Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 9009
2017-10-31
White Paper
WP-0003
Actuators are the key to sophisticated machines that can perform complex tasks previously done by humans.
2017-10-13
Technical Paper
2017-01-5012
Harveer Singh Pali, Shashi Prakash Dwivedi
Abstract The present work deals with the fabrication and tribological testing of an aluminium/SiC composite. Fabrication was done using two techniques; mechanical stir casting and electromagnetic stir casting. Metal matrix composite (MMC) was fabricated using aluminium as a matrix and SiC as reinforcement in varying weight percentages. The wear and frictional properties of the MMC were studied by performing dry sliding wear test using a pin-on-disc wear tester for both types of samples. Wear rate retards with the increase the percentage of reinforcement whereas it improves with the addition of normal force. At same time frictional coefficient upsurges by increasing the normal force and percentage of reinforcement. Increasing percentage of reinforcement and using electromagnetic stir casting process obtained the higher frictional coefficient and lower wear rate.
2017-10-08
Technical Paper
2017-01-2357
Mark Devlin, Jeffrey Guevremont, Chip Hewette, Marc Ingram, Grant Pollard, William Wyatt
Abstract Different mechanical components in a vehicle can be made from different steel alloys with various surface treatments or coatings. Lubricant technology is needed to prevent wear and control friction on all of these different surfaces. Phosphorus compounds are the key additives that are used to control wear and they do this by forming tribofilms on surfaces. It has been shown that different operating conditions (pressures and sliding conditions) can influence the formation of tribofilms formed by different anti-wear additives. The effect of surface metallurgy and morphology on tribofilm formation is described in this paper. Our results show that additive technology can form proper tribofilms on various surfaces and the right combination of additives can be found for current and future surfaces.
2017-10-08
Technical Paper
2017-01-2328
Yuanxu Li, Karthik Nithyanandan, Zhi Ning, Chia-Fon Lee, Han Wu
Abstract Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
2017-10-08
Technical Paper
2017-01-2428
Peilin Dai, Ying Huang, Donghao Hao, Ting Zhang
Abstract The vehicle driveline suffers low frequency torsional vibration due to the abrupt change of input torque and torque fluctuation under variable frequency. This problem can be solved by model based control, so building a control oriented driveline model is extremely important. In this paper, an on-line recursive identification method is proposed for control oriented model and validated based on an electric car. First of all, the control oriented driveline model is simplified into a six-parameter model with double inertia. Secondly, based on stability analysis, motor torque and motor speed are chosen as input signal for on-line model identification. A recursive identification algorithm is designed and implemented based on Simulink. Meanwhile a detail model of the vehicle which considering driveline parameter variation is built based on ADAMS. Thirdly, on-line identification is conducted by using co-simulation of ADAMS and Simulink.
2017-09-29
Technical Paper
2017-01-5011
Raviprakash Shankaranarayana
Abstract Process Parameters play a vital role in product quality of Injection Molded components. Variation in process parameters will lead to Injection Molded manufacturing defects like Sink Mark, Flow Mark, Silver Streak, Flash, Warping, Weld lines, Jetting, voids, Short Shot & Bubbles. This manuscript is innovative because suppliers (Tier 1 and Tier 2) do not use DoE for standardization of their process parameters in Injection Molding and High Pressure Die Casting. They do trial and error method to arrive at the process parameters which is error prone and time consuming. The variation of process parameters can be optimized using Six Sigma approach, a structured methodology which is Process focused & data driven approach.
2017-09-23
Technical Paper
2017-01-1987
Renjie Li, Shengbo Li, Hongbo Gao, Keqiang Li, Bo Cheng, Deyi Li
Abstract Vehicle automation is a fundamental approach to reduce traffic accidents and driver workload. However, there is a notable risk of pushing human drivers out of the control loop before automation technology fully matures. Cooperative driving (or vehicle co-piloting) is a novel paradigm which is defined as the vehicle being jointly navigated by a human driver and an automatic controller through shared control technology. Indirect shared control is an emerging shared control method, which is able to realize cooperative driving through input complementation instead of haptic guidance. In this paper we first establish an indirect shared control method, in which the driver’s commanded input and the controller’s desired input are balanced with a weighted summation. Thereafter, we propose a predictive model to capture driver adaptation and trust in indirect shared control.
2017-09-22
Technical Paper
2017-01-5010
H.J. Liu, X.D. Zhang
Abstract In order to research the effect of process parameters (laser power, welding speed, wire-feed speed, spot diameter) on mechanical properties of Zn-coated Steel Laser Brazing Lap Joint for vehicle, the influence of welding parameters on energy input of brazing seam cross section was theoretically analyzed, and then a great number of laser brazing experiments of 0.7mm galvanized steel was carried out. After that, the tensile strength and micro-hardness tests were also done for well-formed joints of galvanized steel formed in the laser brazing. The results show that joints with good mechanical properties and surface morphology can be formed when laser power is in the range of 2500-3200W and the other parameters keep in a specified range. Joint performance significantly reduces when the value of wire-feed speed exceeds 3.0m/min for that a wider brazing seam cross section can’t be formed.
2017-09-19
Technical Paper
2017-01-2148
Ho-Sung Lee
In this paper, manufacturing of launcher structural components with superplastic forming (SPF) and solid state welding technologies is presented with several examples. Some of high strength aerospace alloys, like aluminum, titanium and superalloys, are known to have superplasticity so that complex shapes of aerospace components can be produced with this technology. A combination of superplastic forming and solid state welding processes produces lighter and stiffer components than one manufactured with conventional machining and welding. Solid state welding is an attractive method to weld materials without melting where mechanical properties are important since the welding interface is homogeneous without liquid phases.
2017-09-19
Technical Paper
2017-01-2166
Hendrik Susemihl, Christoph Brillinger, Sven Philipp Stürmer, Stephan Hansen, Christian Boehlmann, Simon Kothe, Jörg Wollnack, Wolfgang Hintze
Abstract The demand for higher production rates in aircraft industry requests more flexible manufacturing solutions. A bottleneck in production is the machining of large components by vast portal machines. Time-consuming referencing processes result in non-satisfying cost-effectiveness of these high-invest-machines. Mobile robot-based solutions are able to operate simultaneously which increases the productivity significantly. However, due to the limited workspace of robots, machining tasks have to be divided and long trajectories are separated in single overlapping segments. Thus high-accuracy referencing strategies are required to achieve desired production tolerances. In this publication different advanced optical reference strategies will be discussed taking the inhomogeneous behavior of a mobile robotic machining system into account.
2017-09-19
Technical Paper
2017-01-2017
Catherine Ninah, Brian Strevens, Cole Barcia, Isabelle Labbe, Michael Frenna, Austin Faulconer, Keon Habbaba, Katherine Loundy, Louis Schaefer, Alexa Frost, Andrew Foran, Robert Brown, Luis Rabelo
Abstract The National Aeronautics and Space Administration (NASA) is preparing for a manned mission to Mars to test the sustainment of civilization on the planet Mars. This research explores the requirements and feasibility of autonomously producing fuel on Mars for a return trip back to Earth. As a part of NASA’s initiative for a manned trip to Mars, our team’s work creates and analyzes the allocation of resources necessary in deploying a fuel station on this foreign soil. Previous research has addressed concerns with a number individual components of this mission such as power required for fuel station and tools; however, the interactions between these components and the effects they would have on the overall requirements for the fuel station are still unknown to NASA. By creating a baseline discrete-event simulation model in a simulation software environment, the research team has been able to simulate the fuel production process on Mars.
2017-09-19
Technical Paper
2017-01-2022
Katherine Loundy, Louis Schaefer, Andrew Foran, Catherine Ninah, Khristopher Bandong, Robert Brown, Hunter Heston, John-Paul Steed, William Young, Mark Heinrich, Luis Rabelo
Abstract The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
2017-09-19
Technical Paper
2017-01-2091
Leo Muijs, Manuela Snijders
Abstract The use of Collaborative Robots (Cobots) is an emerging technology that is developing at a fast pace. Within GKN Aerospace’s Fokker business a project is initiated to accelerate knowledge of application of this technology. Goal of the project is to get familiar with the technology and possibilities of a Cobot. The primary difference between Cobotics and a conventional Robotics approach is that the technology can safely exist in a human operating environment without caging or other hard guarding. Both Fokker Aerostructures and Fokker Landing Gear wanted to gain experience with this technology and worked together in the preparation of 2 projects to be showcased in their companies. Fokker Aerostructures concentrated on the application of handling of an Automatic Drilling Unit (ADU) for the production of the A350 Outboard Flap. Task of the Cobot was to pick-up an ADU from a table and insert the ADU in a drill jig.
2017-09-19
Technical Paper
2017-01-2096
Rainer Mueller, Matthias Vette, Aaron Geenen, Tobias Masiak
Abstract Assembly processes in aircraft production are difficult to automate due to technical risks. Examples of such technical challenges include small batch sizes and large product dimensions as well as limited work space for complex joining processes and organization of the assembly tasks. A fully automated system can be expensive and requires a large amount of programming knowledge. For these reasons, ZeMA believes a semi-automated approach is the most effective means of success for optimizing aircraft production. Many methods can be considered semi automation, one of which is Human-Robot-Collaboration. ZeMA will use the example of a riveting process to measure the advantages of Human-Robot-Collaboration systems in aircraft structure assembly. In the assembly of the aircraft aft section the pressure bulkhead is mounted with a barrel section using hundreds of rivets. This assembly process is a non-ergonomic and burdensome task in which two humans must work cooperatively.
2017-09-19
Technical Paper
2017-01-2095
Timothy Jackson
Abstract The advent of accuracy improvement methods in robotic arm manipulators have allowed these systems to penetrate applications previously reserved for larger, robustly supported machine architectures. A benefit of the relative reduced size of serial-link robotic systems is the potential for their mobilization throughout a manufacturing environment. However, the mobility of a system offers unique challenges in maintaining the high-accuracy requirement of many applications, particularly in aerospace manufacturing. Discussed herein are several aspects of mechanical design, control, and accuracy calibration required to retain accurate motion over large volumes when utilizing mobile articulated robotic systems. A number of mobile robot system architectures and their measured static accuracy performance are provided in support of the particular methods discussed.
2017-09-19
Technical Paper
2017-01-2093
Thorsten Dillhoefer
Ever increasing process applications inspire us, as suppliers of aircraft, structural-assembly, and equipment to design innovative and modular, manufacturing cells in compliance with modern specification. The result is the new highly flexible Aerospace application specific robot identified as “POWER RACe”. This paper describes how benchmarks for flexible automated drilling and fastening are being achieved with the Power RACe technology platform.
2017-09-19
Technical Paper
2017-01-2080
James Merluzzi, Isaac Bahr
Abstract Manually changing stringer-side tooling on an automatic fastening machine is time consuming and can be susceptible to human error. Stringer-side tools can also be physically difficult to manage because of their weight, negatively impacting the experience and safety of the machine operator. A solution to these problems has recently been developed by Electroimpact for use with its new Fuselage Skin Splice Fastening Machine. The Automatic Tool Changer makes use of a mechanically passive gripper system capable of securely holding and maneuvering twelve tools weighing 40 pounds each inside of a space-saving enclosure. The Automatic Tool Changer is mounted directly to the stringer side fastening head, meaning the machine is capable of changing tools relatively quickly while maintaining its position on the aircraft panel with no machine operator involvement.
2017-09-19
Technical Paper
2017-01-2077
John McClelland, Michael Morgan, Caroline McClory, Colm Higgins, Rory Collins, Adrian Murphy, Yan Jin
The need to drill several million holes per aircraft through composite and hybrid material stacks is a large challenge for the aerospace assembly process. The ability to produce high quality holes for the lowest tooling costs is at the forefront of requirements for aircraft assembly factories worldwide. Consequently, much research has been conducted into tool design and development, however, the effect of drilling platform characteristics has not been well covered in literature. Respectively, this research has compared the drilling abilities of a 5-axis precision CNC platform, a hybrid parallel kinematic machine and an articulated robotic arm fitted with a drilling module. In-process force measurement and post process hole and tool analysis methods were used to better understand the effect of static and dynamic platform characteristics on the achievable hole quality, cycle time and tool wear when drilling aerospace metal alloy stacks.
2017-09-19
Technical Paper
2017-01-2076
Dave Cobcroft
Paper Title: IPAC 180 Author: Thorsten Dillhoefer, Broetje-Automation GmbH Mailing Address: Broetje-Automation GmbH Am Autobahnkreuz 14 26180 Rastede Germany Phone: +49 (0) 4402 966-300 Fax: +49 (0) 4402 966-289 E-Mail: Thorsten.dillhoefer@broetje-automation.de Paper Content: To increase the accessibility and maintainability of our well known IPAC automation concept, we have designed a new version of this time proven system for 180 degree super panel assemblies. This new design includes also an innovative “T” lower ram configuration, high speed positioning, innovative operator interfaces, as well as an optimized platform concept to reduce the maintenance and set up of the machine thereby increasing overall throughput.
2017-09-19
Technical Paper
2017-01-2084
Karl-Erik Neumann
Abstract The evolving Aerospace manufacturing environment has created challenges that until now are not achievable with standard machine tools, large monumental gantry style machines and robots, or even manually operations. The solution is a lightweight, mobile/portable, and modular PKM (Parallel Kinematics Machine) solution, capable of machining to high tolerances, with minimal time and effort to relocate to a different area, at an affordable price With the carbon fiber PKM module mounted on a mobile platform, the module can simply be relocated using a standard pallet mover or forklift, to all areas in a factory. The module can also be removed from the mobile platform by two people, and mounted in a desired location and in any orientation “in hours”. The modularity of the PKM does not only make it possible to move it around in different production areas, but also makes it possible to reconstruct in an area that is not typically accessible by machines or robots.
2017-09-19
Technical Paper
2017-01-2082
Nirosh Jayaweera, Asitha Kulasekera, Posindu Maduranga, Thilina Kasun, Prabodh Seekkuarachchi, Janaka Sampath
Abstract Many components used in the aerospace industry are complex-shaped, without symmetric axes and parallel surfaces. Fabricating and repairing these components often require fixturing system to support manufacturing processes such as drilling, surface finishing, inspections and assembly. Currently available fixturing systems can be divided into dedicated and flexible fixtures. Among these, the flexible fixtures are suitable for rapidly changing fabricating processes and handling several complex-shaped components using same fixturing system. Background research suggested that the pin type fixturing system is the predominant design used in such applications to fix complex-shaped components. In pin type fixturing systems, force is applied to a single point of contact. This increases the pressure applied to the work piece and possibility of damaging these components. Further, conventional pins use rigid designs, which cannot adapt to the shape of the work piece.
2017-09-19
Technical Paper
2017-01-2099
Peter B. Zieve, Troy Gray, Christopher Wright
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
2017-09-19
Technical Paper
2017-01-2100
Carter L. Boad
A fully automated off-line cartridge filling station has been commissioned to support the new Boeing SAL production cell. The filing station uses automated fastener feed technology that is typically found on the machines themselves. Incorporating this technology off-line in place of the traditional manual handling processes extends the benefits of automation beyond the main manufacturing cell. A single operator is able to keep up with the demand of eight production fastening machines while maintaining the highest levels of accuracy and quality. Additional benefits to this application of automation include reduction of the operators exposure to risks associated with manual handling and repetitive tasks.
2017-09-19
Technical Paper
2017-01-2097
Josh Elrod
Abstract Automated collar and nut installation requires complex hardware on the wet side of the spar or wing panel. Wet side automatic tool changers are becoming common but an operator is often required to connect electrical, pneumatic and fastener feed system components. This is unacceptable in a lights-out cell, and any fully automatic solution must be reliable while satisfying demanding design requirements. Figure 1 Wet side anvil for nut installation. The 737 Spar Assembly Line (SAL) is a new lights-out machine cell at the Boeing factory in Renton, Washington. The SAL machines are equipped with a unique fully automatic tool changer (ATC). The wet side ATC interface is designed to automatically connect conventional as well as more unique services such as fastener feed. The fastener feed ATC module, called the “spinner,” rotates with the machine’s wet side rotary axis (C axis). It consists of a stack of rotors that rotate inside of a stationary annulus.
2017-09-19
Journal Article
2017-01-2165
Christian Moeller, Hans Christian Schmidt, Philip Koch, Christian Boehlmann, Simon Kothe, Jörg Wollnack, Wolfgang Hintze
Abstract The high demand of efficient large scale machining operations by concurrently decreasing operating time and costs has led to an increasing usage of industrial robots in contrast to large scaled machining centers. The main disadvantage of industrial robots used for machining processes is their poor absolute accuracy, caused by the serial construction, resilience of gearings and sensitivity for temperature changes. Additionally high process forces that occur during machining of CFRP structures in aerospace industry lead to significant path errors due to low structural stiffness of the robot kinematic. These errors cannot be detected by means of motor encoders. That is why calibration processes and internal control laws have no effect on errors caused by elastic deformation. In this research paper an approach for increasing the absolute accuracy of an industrial milling robot with help of a Laser Tracker system during machining tasks will be presented.
2017-09-19
Technical Paper
2017-01-2075
Burton Bigoney, Nicholas Huddleston
Abstract Electroimpact and Lockheed Martin have developed an automated drilling and fastening system for C-130J aft fuselage panels. Numerous design and manufacturing challenges were addressed to incorporate the system into Lockheed Martin’s existing manufacturing paradigm and to adapt Electroimpact’s existing line of riveting machines for manufacture of these legacy aircraft parts. Challenges to automation included design of a very long yet sufficiently rigid and lightweight offset riveting anvil for fastening around deep circumferential frames, automated feeding of very short, “square” rivets in which the length is similar to the head diameter, creation of part programs and simulation models for legacy parts with no existing 3d manufacturing data, and crash protection for the aircraft part from machine collisions, given the uncertainties inherent in the model and the unique geometry of the aircraft parts.
2017-09-19
Technical Paper
2017-01-2072
Yilian Zhang, Qingzhen Bi, Nuodi Huang, Long Yu, Yuhan Wang
Abstract Interference-fit riveting is a critical fastening technique in the field of aerospace assembly. The fatigue and sealing performance of the rivet joint are determined by the interference-fit level of the rivet joint. As a result, it is of great importance to measure the interference-fit level accurately and effectively. Conventional interference-fit level measurement methods can be divided into direct measurement (destructive test on test-piece) and indirect measurement (off-line dimensional measurement of upset rivet head). Both methods cannot be utilized in automatic riveting. In this paper, an on-line non-destructive measurement method is developed to measure the interference-fit level. By taking full advantage of servo-driving riveting integrated with force measurement, the force-deformation data of the deformed rivet can be obtained in real time. The recognized feature points from the force-deformation data can reflect the height of the upset rivet head.
2017-09-19
Technical Paper
2017-01-2073
Rick Calawa, Gavin Smith
Abstract The decision to replace a successful automated production system at the heart of a high volume aircraft factory does not come easily. A point is reached when upgrades and retrofits are insufficient to meet increasing capacity demands and additional floor space is simply unavailable. The goals of this project were to increase production volume, reduce floor space usage, improve the build process, and smooth factory flow without disrupting today’s manufacturing. Two decades of lessons learned were leveraged along with advancements in the aircraft assembly industry, modern machine control technologies, and maturing safety standards to justify the risk and expense of a ground-up redesign. This paper will describe how an automated wing spar fastening system that has performed well for 20 years is analyzed and ultimately replaced without disturbing the high manufacturing rate of a single aisle commercial aircraft program.
2017-09-19
Technical Paper
2017-01-2086
Justin Lo
Abstract The fast growth of air traffic and the need for lighter and more fuel efficient aircraft is driving the ramp-up of important new aircraft programs. These increases in production rates are driving manufacturers to seek out robust and reliable installation systems. They must also adapt to the unique requirements of composite materials that now have an increasingly important place in the aerospace industry. Moreover, environmental constraints continue to evolve and drive new regulations, such as REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) in Europe. As an example, this regulation is leading to the adoption of non-chromate surface treatments and paints for most applications. The legacy generation of fasteners does not comply with all of these new requirements.
2017-09-19
Technical Paper
2017-01-2085
Sergey Lupuleac, Nadezhda Zaitseva, Margarita Petukhova, Julia Shinder, Sergey Berezin, Valeriia Khashba, Elodie Bonhomme
Abstract The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Viewing 1 to 30 of 9009