Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 8410
2015-04-14
Technical Paper
2015-01-0701
Anupam Vivek, Bert Liu, Daniel Sakkinen, Mark Harris, Glenn Daehn
Vaporizing Foil Actuators (VFA) are based on the phenomenon of rapid vaporization of thin metallic foils and wires caused by passage of a capacitor bank-driven current, on the order of 100 kAmps. The burst of the conductor is accompanied with a high-pressure pulse which, as in the case of VFA, can be used for working metal at high strain rates. VFA have been applied toward a variety of impulse-based metal working operations such as collision welding, embossing, shearing, dynamic powder consolidation, shape calibration, and closed-die forming. While other applications are discussed briefly, this paper focuses on the use of VFA for collision welding of dissimilar metals, in particular, aluminum and steel. Aluminum alloy 6061 sheets of 1mm thickness were launched to velocities in excess of 800 m/s with input electrical energy of 8 kJ into 0.0762mm thick, dog-bone shaped aluminum foil actuators.
2015-04-14
Technical Paper
2015-01-1299
Rod Emery
There is increasing pressure for manufacturers to go “green.” Automotive OEMs are improving their own sustainability practices and demanding environmental accountability from their vendors. Sustainable manufacturing is defined by the U.S. Department of Commerce as the creation of manufactured products using processes that: 1. Minimize negative environmental impacts 2. Conserve energy and natural resources 3. Are safe for employees, communities and consumers 4. Are economically sound Installing low-energy lighting and adding recycling bins have had a positive effect, but manufacturers must take a comprehensive view of sustainability to have a continuing impact. This white paper will address some “out of the box” methods to improve sustainability of automotive assembly. Case study data will be included with examples of applications in each area. 1. Minimize Negative Environmental Impacts 1.1.
2015-04-14
Technical Paper
2015-01-0238
Nick Smith
The concept of digital continuity continues into the Automotive wire harness manufacturing environment. The validation of manufacturing options and comparison of costs ensures smart business decisions and avoids manufacturing capacity challenges. Leading Automotive OEMs and Tier 1s have realized this and leverage connections to and from business systems to deploy valid manufacturing processes.
2015-04-14
Technical Paper
2015-01-0505
Miguel Angel Reyes Belmonte, Colin D. Copeland, Drummond Hislop, George Hopkins, Adrian Schmieder, Scott Bredda, Sam Akehurst
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing at the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power density ratios. In this scenario, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
2015-04-14
Technical Paper
2015-01-0459
Vesna Savic, Louis Hector, Hesham Ezzat, Anil Sachdev, James Quinn, Ronald Krupitzer, Xin Sun
This paper presents an overview of a four-year project on integrated computational materials engineering (ICME) for third generation advanced high-strength steels (3GAHSS) development. Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific focus of the individual tasks is on multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, assembly, design optimization, integration and technical cost modeling. The integrated approach is illustrated using a 980 grade transformation induced plasticity (TRIP) steel with a two-step quenching and partitioning (Q&P) heat treatment as an example.
2015-04-14
Technical Paper
2015-01-0507
Taro Nakamura
The plans for the new lines at a power-train Plant, which were designed as a benchmark for manufacturing lines in developed countries, included a requirement for a large reduction in initial investment. To improve the competitiveness of module machines, its main machining equipment, We aimed to reduce the number of machining units through such steps as concurrent machining of multiple work pieces and minimization of transfer time. This project made the intended reductions, which were facilitated by development of exclusive jigs for cylinder heads and blocks. It also shortened loading and unloading times significantly through the development of an exclusive transfer machine for multiple spindle machining equipment made specifically for cylinder heads.
2015-04-14
Technical Paper
2015-01-0705
Koichi Taniguchi, Hiroshi Matsuda, Rinsei Ikeda, Kenji Oi
High joint strength of resistance spot welds is necessary for high rigidity and reliability of car body using ultra high strength steel (UHSS) sheets with tensile strength over 980MPa. We developed “pulsed current pattern” consisting the combination of short cool time and short-time high-current post-heating. This new process can achieve high cross tension strength (CTS) with sufficient tensile shear strength (TSS) in shorter welding time than conventional temper pattern. This paper presents the heating pattern and the effect on the joint strength by pulsed current pattern. Finite element analysis (FEA) for post-heating patterns was conducted using SORPAS. Temperature dependent material properties of 1180MPa grade steel were taken into account. FEA shows that the short-time high-current post-heating leads to rapid heating in nugget and heat affected zone (HAZ) compared to conventional temper pattern consisting long-time low-current post-heating.
2015-04-14
Technical Paper
2015-01-1736
Justin Cartwright, Ahmet Selamet, Robert Wade, Keith Miazgowicz, Clayton Sloss
The heat rejection rates and skin temperatures of a liquid cooled exhaust manifold on a Ford 2011 3.5L TiGTDI engine are determined experimentally using an external cooling circuit, which is capable of controlling the manifold coolant inlet temperature, outlet pressure, and flow rate. The manifold is equipped with a jacket that surrounds the collector region and is cooled with an aqueous solution of ethylene glycol-based antifreeze to reduce skin temperatures. Results were obtained by sweeping the manifold coolant flow rate from 2.0 to 0.2 gpm for a total of 12 engine operating points of increasing brake power up to 220 hp. The nominal inlet temperature and outlet pressure were 85 degC and 13 psig, respectively. Data were collected under steady conditions and time averaged. For the majority of operating conditions, the manifold heat rejection rate is shown to be relatively insensitive to changes in manifold coolant flow rate.
2015-04-14
Technical Paper
2015-01-0524
Maniraj Perumal, Baskar Anthonysamy, Ashokkumar Sundaramoorthy
This method and its special process are particularly suited for the production of Porous free combustion chamber proto type aluminium cylinder head casting. Current methods for producing porus free combustion chamber are graphite coating and CI/Cu metal chill which are moderately effective in achieving porus free combustion chamber. However, these current methods have serious drawbacks like high rejections due to blow holes/gas porosity generated from graphite coating and fine porosity due to prolonged cooling because of slow rate of cooling while peak temperature of metal chills. Using a typical aluminum alloy such as A356 or EN AC-AlSi7mg for prototype casting in regular sand casting practice, large SDAS (> 50 Чm) and medium amount of hydrogen content are possible in a prototype head.
2015-04-14
Technical Paper
2015-01-0598
Xiaona Li, Changqing Du, Yongjun Zhou, Xin Xie, Xu Chen, Yaqian Zheng, Thomas Ankofski, Rodrigue Narainen, Cedric Xia, Thomas Stoughton, Lianxiang Yang
Accurate forming limit strain determination of aluminum sheet metal is an important topic which has not been fully solved by the industry. Also, if the draw bead effects (enhanced forming limit behaviors) reported on steel sheet metals also happens on aluminum sheets metals is not fully understand. This paper introduce an experimental study on draw bead effect of aluminum sheet metals by measuring the forming limit strain zero (FLD0)of the sheet metal. Two kind of aluminum, AL 6016-T4 and AL 5754-0, are used. Virgin material, 40% draw bead material and 60% draw bead material situations are tested for each kind of aluminum. Marciniak punch tests are proceeded to create plane strain condition. A dual camera Digital Image Correlation (DIC) system is used to record and measures the deformation distribution history during the punch test. The on-set necking timing is determined directly from surface shape change. The FLD0 of each test situation is reported in this article.
2015-04-14
Technical Paper
2015-01-1297
Harveer Singh Pali, Naveen Kumar, Yahaya Alhassan, Amar Deep
ABSTRACT: Biodiesel production has been getting global awareness since Petroleum prices are escalating continuously. As biodiesel is gaining considerable demand, standards are vital for its commercialization and market introduction. Feedstocks availability has posed serious challenges, thus need for non-edible and unexplored feedstocks is required. In Indian context, Biodiesel is produced using sal seed oil which is potentially available in Indian forest as a non-edible feedstock. The present paper deals with production optimization using design of experiments and fuel property characterization of Sal biodiesel (sal methyl esters). Transesterification process parameters like catalyst concentration (% w/w), Oil to Methanol molar ratio, reaction time (min) and reaction temperature (oC) were considered as the factors and the response was taken as the Yield (% w/w). Experiment matrix with several combinations of factors was generated. The results of the experimental matrix were analyzed.
2015-04-14
Technical Paper
2015-01-1723
Dieter Gabriel, Thomas Hettich
Fuel economy legislation is requiring further improvements to piston friction reduction as well as additional gains in thermal efficiency. A piston material change from aluminum to steel is enabling advancements in both demands. Furthermore, steel material properties lead to increased piston strength, robustness and durability. All this can be achieved at a lower compression height compared to an aluminum reference piston. Therefore, piston mass can be reduced despite the increase in material density. Since steel pistons require cooling of the combustion bowl region and the ring belt just like the aluminum counterpart, MAHLE implemented a new innovative metal joining technology by using laser welding to generate a cooling gallery. The TopWeld concept offers design flexibility which cannot be matched by any other welding process.
2015-04-14
Technical Paper
2015-01-0733
Nichole Verwys, Jesse Fritcher, Thomas DeMass
Dark, high gloss decorative finishes (i.e. piano black) are gaining increased applications and demands in vehicle interiors; due to interior stylists desire for this look . One significant concern with this trend is that scratches and other appearance-related defects such as orange peel (waviness) are more apparent to the customer. To address this issue, a highly scratch-resistant 2K clearcoat formulation was developed to minimize visible surface scratches, while also yielding minimal orange peel and exceptional DOI (distinctness of image); all while being applied using typical application techniques in the part finishing market. This output was accomplished by first bench-marking the consumer electronics market for appearance and scratch resistance, and then setting targets through that research.
2015-04-14
Technical Paper
2015-01-0318
Sonu Thomas, Krishnan Kutty, Vinuchackravarthy Senthamilarasu
Dense depth estimation is a critical application in the field of robotics and machine vision where the depth perception is essential. Unlike traditional approaches which use expensive sensors such as LiDAR (Light Detection and Ranging) devices or stereo camera setup, the proposed approach for depth estimation uses a single camera mounted on a rotating platform. This proposed setup is an effective replacement to usage of multiple cameras, which provide around view information required for some operations in the domain of autonomous vehicles and robots. Dense depth estimation of local scene is performed using the proposed setup. This is a novel, however challenging task because baseline distance between camera positions inversely affect common regions between images. The proposed work involves dense two view reconstruction and depth map merging to obtain a reliable large dense depth map.
2015-04-14
Technical Paper
2015-01-0551
Qiuren Chen, Haiding Guo, John V. Lasecki, John Hill, Xuming Su, John J. Bonnen
The fatigue strength and failure behavior of A5754-O adhesively bonded single lap joints by a hot-curing epoxy adhesive were investigated in this paper. The single lap joints tested include balanced substrate joints (meaning same thickness) and unbalanced substrate joints, involving combinations of different substrate thicknesses. Cyclic fatigue test results show that the fatigue strength of bonded joints increase with the increasing substrate thickness. SEM and Energy Dispersive X-ray(EDX) were employed to investigate the failure mode of the joints. Two fatigue failure modes, substrate failure and failure within the adhesive were found in the testing. The failure mode of the joint changes from cohesive failure to substrate failure as the axial load is decreased, which reveals a fatigue resistance competition between the adhesive layer and the aluminum substrate.
2015-04-14
Technical Paper
2015-01-1313
Donald Jasurda
In the automotive world, thermal expansion and gravity on assembly processes in manufacturing often account for unexpected variation. Issues related to the effects of these forces can cause not just assembly issues, but can also be the cause of non-conformance and warranty problems later in the product life cycle. Using 3d CAD models, engineers can now take advantage of advances in simulation to predict the effect of both thermal forces and gravity on their assembly and processes before production. By designing out these influences through a combination of tooling, process and tolerance changes, manufacturers can reduce the costs stemming from these common issues. This whitepaper delves into the process of simulating the effect of both these forces on automotive structures using real life examples and models based on customer experiences.
2015-04-14
Technical Paper
2015-01-1612
Wei Liu, Gangfeng Tan, Jiafan Li, Xin Li, Fuzhao Mou, Yongqiang Ge
The hydraulic retarder is a significant auxiliary braking device for the heavy duty vehicle. Traditionally, cooling circulation of the hydraulic retarder was coupled with the engine cooling system, and the thermal energy of the transmission oil would be cooled by the engine radiator ultimately. For this scheme, radiator’s spare heat removal capacity could be fully utilized whereas the cooling system is very complicated and is hard to maintain. Furthermore, the corresponding of thermal management system lags behind the power change of the retarder. In this research, integrated cooling evaporation system is developed for the hydraulic retarder, which makes the cooling water contact with the transmission oil through the wall of the fixed wheel so that it can rapidly response to the thermal variation of the retarder, keep the stability of the oil temperature and meanwhile reduce the risk of cooling medium leakage.
2015-04-14
Technical Paper
2015-01-0737
Sadegh Poozesh, Nelson Akafuah, Kozo Saito
Lack of a precise control over paint droplets released from current coating sprayers has motivated this study to an atomizer capable of generating a uniform flow of mono-dispersed droplets. In the current study a numerical investigation based on CFD incorporating volume of fluid (VOF) multiphase model has been developed to capture interface between air and paint phases for a typical digital atomizer equipped with piezoelectric actuator. Effects of inlet flow rate and actuator frequency on ejected droplets characteristics, droplet diameter and their successive spacing, are studied in detail. It will be shown that for a determined flow rate of paint, there is an optimum actuator frequency in which droplet size is minimum. Finally, by looking at atomization mechanism, the most optimum flow rate with corresponding optimum frequency will be determined.
2015-04-14
Journal Article
2015-01-0744
Terrence Alger, Raphael Gukelberger, Jess Gingrich, Barrett Mangold
The use of cooled EGR as a knock suppression tool is gaining more acceptance worldwide. As cooled EGR become more prevelant, some challenges are presented for engine designers. In this study, the impact of cooled EGR on peak cylinder pressure was evaluated. A 1.6 L, 4-cylinder engine was operated with and without cooled EGR at several operating conditions. The impact of adding cooled EGR to the engine on peak cylinder pressure was then evaluated with an attempt to separate the effect due to advanced combustion phasing from the effect of increased manifold pressure. The results show that cooled EGR's impact on peak cylinder pressure is solely due to the knock suppression effect, with the result that an EGR rate of 25% leads to an almost 50% increase in peak cylinder pressure at a mid-load condition. When combustion phasing was held constant, increasing the EGR rate had no effect on PCP.
2015-04-14
Journal Article
2015-01-0537
Hong Tae Kang, Abolhassan Khosrovaneh, Xuming Su, Yung-Li Lee, Mingchao Guo, Chonghua Jiang, Zhen Li
Magnesium alloys have low weldability, thus self-piercing rivet (SPR) joint is one of options for joining them. This research investigates the fatigue performance of SPR for magnesium alloys including AZ31, AM30, and AM60. Lap-shear and coach peel specimens for these alloys are fabricated and tested for understanding fatigue performance of the joint. Structural stress – life (S-N) curves are developed with the test results. This approach is validated with simple structural specimens that include three or two joints in each specimen. It is also intensively studied to identify the proper representation of the joint in finite element models.
2015-04-14
Technical Paper
2015-01-0582
Deepak Ranjan Bhuyan, Sreekanth Netapalli, Sathya Dev, Soundarya Srinivasan
Springback prediction is challenging for Automotive Industry due to use of High Strength Steel (HSS). Automotive OEMs are working to reduce the springback effect of sheet metal stampings caused due to elastic behavior of materials with the help of changes to manufacturing process and part geometry. Use of HSS has grown due to improved passive safety (higher strength) and reduced vehicle weight. This on the other hand tends to intensify the springback effect, as the HSS materials have a higher elastic limit. Recent development in FEA studies made it possible for the industry to rely on stamping simulation. There is always a gap between the springback predicted from stamping simulation and the actual stamped part. Currently FEA technique is not able to accurately predict this gap. The objective of this study is to minimize this gap using DFSS method for predicting the springback and optimizing the simulation parameters with the help of LS-Dyna FEM tool.
2015-04-14
Journal Article
2015-01-0435
S. Khodaygan, M. Hafezipour
Kinematic accuracy of robots end-effector is decreased by many uncertainties. In order to design and manufacture robots with high accuracy, it is essential to know the effects of these uncertainties on the motion of robots. Uncertainty analysis is a useful method which can estimate deviations from desired path in robots caused by uncertainties. This paper presents an applied formulation based on Direct Linearization Method (DLM), for 3D statistical uncertainty analysis of open¬¬-loop mechanisms and robots. The maximum normal and parallel components of the position error on the end-effector path are introduced. In this paper, uncertainty effects of both linear and angular variations in performance of spatial open-loop mechanisms and robots are considered.
2015-04-14
Journal Article
2015-01-0510
Joy Hines Forsmark, Zachary Dowling, Kelsey Gibson, Caroline Mueller, Larry Godlewski, Jacob Zindel, James Boileau
Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
2015-04-14
Journal Article
2015-01-0522
Robert Cryderman, Danielle Rickert, Kelly Puzak, John Speer, David Matlock, Michael Burnett
Fracture split forged steel connecting rods are utilized in many new high performance automotive engines to increase durability. Higher strength levels are needed as the power density increases. Fracture splitting without plastic deformation is necessary for manufacturability. Metallurgical design is a key for achieving the required performance levels. Several medium carbon steels containing 0.07 wt pct P, 0.06 wt pct S and various amounts of Mn, Si, V, and N were produced by vacuum induction melting laboratory heats and hot working the cast ingots into plates. The plates were cooled at varying rates to simulate typical cooling methods after forging. Microstructures were generally ferrite and pearlite as evaluated by light optical and scanning electron microscopy.
2015-04-14
Journal Article
2015-01-0530
Mikko Joonas Kähkönen, Emmanuel De Moor, John Speer, Grant Thomas
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C 1.5Mn 1.5Si and 0.4C 1.5Mn 1.5Si compositions. Two step Q&P treatments following full austenitization were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C and the results were compared with literature data for 0.2C 1.5Mn 1.5Si Q&P treated steels. The comparison shows that increasing the carbon content from 0.2 wt pct to 0.4 wt pct increases the ultimate tensile strength by 140 MPa/0.1 wt pct C up to 1610 MPa without significantly decreasing ductility. Increased alloy carbon content did not substantially increase retained austenite fractions. The best combinations of UTS and TE were obtained using short partitioning times.
2015-04-14
Journal Article
2015-01-0525
Constantin Chiriac, Ming F. Shi
Automotive structural parts made out of Advanced High Strength Steel (AHSS) are often produced in a multistage forming process using progressive dies or transfer dies. During each forming stage the steel is subjected to work hardening, which affects the formability of the steel in the subsequent forming operation. Edge flanging and in-plane edge stretching operations are forming modes that are typically employed in the last stage of the multistage forming processes. In this study, the multistage forming process was simulated by pre-straining a DP980 steel in a biaxial strain path with various strain levels followed by edge flanging and in-plane edge stretching. The biaxial prestrains were obtained using the Marciniak stretch test and edge flanging and in-plane edge stretching were accomplished by the hole expansion test using a flat punch and a conical punch, respectively.
2015-04-14
Journal Article
2015-01-0706
Zheng-Ming Su, Pai-Chen Lin, Wei-Jen Lai, Jwo Pan
Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of low carbon steel (LC) and high strength low alloy (HSLA) steel sheets was investigated. Micrographs show that the failure modes of laser welds under quasi-static and cyclic loading conditions were quite different. Under quasi-static loading conditions, the upper sheet was separated at the base metal region. Under low-cycle loading conditions, the weld failure appeared to be initiated from the pre-existing crack tips and then failed by the ductile fracture through the upper right (LC) sheet. Under high-cycle loading conditions, the weld failure appeared to be initiated from the left pre-existing crack tip and then failed by the kinked fatigue crack propagating through the lower left sheets (HSLA). In general, the fatigue lives are longer for the specimens failed through the HSLA steel sheets than those failed through the LC steel sheets.
2015-04-14
Journal Article
2015-01-1754
Wei-Jen Lai, Jwo Pan
The analytical stress intensity factor and J integral solutions for welds in lap-shear specimens of two dissimilar sheets are presented in the normalized forms. The analytical solutions were selectively validated by two-dimensional finite element analyses. The interface crack parameters, the stress intensity factor solutions, and the J integral solutions for welds in lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the combination of aluminum and copper sheets of different thickness ratios are then presented for convenient fracture and fatigue analyses. The transition thickness ratios for critical crack locations for different combinations of dissimilar materials are then determined from the analytical solutions. The transition weld widths for applicable ranges of the weld widths for the analytical solutions based on the beam bending theory are also presented.
2015-04-14
Technical Paper
2015-01-1371
Samuel T. Bartlett
With the many model variations produced on the same production line because of increasing power train options, fuel efficiency targets, performance and customer demands we saw limitations with our existing suspension mount equipment. Layout options were limited due to guided shifts and transfers. Large supporting frame work took up valuable floor space. Model wheelbase sizes and suspension pallets were limited to the model requirements of the original equipment. We needed an adaptable system to install the engine/front suspension assemblies and the rear suspension assemblies. We found a solution by utilizing the capabilities of 6-axis industrial robots to make the core components of the equipment simpler; many of the functions of a traditional machine can now be accomplished by the robot. We were able to vary install position to optimize handling characteristics and accommodate the model-to-model varieties on the same production line.
2015-04-14
Technical Paper
2015-01-0506
Toshiyuki Kondo, Shinichiro Watanabe, Nobuhiro Nanba
To satisfy the demand for assembly automation, flexible response to diversification of models and production volume changes, the concept of an “Innovative Automation Cell” was thought up as an innovative assembly production system, which can be used in place of conventional conveyor lines—a mode of production in use since the Industrial Revolution. This report describes the “Innovative Automation Cell” concept that can realize more than double production efficiency compared with manual assembly, and outlines of the core technologies. Development results and future issues are also discussed.
Viewing 1 to 30 of 8410