Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 8952
2017-09-16
Journal Article
2017-01-9180
Johannes Wurm, Eetu Hurtig, Esa Väisänen, Joonas Mähönen, Christoph Hochenauer
Abstract The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
2017-07-10
Technical Paper
2017-28-1938
Shyam Sunder Manivannan, Gopkumar Kuttikrishnan, Rajesh Siva, Janarthanan C, G A Ramadass
Abstract The hybrid robot will be a battery operated four wheel drive vehicle with a rigid chassis for all terrain operation. The vehicle will be suited for various payloads based on applications with geological, atmospheric sensors and buried object identification at a depth of 8 to 100 m., etc. The vehicle will be remotely controlled through a RF signal, allows it to maneuver up to 5 km. The novelty of the design, is its capability for all terrain and ease of trafficability based on skid steering, self-alignment of sensors and vehicle traction in spite of possible inverted conditions and the vehicle can travel from land, snow, water and vice versa. The vehicle could be deployed for surveying coastline of water bodies, borderlines and also be extensively used in polar region for studying glacier aging and as advance vehicle for the convoys and polar mapping.
2017-07-10
Technical Paper
2017-28-1931
Shaul Hameed Syed, K Rameshkumar
Abstract In this work an attempt is made to design and fabricate a low cost dynamometer for measuring cutting forces in three directions in a CNC vertical milling machine. The dynamometer is designed and fabricated to withstand load up to 5000 N along ‘X’, ‘Y’ and ‘Z’ axis. Milling dynamometer developed in this work, consists of four octagonal rings as an elastic member on which strain gauges are mounted for measuring the cutting forces. Suitable materials for the fixture and for the octagonal rings are chosen for constructing the dynamometer. Structural analysis has been carried out to check the safe design of the dynamometer assembly consisting of fixture and the octagonal rings for the maximum loading conditions. Static calibration of the dynamometer is carried out using slotted weight method by simulating the actual conditions. Calibration chart was prepared for three directions by relating load and corresponding strain.
2017-06-05
Technical Paper
2017-01-1809
Dhanesh Purekar
Abstract Engine noise is one of the significant aspects of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues, which is considered objectionable and impacts the customer’s perception of the product quality. Gear whine could result due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. This includes quick overview of the measurement process, test cell environment, noise acceptance criteria considerations. A gear whine case study is presented based on the data collected in the test cell at the engine plant. Gear whine data acquired on current product and next generation of prototype engines is analyzed and presented. This paper concludes by highlighting the lessons learned from the case study.
2017-06-05
Technical Paper
2017-01-1815
Pranab Saha, Satyajeet P. Deshpande
Abstract This paper discusses the importance of a dissipative sound package system in the automotive industry and how it works. Although this is not a new technique at this stage, it is still a challenge to meet the subsystem target levels that were originally developed for parts based on the barrier decoupler concept. This paper reviews the typical construction of a dissipative system and then emphasizes the importance of different layers of materials that are used in the construction, including what they can do and cannot do. The paper also discusses the importance of the proper manufacturing of a part.
2017-06-05
Technical Paper
2017-01-1817
Steven M. Gasworth, Vasudev Nilajkar, Matteo Terragni
Abstract Polycarbonate (PC) glazing as a one-for-one glass replacement offers a 50% weight reduction, but exhibits several dB lower sound transmission loss (STL) in the low frequency range where tire and engine noise are dominant. In the high frequency range where wind noise is dominant, PC glazing offers an STL at least comparable to its glass counterpart, and an STL exceeding glass when this frequency range encompasses the glass coincidence frequency. However, a key value proposition of PC glazing is the opportunity for feature integration afforded by the injection molding process generally used for forming such glazing. Two-component (2K) molding fuses a second shot of plastic material behind, and along the perimeter of, the transparent PC first shot. This second shot can incorporate features and implement functions that require additional components attached or peripheral to a glass version.
2017-05-10
Technical Paper
2017-01-1932
Thomas Herlitzius
The digital transformation offers Europe tremendous opportunities of more efficient production using Cyber Physical Systems (CPS), which will enable new concepts for future farming systems. The very fast development of information and communication technologies is driving the evolution of mobile machines into cyber-physical systems with virtually no limitations for communication. Automation is the most important trend in the development of agricultural mobile machines due to the open potential of efficiency increases at all levels (machine, process and farm operation). CPS technologies are going to deliver solutions at the system and enterprise level by supporting real time and strategic decisions while enabling much higher system transparency and controllability within the sustainability tri-angle.
2017-05-10
Technical Paper
2017-01-1926
Tobias Winter, Simon Thierfelder
Hatz is a medium sized engine manufacturer with a production volume of currently ~58000 engines per year and a rather diversified product portfolio. To be cost and time efficient in new and further developments of our engines a deep system knowledge is indispensable. In order to achieve this we use a strongly simulation based developing approach in combination with component and specially suited engine testing. This combines to a state-of-the art R&D process which helps us to overcome an increasingly cost challenging competition.
2017-03-28
Journal Article
2017-01-1472
Niels Pasligh, Robert Schilling, Marian Bulla
Abstract Rivets, especially self-piercing rivets (SPR), are a primary joining technology used in aluminum bodied vehicles. SPR are mechanical joining elements used to connect sheets to create a body in white (BiW) structure. To ensure the structural performance of a vehicle in crash load cases it is necessary to describe physical occurring failure modes under overloading conditions in simulations. One failure mode which needs to be predicted precisely by a crash simulation is joint separation. Within crash simulations a detailed analysis of a SPR joint would require a very high computational effort. The conflict between a detailed SPR joint and a macroscopic vehicle model needs to be solved by developing an approach that can handle an accurate macroscopic prediction of SPR behavior with a defined strength level with less computational effort. One approach is using a cohesive material model for a SPR connection.
2017-03-28
Journal Article
2017-01-1705
Hua-Chu Shih, Dajun Zhou, Bruce Konopinski
Abstract The hole piercing process is a simple but important task in manufacturing processes. The quality requirement of the pierced hole varies between different applications. It can be either the size or the edge quality of the hole. Furthermore, the pierced hole is often subject to a secondary forming process, in which the edge stretchability is of a main concern. The recently developed advanced high strength steels (AHSS) and ultra high strength steels (UHSS) have been widely used for vehicle weight reduction and safety performance improvements. Due to the higher strength nature of these specially developed sheet steels, the hole piercing conditions are more extreme and challenging, and the quality of the pierced hole can be critical due to their relatively lower edge stretching limits than those for the conventional low and medium strength steels.
2017-03-28
Technical Paper
2017-01-1704
D.J. Branagan, A.E. Frerichs, B.E. Meacham, S. Cheng, A.V. Sergueeva
Abstract Automotive OEMs are compelled by increasingly stringent global emissions standards to find economic solutions for building higher efficiency vehicles without compromising safety and ride quality. This challenge requires new advanced high strength steels (AHSS) that will significantly reduce vehicle weight and improve fuel economy. In addition to providing higher strength, these automotive sheet steels must have exceptional formability to produce reduced gauge parts with increasingly complex geometries. Formability is comprised of two components, global and local. Global formability represents the ability of a sheet material to be deformed under various stress conditions and to be formed into a part without failure. It can be estimated using forming-limit diagrams or ductility measurements from conventional uniaxial tensile tests. However, these tests cannot reliably assess the local formability at the edges or at the internal holes of the blanks during stamping.
2017-03-28
Technical Paper
2017-01-1703
Ryan A. Howell, Richard Gerth
Abstract Fe-Mn-Al-C steel alloys have been previously studied for their potential as an alternative steel alloy for Rolled Homogeneous Armor (RHA). Prior examination of the material system has shown promise in this capacity due to the high strength and reduced density of Mn steels as compared to RHA. The prior tested materials were both wrought and cast versions but were all less than an inch in thickness. The alloy is once again being examined, but this time in thicker wrought plate. The aim of the current body of work is to develop a Military Specification (MIL-SPEC) for this new class of ballistically capable material. For industry and communities interested in such material development, the purpose of this paper, then, is to provide a summary of the processing parameters, the prior ballistic and dynamic material testing, cutting and welding approaches, and the extent of progress on industrial sized thick plate development.
2017-03-28
Technical Paper
2017-01-1700
Rebekah L. Houser, Willett Kempton, Rodney McGee, Fouad Kiamilev, Nick Waite
Abstract Electric vehicles (EVs) hold the potential to greatly shape the way the electric power grid functions. As a load, EVs can be managed to prevent overloads on the electric power system. EVs with bidirectional power flow (V2G) can provide a wide range of services, including load balancing, and can be used to increase integration of renewable resources into electric power markets. Realizing the potential of EVs requires more advanced communication than the technology that is in wide use. Common charging standards do not include a means for an EV to send key vehicle characteristics such as maximum charge rate or battery capacity to a charging station and thus to the grid.
2017-03-28
Technical Paper
2017-01-1726
Sameer Shah, Aayoush Sharma, Raghav Angra, Nitin Singh, Khalique Ahmed
Abstract In an unavoidable event of a suspect being chased by police, there is high probability for the criminal to evade the police while driving his vehicle. At many instances, criminal escapes without leaving a trail behind and becomes untraceable. A new concept of Vigilance Assistance System Network (VASN) has been developed, which is spread across the city and helps in catching the escaping criminals. At every junction, the traffic-signals are installed with a microcontroller chip and these connected traffic signals form a network with distinct city areas demarcated on the map. The vehicle is installed with GPS and a RFID module on their ECU when it approaches any intersection or junction; they receive wireless signals from traffic-signals and transmit another registering signal to the traffic-light wirelessly through RFID.
2017-03-28
Technical Paper
2017-01-1708
Saeid Nasheralahkami, Sergey Golovashchenko, Collin Malek, Erika Rugh, Daniel Kowalsky, Weitian Zhou
Abstract In recent years, dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) are considered as prominent materials in the automotive industry due to superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Another major issue in the trimming of UHSS is tool wear because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic phase in the microstructure. The objective of the current paper is to study the influence of trimming conditions and tool wear on quality and stretchability of trimmed edge of DP980 steel sheet. For this purpose, mechanically trimmed edges were characterized for DP980 steel and compared with other steels such as HSLA 350 and BH210.
2017-03-28
Technical Paper
2017-01-1709
Zhigang Wei, Sarat Das, Ryan Barr, Greg Rohrs, Robert Rebandt, Xiao Wu, HongTae Kang
Abstract Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
2017-03-28
Technical Paper
2017-01-1706
Sandeep Bhattacharya, Daniel Green, Raj Sohmshetty, Ahmet Alpas
Abstract Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
2017-03-28
Journal Article
2017-01-1707
C. Matthew Enloe, Jason Coryell, Jeff Wang
Abstract Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension.
2017-03-28
Technical Paper
2017-01-1732
Payodh Dwivedi
Abstract The conventional hybrid engine faces one major problem i.e. high cost of production. Although hybrid engines, in many sense proved to be highly efficient and environmental friendly, but high cost of production makes them less feasible and limits their applications. This problem is overcome by a new design in which instead of having Internal Combustion(IC) engine and electric motor separately, these two are incorporated under same housing. This involves a different working mechanism of electric motor which is as described below- This mechanism is applied to a normal engine which has two or more than two cylinders in any configuration or orientation. Taking example of In-line four cylinder engines as it is most widely used. In this the two cylinders work on conventional internal combustion mechanism, but the other two cylinders are electric cylinder and works on electricity.
2017-03-28
Technical Paper
2017-01-1529
Nicholas Simmonds, John Pitman, Panagiotis Tsoutsanis, Karl Jenkins, Adrian Gaylard, Wilko Jansen
Abstract Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW.
2017-03-28
Technical Paper
2017-01-1537
Ananya Bhardwaj
Abstract Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies.
2017-03-28
Journal Article
2017-01-1513
Young-Chang Cho, Chin-Wei Chang, Andrea Shestopalov, Edward Tate
Abstract The airflow into the engine bay of a passenger car is used for cooling down essential components of the vehicle, such as powertrain, air-conditioning compressor, intake charge air, batteries, and brake systems, before it returns back to the external flow. When the intake ram pressure becomes high enough to supply surplus cooling air flow, this flow can be actively regulated by using arrays of grille shutters, namely active grille shutters (AGS), in order to reduce the drag penalty due to excessive cooling. In this study, the operation of AGS for a generic SUV-type model vehicle is optimized for improved fuel economy on a highway drive cycle (part of SFTP-US06) by using surrogate models. Both vehicle aerodynamic power consumption and under-hood cooling performance are assessed by using PowerFLOW, a high-fidelity flow solver that is fully coupled with powertrain heat exchanger models.
2017-03-28
Technical Paper
2017-01-1372
Bo Wang, Smruti Panigrahi, Mayur Narsude, Amit Mohanty
Abstract Increasing number of vehicles are equipped with telematics devices and are able to transmit vehicle CAN bus information remotely. This paper examines the possibility of identifying individual drivers from their driving signatures embedded in these telematics data. The vehicle telematics data used in this study were collected from a small fleet of 30 Ford Fiesta vehicles driven by 30 volunteer drivers over 15 days of real-world driving in London, UK. The collected CAN signals included vehicle speed, accelerator pedal position, brake pedal pressure, steering wheel angle, gear position, and engine RPM. These signals were collected at approximately 5Hz frequency and transmitted to the cloud for offline driver identification modeling. A list of driving metrics was developed to quantify driver behaviors, such as mean brake pedal pressure and longitudinal jerk. Random Forest (RF) was used to predict driver IDs based on the developed driving metrics.
2017-03-28
Technical Paper
2017-01-0489
Hyunkwon Jo, Jongsoo Kim, Jaemin Park, Heeseung Yang, Hyunmin Park
Abstract Cost reduction is an important issue in the intense competition automotive industry. Interior parts which are mainly consist of plastic have same issue. The manufacturing main processes of plastic products are injection and assemble and the cost of injection depends on injection cycle time. Therefore many studies for the reduction of injection cycle time have been implemented. However the researches based on engineer's experiences have limits so, nowadays many studies utilize CAE. In this paper, the study for the reduction of cycle time focused on injection molding design. To satisfy appearance quality with the reduction of cycle time, the design of injection molding was optimized by using CAE. The result of CAE showed many causes and effects of problems. The optimization of injection molding design improved the quality with the reduction of cycle time. Finally, the product based on CAE showed good quality and cycle time reduction in comparison with previous products.
2017-03-28
Technical Paper
2017-01-0481
Xian Jun Sun, Patricia Tibbenham, Jin Zhou, Danielle Zeng, Shiyao Huang, Li Lu, Xuming Su
Abstract Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C).
2017-03-28
Technical Paper
2017-01-0479
Soichi Hareyama, Ken-ichi Manabe, Makoto Nakashima, Takayuki Shimodaira, Akio Hoshi
Abstract This investigation describes a method for estimating the absolute lock effect in bolted joint. Observation results of loosening phenomenon in industrial vehicle are analyzed for the linear relation by the proposed regression formula. Based on the relation, in early stages of the development test, the rate of clamping force decrease can be estimated accurately after prolonged operation by measuring the clamping force behavior. The tendency to decrease is observed about the depression type and working load type loosening. For evaluation design bases, the residual clamping force estimation chart is established. The L-N (Loosening Lifetime - Number of Cycles to Loosening N) diagram is proposed for the loosening lifetime prediction for working load type loosening also. Using the loosening damage (cumulative decrease of clamping force) and L-N diagram, the lifetime to loosening failure can be predicted accurately for the locking device and method as an absolute evaluation.
2017-03-28
Technical Paper
2017-01-0476
Seiji Furusako, Masatoshi Tokunaga, Masanori Yasuyama
Abstract To reduce the weight of automobile bodies, application of high-strength steel sheets is expanding. Furthermore, middle and high carbon steels are expected to be used to lower the environmental impact and cost in the automobile steel sheet industry. However, it is necessary to enhance the joint strength of the steel sheets. In this study, hat-shaped components were made using resistance spot (RS) welding or arc spot (AS) welding on S45C steel sheets (including 0.44% carbon), 1.4 mm thickness and strength of 1180 MPa grade. A dynamic three-point bending test was conducted on the components and their crashworthiness was compared. Some RS welds fractured (separated) during the three-point bending test even though the diameter of the weld metal was increased to 5√t (t means thickness of the sheet); however, AS welds did not fracture.
2017-03-28
Journal Article
2017-01-0475
Catherine Amodeo, Jwo Pan
Abstract The distributions of the mode I and mode II stress intensity factor solutions along the fronts of the pre-existing cracks of continuous and discontinuous gas metal arc welds in lap-shear specimens are investigated by three-dimensional finite element analyses. Two-dimensional plane strain finite element analyses were first carried out in order to obtain the computational stress intensity factor solutions for the idealized and realistic weld geometries as the references. Further, the stress intensity factor solutions for realistic welds obtained from the two-dimensional finite element analyses are presented for unequal sheet thicknesses for future engineering applications. Then the stress intensity factor solutions for continuous and discontinuous welds were obtained by three-dimensional finite element analyses.
2017-03-28
Journal Article
2017-01-0478
Pai-Chen Lin, WeiNing Chen
Abstract Fatigue analysis of swept friction stir clinch (Swept-FSC) joints between 6061-T6 aluminum (Al) and S45C steel (Fe) sheets was conducted through experimental approaches. Before fatigue tests, a parametric study for the probe geometry of FSC tools was conducted in order to eliminate the hook structure inside the joint and improve the mechanical performance of the joint. Then a series of quasi-static and fatigue tests for Al/Fe Swept-FSC joints in lap-shear (LP) and cross-tension (CT) specimens were conducted. The fatigue data were recorded. The fatigue behavior of Al/Fe Swept-FSC joints in LP and CT specimens were examined through optical and scanning electron microscopes. Experimental results indicated that LP specimens have two failure modes, while CT specimens have only one failure mode. The dominant fatigue crack of each failure mode was identified.
2017-03-28
Journal Article
2017-01-0477
Harish M. Rao, Jidong Kang, Garret Huff, Katherine Avery, Xuming Su
Abstract Tensile and fatigue properties of continuous braided carbon fiber reinforced polymer (CFRP) composite to AA6111 self-piercing riveted (SPR) lap shear joints are presented. Rivets were inserted at two target head heights separated by 0.3 mm. Even within the narrow range of head heights considered, the flushness of the rivet head was found to have a dominant effect on both the monotonic and fatigue properties of the lap shear SPR joints. Joints created with a flush head resulted in a greater degree of fiber breakage in the top ply of the CFRP laminate, which resulted in lower lap shear failure load as compared to SPR joints produced with a proud rivet head. Irrespective of the lap shear failure load, rivet pullout was the most common failure mode observed for both rivet head heights. In fatigue tests, the SPR joints produced with a proud head exhibited higher fatigue life compared to SPR joints produced with a flush head.
Viewing 1 to 30 of 8952