluid fill level are considered in this research.
2014-09-30
Journal Article
2014-01-2433
Abhishake Goyal, Nadeem Yamin, Naveen Kumar
Abstract Fuel cells are a promising energy source on account of their high efficiency and low emissions. Proton exchange membrane fuel cells (PEMFC) are clean and environmental-friendly power sources, which can become future energy solutions especially for transport vehicles. They exhibit good energy efficiency and high power density per volume. Working at low temperatures (<90°C), hydrogen fuelled proton exchange membrane fuel cells (PEMFCs) are identified as promising alternatives for powering autos, houses and electronics. At the middle of the proton exchange membrane (PEM) fuel cell is the membrane electrode assembly (MEA). The MEA consists of a proton exchange membrane, catalyst layers, and gas diffusion layers (GDL). However, most of the researchers have already mentioned that PEMFC are not competitive enough to rechargeable lithium ion battery with respect to price because of the rare metal used such as platinum in it.
2014-09-28
Technical Paper
2014-01-2503
Johannes Schneider
The brake discs and brake drums used on motor vehicles are, in 90% of applications, made from grey cast iron. Although other designs such as composite systems comprising of a grey iron braking band and a light weight mounting bell made from aluminum, Al-MMC or entire ceramic brake discs have been developed, cast iron will continue to play a major role as a work piece material for brakes. Cast iron offers advantages in material characteristics such as good thermal conductivity, high compressive strength and damping capacity. In addition it shows a superior casting behavior and also an unbeatable competitive price per part, when compared to other brake materials or designs. Ongoing research in material and casting science are leading to new types of alloyed CI materials, fulfilling the increasing demands in terms of performance but also increasing the demands for a reliable and economical production.
2014-09-16
Journal Article
2014-01-2248
Santiago Droll
In contemporary industries the demand for very accurate robots is continuously growing. Yet, robot vendors are limited in the achievable accuracy of their robots, as they have no means to provide a direct end-effector feedback. Therefore, most approaches aim to identify an accurate model of the robotic system, thus providing compensation factors to correct the deflections. Models, however, are unable to represent the real physical system in a sufficient manner for path correction. The non-linearities in robotic systems are difficult to model and the dynamics cannot be neglected. A better approach is, therefore, to use direct end-effector position and orientation feedback from an external sensor as, e.g. a Leica laser tracker. The measured data can directly be compared to the nominal data from the path interpolator. Hence, the data are independent of the kinematic robot model.
2014-09-16
Journal Article
2014-01-2250
Nicholas Lum, Qun Luo
Abstract Electroimpact has designed and manufactured a flexible tooling system for the E7000-ARJ horizontal panel riveter. This tooling design accommodates panel sizes from 3.5m to 10m long, with a variety of straight and tapered curvatures. The tooling is re-configured manually and utilizes removable index plates that can be adapted to accommodate new panel types. This type of tooling is ideal for value-conscious applications where a single machine must process a large range of panel styles. Electroimpact is currently using this system to tool 17 different styles of pre-tacked panels on a single E7000-ARJ machine. This flexible system does not require large removable form boards or custom frames that index one type of panel. Instead it uses 4 form boards that are permanently mounted to the picture frame by linear rails, allowing them to index anywhere along the 10m working envelope.
2014-09-16
Journal Article
2014-01-2252
Lucas Irving, Svetan Ratchev, Atanas Popov, Marcus Rafla
Abstract The replacement for the current single-aisle aircraft will need to be manufactured at a rate significantly higher that of current production. One way that production rate can be increased is by reducing the processing time for assembly operations. This paper presents research that was applied to the build philosophy of the leading edge of a laminar flow European wing demonstrator. The paper describes the implementation of determinate assembly for the rib to bracket assembly interface. By optimising the diametric and the positional tolerances of the holes on the two bracket types and ribs, determinate assembly was successfully implemented. The bracket to rib interface is now secured with no tooling or post processes other than inserting and tightening the fastener. This will reduce the tooling costs and eliminates the need for local drilling, de-burring and re-assembly of the bracket to rib interface, reducing the cycle time of the operation.
2014-09-16
Journal Article
2014-01-2249
Thomas G. Jefferson, Svetan Ratchev, Richard Crossley
Abstract Aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways. Consequently, aerospace assembly system design is a deeply complex process that requires a multi-disciplined team of engineers. Recent trends to improve manufacturing agility suggest reconfigurability as a solution to the increasing demand for improved flexibility, time-to-market and overall reduction in non-recurring costs. Yet, adding reconfigurability to assembly systems further increases operational complexity and design complexity. Despite the increase in complexity for reconfigurable assembly, few formal methodologies or frameworks exist specifically to support the design of Reconfigurable Assembly Systems (RAS). This paper presents a novel reconfigurable assembly system design framework (RASDF) that can be applied to wing structure assembly as well as many other RAS design problems.
Viewing 1 to 30 of 8366