Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 8388
2015-04-14
Technical Paper
2015-01-1736
Justin Cartwright, Ahmet Selamet, Robert Wade, Keith Miazgowicz, Clayton Sloss
The heat rejection rates and skin temperatures of a liquid cooled exhaust manifold on a Ford 2011 3.5L TiGTDI engine are determined experimentally using an external cooling circuit, which is capable of controlling the manifold coolant inlet temperature, outlet pressure, and flow rate. The manifold is equipped with a jacket that surrounds the collector region and is cooled with an aqueous solution of ethylene glycol-based antifreeze to reduce skin temperatures. Results were obtained by sweeping the manifold coolant flow rate from 2.0 to 0.2 gpm for a total of 12 engine operating points of increasing brake power up to 220 hp. The nominal inlet temperature and outlet pressure were 85 degC and 13 psig, respectively. Data were collected under steady conditions and time averaged. For the majority of operating conditions, the manifold heat rejection rate is shown to be relatively insensitive to changes in manifold coolant flow rate.
2015-04-14
Technical Paper
2015-01-0508
Brian T. Bautsch
Automobile manufacturers often refresh vehicles within their lineup every couple of years. This aspect of automotive development requires the manufacturer to conduct numerous tests on pre-production vehicles within a given timeframe. This testing is performed by the manufacturer’s test groups which comprise an overall test schedule. The creation of this testing schedule, one that captures each group’s resources and constraints, requires a great amount coordination and can be very difficult when manually considering the entire set of parameters. The work presented in this paper details how existing scheduling software was modified to automatically create a smart, optimized schedule using the same testing parameters that were considered during the manual process. The output of this optimized schedule can allow the manufacturer to build the minimum number of vehicles while still meeting each group’s needs.
2015-04-14
Technical Paper
2015-01-0507
Taro Nakamura
The plans for the new lines at a power-train Plant, which were designed as a benchmark for manufacturing lines in developed countries, included a requirement for a large reduction in initial investment. To improve the competitiveness of module machines, its main machining equipment, We aimed to reduce the number of machining units through such steps as concurrent machining of multiple work pieces and minimization of transfer time. This project made the intended reductions, which were facilitated by development of exclusive jigs for cylinder heads and blocks. It also shortened loading and unloading times significantly through the development of an exclusive transfer machine for multiple spindle machining equipment made specifically for cylinder heads.
2015-04-14
Technical Paper
2015-01-0506
Toshiyuki Kondo
To satisfy the demand for assembly automation, flexible response to diversification of models and production volume changes, the concept of an “Innovative Automation Cell” was thought up as an innovative assembly production system, which can be used in place of conventional conveyor lines—a mode of production in use since the Industrial Revolution. This report describes the “Innovative Automation Cell” concept that can realize more than double production efficiency compared with manual assembly, and outlines of the core technologies. Development results and future issues are also discussed.
2015-04-14
Technical Paper
2015-01-0537
Hong Tae Kang, Abolhassan Khosrovaneh, Xuming Su, Yung-Li Lee, Mingchao Guo, Chonghua Jiang, Zhen Li
Magnesium alloys have low weldability, thus self-piercing rivet (SPR) joint is one of options for joining them. This research investigates the fatigue performance of SPR for magnesium alloys including AZ31, AM30, and AM60. Lap-shear and coach peel specimens for these alloys are fabricated and tested for understanding fatigue performance of the joint. Structural stress – life (S-N) curves are developed with the test results. This approach is validated with simple structural specimens that include three or two joints in each specimen. It is also intensively studied to identify the proper representation of the joint in finite element models.
2015-04-14
Technical Paper
2015-01-0505
Miguel ANGEL REYES BELMONTE, Colin D. Copeland, Drummond Hislop, George Hopkins, Adrian Schmieder, Scott Bredda, Sam Akehurst
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing at the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power density ratios. In this scenario, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
2015-04-14
Technical Paper
2015-01-0706
Zheng-Ming Su, Pai-Chen Lin, Wei-Jen Lai, Jwo Pan
Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of low carbon steel (LC) and high strength low alloy (HSLA) steel sheets was investigated. Micrographs show that the failure modes of laser welds under quasi-static and cyclic loading conditions were quite different. Under quasi-static loading conditions, the upper sheet was separated at the base metal region. Under low-cycle loading conditions, the weld failure appeared to be initiated from the pre-existing crack tips and then failed by the ductile fracture through the upper right (LC) sheet. Under high-cycle loading conditions, the weld failure appeared to be initiated from the left pre-existing crack tip and then failed by the kinked fatigue crack propagating through the lower left sheets (HSLA). In general, the fatigue lives are longer for the specimens failed through the HSLA steel sheets than those failed through the LC steel sheets.
2015-04-14
Technical Paper
2015-01-0504
Matthew R. DiCecca
An overview of the Additive Manufacturing /3D Printing Market and it’s evolution in the automotive industry, exploring the solutions and benefits realized by using these tools in manufacturing. Identifying when to use traditional manufacturing tools verses additive manufacturing will be addressed. The emphasis will be on applications in traditional manufacturing environments to reduce cycle time, improve manufacturing cost ratios, and increase design-for-manufacturing freedom. Specific examples for In house manufacture of tools, fixtures, molds, patterns, gauges and end use parts will be discussed.
2015-04-14
Technical Paper
2015-01-1298
Sangram Jadhav
In this study, the optimization of experimental parameters, such as alcohol to oil molar ratio (1:08, 1:12 and 1:16), homogeneous catalyst loading (0.5, 1 and 1.5 wt %), homogeneous catalyst types (NaOH, KOH and NaOCH3) and reaction temperature (59, 64 and 69°C) on the transesterification for the production of Mangifera oil methyl ester (Biodiesel) was performed. Homogenous alkali catalyzed method has been used for biodiesel production by using homogenous catalyst such as NaOH, KOH and NaOCH3. The taguchi method was adopted as the experimental conditions from a limited number of experiments (Columns of L9 (3**4) Array) and contribution of each signal to noise factor calculated by ANOVA. The optimum experimental condition obtained from this study are; 1:16 methanol to oil molar ratio, KOH as the catalyst type, at a loading 1.5 wt% and a reaction temperature of 64°C played the most important role in the yield of Mangifera methyl ester.
2015-04-14
Technical Paper
2015-01-0708
Catherine M. Amodeo, Jwo Pan
In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
2015-04-14
Technical Paper
2015-01-0701
Anupam Vivek, Bert Liu, Daniel Sakkinen, Mark Harris, Glenn Daehn
Vaporizing Foil Actuators (VFA) are based on the phenomenon of rapid vaporization of thin metallic foils and wires caused by passage of a capacitor bank-driven current, on the order of 100 kAmps. The burst of the conductor is accompanied with a high-pressure pulse which, as in the case of VFA, can be used for working metal at high strain rates. VFA have been applied toward a variety of impulse-based metal working operations such as collision welding, embossing, shearing, dynamic powder consolidation, shape calibration, and closed-die forming. While other applications are discussed briefly, this paper focuses on the use of VFA for collision welding of dissimilar metals, in particular, aluminum and steel. Aluminum alloy 6061 sheets of 1mm thickness were launched to velocities in excess of 800 m/s with input electrical energy of 8 kJ into 0.0762mm thick, dog-bone shaped aluminum foil actuators.
2015-04-14
Technical Paper
2015-01-0435
S. Khodaygan, M. Hafezipour
Kinematic accuracy of robots end-effector is decreased by many uncertainties. In order to design and manufacture robots with high accuracy, it is essential to know the effects of these uncertainties on the motion of robots. Uncertainty analysis is a useful method which can estimate deviations from desired path in robots caused by uncertainties. This paper presents an applied formulation based on Direct Linearization Method (DLM), for 3D statistical uncertainty analysis of open¬¬-loop mechanisms and robots. The maximum normal and parallel components of the position error on the end-effector path are introduced. In this paper, uncertainty effects of both linear and angular variations in performance of spatial open-loop mechanisms and robots are considered.
2015-04-14
Technical Paper
2015-01-0705
Koichi Taniguchi, Hiroshi Matsuda, Rinsei Ikeda
High joint strength of resistance spot welds is necessary for high rigidity and reliability of car body using ultra high strength steel (UHSS) sheets with tensile strength over 980MPa. We developed “pulsed current pattern” consisting the combination of short cool time and short-time high-current post-heating. This new process can achieve high cross tension strength (CTS) with sufficient tensile shear strength (TSS) in shorter welding time than conventional temper pattern. This paper presents the heating pattern and the effect on the joint strength by pulsed current pattern. Finite element analysis (FEA) for post-heating patterns was conducted using SORPAS. Temperature dependent material properties of 1180MPa grade steel were taken into account. FEA shows that the short-time high-current post-heating leads to rapid heating in nugget and heat affected zone (HAZ) compared to conventional temper pattern consisting long-time low-current post-heating.
2015-04-14
Technical Paper
2015-01-1313
Donald Jasurda
In the automotive world, thermal expansion and gravity on assembly processes in manufacturing often account for unexpected variation. Issues related to the effects of these forces can cause not just assembly issues, but can also be the cause of non-conformance and warranty problems later in the product life cycle. Using 3d CAD models, engineers can now take advantage of advances in simulation to predict the effect of both thermal forces and gravity on their assembly and processes before production. By designing out these influences through a combination of tooling, process and tolerance changes, manufacturers can reduce the costs stemming from these common issues. This whitepaper delves into the process of simulating the effect of both these forces on automotive structures using real life examples and models based on customer experiences.
2015-04-14
Technical Paper
2015-01-1371
Samuel T. Bartlett
With the many model variations produced on the same production line because of increasing power train options, fuel efficiency targets, performance and customer demands we saw limitations with our existing suspension mount equipment. Layout options were limited due to guided shifts and transfers. Large supporting frame work took up valuable floor space. Model wheelbase sizes and suspension pallets were limited to the model requirements of the original equipment. We needed an adaptable system to install the engine/front suspension assemblies and the rear suspension assemblies. We found a solution by utilizing the capabilities of 6-axis industrial robots to make the core components of the equipment simpler; many of the functions of a traditional machine can now be accomplished by the robot. We were able to vary install position to optimize handling characteristics and accommodate the model-to-model varieties on the same production line.
2015-04-14
Technical Paper
2015-01-1311
Leland Decker, James Truskin
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within Chrysler, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from Chrysler’s BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of Chrysler vehicles.
2015-04-14
Technical Paper
2015-01-0551
Qiuren Chen, Haiding Guo, John V. Lasecki, Xuming Su, John J. Bonnen
The fatigue strength and failure behavior of A5754-O adhesively bonded single lap joints by a hot-curing epoxy adhesive were investigated in this paper. The single lap joints tested include balanced substrate joints (meaning same thickness) and unbalanced substrate joints, involving combinations of different substrate thicknesses. Cyclic fatigue test results show that the fatigue strength of bonded joints increase with the increasing substrate thickness. SEM and Energy Dispersive X-ray(EDX) were employed to investigate the failure mode of the joints. Two fatigue failure modes, substrate failure and failure within the adhesive were found in the testing. The failure mode of the joint changes from cohesive failure to substrate failure as the axial load is decreased, which reveals a fatigue resistance competition between the adhesive layer and the aluminum substrate.
2015-04-14
Technical Paper
2015-01-1299
Rod Emery
There is increasing pressure for manufacturers to go “green.” Automotive OEMs are improving their own sustainability practices and demanding environmental accountability from their vendors. Sustainable manufacturing is defined by the U.S. Department of Commerce as the creation of manufactured products using processes that: 1. Minimize negative environmental impacts 2. Conserve energy and natural resources 3. Are safe for employees, communities and consumers 4. Are economically sound Installing low-energy lighting and adding recycling bins have had a positive effect, but manufacturers must take a comprehensive view of sustainability to have a continuing impact. This white paper will address some “out of the box” methods to improve sustainability of automotive assembly. Case study data will be included with examples of applications in each area. 1. Minimize Negative Environmental Impacts 1.1.
2015-04-14
Technical Paper
2015-01-0318
Sonu Thomas, Krishnan kutty, Vinuchackravarthy Senthamilarasu
Dense depth estimation is a critical application in the field of robotics and machine vision where the depth perception is essential. Unlike traditional approaches which use expensive sensors such as LiDAR (Light Detection and Ranging) devices or stereo camera setup, the proposed approach for depth estimation uses a single camera mounted on a rotating platform. This proposed setup is an effective replacement to usage of multiple cameras, which provide around view information required for some operations in the domain of autonomous vehicles and robots. Dense depth estimation of local scene is performed using the proposed setup. This is a novel, however challenging task because baseline distance between camera positions inversely affect common regions between images. The proposed work involves dense two view reconstruction and depth map merging to obtain a reliable large dense depth map.
2015-04-14
Technical Paper
2015-01-0459
Vesna Savic, Louis Hector, Hesham Ezzat, Anil Sachdev, James Quinn, Ronald Krupitzer, Xin Sun
This paper presents an overview of a four-year project on integrated computational materials engineering (ICME) for third generation advanced high-strength steels (3GAHSS) development. Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific focus of the individual tasks is on multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, assembly, design optimization, integration and technical cost modeling. The integrated approach is illustrated using a 980 grade transformation induced plasticity (TRIP) steel with a two-step quenching and partitioning (Q&P) heat treatment as an example.
2015-04-14
Technical Paper
2015-01-1297
Harveer Singh Pali, Naveen Kumar, Amar Deep
ABSTRACT: Biodiesel production has been getting global awareness since Petroleum prices are escalating continuously. As biodiesel is gaining considerable demand, standards are vital for its commercialization and market introduction. Feedstocks availability has posed serious challenges, thus need for non-edible and unexplored feedstocks is required. In Indian context, Biodiesel is produced using sal seed oil which is potentially available in Indian forest as a non-edible feedstock. The present paper deals with production optimization using design of experiments and fuel property characterization of Sal biodiesel (sal methyl esters). Transesterification process parameters like catalyst concentration (% w/w), Oil to Methanol molar ratio, reaction time (min) and reaction temperature (oC) were considered as the factors and the response was taken as the Yield (% w/w). Experiment matrix with several combinations of factors was generated. The results of the experimental matrix were analyzed.
2015-04-14
Technical Paper
2015-01-0530
Mikko Joonas Kähkönen, Emmanuel De Moor, John Speer, Grant Thomas PhD
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C 1.5Mn 1.5Si and 0.4C 1.5Mn 1.5Si compositions. Two step Q&P treatments following full austenitization were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C and the results were compared with literature data for 0.2C 1.5Mn 1.5Si Q&P treated steels. The comparison shows that increasing the carbon content from 0.2 wt pct to 0.4 wt pct increases the ultimate tensile strength by 140 MPa/0.1 wt pct C up to 1610 MPa without significantly decreasing ductility. Increased alloy carbon content did not substantially increase retained austenite fractions. The best combinations of UTS and TE were obtained using short partitioning times.
2015-04-14
Technical Paper
2015-01-0582
Deepak Ranjan Bhuyan, Sreekanth Netapalli, Sathya Dev, Soundarya Srinivasan
Springback prediction is challenging for Automotive Industry due to use of High Strength Steel (HSS). Automotive OEMs are working to reduce the springback effect of sheet metal stampings caused due to elastic behavior of materials with the help of changes to manufacturing process and part geometry. Use of HSS has grown due to improved passive safety (higher strength) and reduced vehicle weight. This on the other hand tends to intensify the springback effect, as the HSS materials have a higher elastic limit. Recent development in FEA studies made it possible for the industry to rely on stamping simulation. There is always a gap between the springback predicted from stamping simulation and the actual stamped part. Currently FEA technique is not able to accurately predict this gap. The objective of this study is to minimize this gap using DFSS method for predicting the springback and optimizing the simulation parameters with the help of LS-Dyna FEM tool.
2015-01-14
Technical Paper
2015-26-0019
Werner Bick, Cagri Cevik, Christoph Steffens
Abstract In order to minimize the development and production costs in the automotive industry, despite steadily increasing variety of models and applications offered by the OEMs, the pressure on standardization of components and production processes is increasing continuously. As a direct consequence, modular engine families are already established with high degrees of common parts and kits as well as standardized interfaces for all vehicle platforms by most manufacturers these days. At the same time, the world adopted and announced massive legal demands concerning the reduction of CO2 emissions for the entire vehicle fleet. In addition to the optimization of the combustion process, the exhaust gas aftertreatment and thermal management, the use of improved and more resilient materials for higher reduction of mechanical friction leads to a significant amount of the realized lowering in fuel consumption respective CO2 emissions.
2015-01-14
Technical Paper
2015-26-0061
Sanjay Nibandhe
Abstract The paper presents integrated approach to Automobile Assembly Process. The approach describes about “Production Process Simulations” for New Products under development. This leads towards design verification during early prototype assembly process establishment for newly developed automobile vehicles and its control plan which regulates to final production practice. In recent years the Indian automotive business is expanding and with growing needs of faster new product development, the cycle time reduction becomes very crucial for environmental and economic reasons. The Lean production assembly and robust engineering processes are optimized in this approach. It's an advanced mechanism to identify process failures during final production setup. The experimentation has resulted towards establishing micro level study and critical stages to be captured well in advance for better planning.
2015-01-14
Technical Paper
2015-26-0069
Srideep Chatterjee, Ravi Chandra Kyasa, Nithin Reddy Gopidi, Prakash Prashanth Ravi
Abstract Every organization needs to effectively manage its data collection and analysis process in order to efficiently collaborate on a global scale. This paper describes a model for standardizing the data collection and analysis process and specifically deals with two challenges in this regard: 1) A method for standardization of the nomenclature of different physical parameters measured during a typical engine test. This is essential for processing data from facilities spread across the globe to run them through a standard set of calculations. The process of storing and performing a given set of complex processes on the data while allowing analysts to view the steps of the processing in a transparent intuitive manner is also described in the paper. 2) Building on the first point, the paper also describes a process for performing a standard set of data quality checks on data as it is being collected. This allows for detection of issues in the data on a real-time basis.
2015-01-14
Technical Paper
2015-26-0074
Dhiyaneswar Rani, A K Saravanan, Mohammad Rafiq Agrewale, B Ashok
Abstract Material handling is a major section in all the industries especially for delicate and huge components. Here in this industry they are using pneumatics system to tilt the component for certain angle so that operator will be able to do the further operation in the line. Pneumatic system needs compressed air for running the system, which in turn requires electricity to compress the air using an air compressor. Due to frequent power shutdowns many industries are facing problem to run their manufacturing unit peacefully. As an alternate they are using generators which require fuel to generate power. This adds excess cost for manufacturing the products and demand for fuel is also increasing day by day. So to avoid all this problem with a one step solution, dependability of energy resources has to be minimized. For avoiding the usage of energy resources the usage of pneumatics and compressed air has to be reduced.
2015-01-14
Technical Paper
2015-26-0115
MV Rajasekhar, J Perumal, Samir Rawte, Nabin Nepal
Abstract In current scenario importance of fuel efficient vehicles, lesser emissions & energy efficiency are the major considerations for any vehicle manufacturer. To meet these expectations vehicle manufacturer are exploring alternate powertrains to reduce emissions and produce better fuel efficient vehicles. For any vehicle manufacturer component cost, weight and package volume are the major driving factors for success. This is even true for latest upcoming hybrid and electric vehicles as well. To gain advantage and introduce products faster, OEMs are inclined to electrify their existing platforms to compete with other manufacturers. To convert existing vehicles into hybrid vehicles, all the major components like e machine, High voltage battery, power electronics etc. needs to be carefully packaged along with existing components in the same package space.
2015-01-14
Technical Paper
2015-26-0239
Azeez Ahmed, Gopalakrishna Deshpande, Varghese Manu Varghese, Ramakrishnan Rangaswamy, Prakash Prashanth Ravi
Abstract The engine research and development has a significant contribution to meet the stringent emission norms and the changing global market demands. Leveraging the available virtual engineering methods to improve performance, velocity, quality and diminish the lead time is the key for any global brand to stay in the competition. It is the key element to reduce the research and development costs substantially by virtually developing the idea as it is conceived. Engine development test cells consist of expensive test and measurement systems which demand skilled labor and advanced equipment. Effective utilization of the test cells is essential to meet the scheduled project deadlines and cost targets. Engine Design process and tools when used effectively can increase the efficiency and lower the test cell operation costs substantially. This paper discusses the examples for this application in the area of engine installation, sensitive instrumentation/assembly.
2015-01-14
Technical Paper
2015-26-0175
Sajeev Silvester, Alex Lakic, Michael Buckley
Abstract Dimensional distortion, cosmetic distortion issues can arise during heating and cooling in the paint shop processing of car bodies. A car body can be in perfect cosmetic condition as it leaves the BIW facility, yet develop distortion defects during painting. Traditionally such issues have only been detectable on new car body designs by building and painting prototypes of a new design. The timing of such activities, by their very nature, mean that precious little time is available to address these issues by design changes in today's condensed new vehicle programmes. The result is often a vehicle entering production with partial resolution of an issue, accompanied by on-going product rework and rectification activities throughout the lifecycle of the product. This created the need for developing a CAE simulation tool which could predict these issues very early during the virtual CAE build phases of a vehicle program itself.
Viewing 1 to 30 of 8388