Criteria

Text:
Content:
Display:

Results

Viewing 1 to 5 of 5
2017-05-11
Video
Last week General Motors sent out a notice that the 'Vette plant is halting its regular public tours for 18 months due to extensive plant upgrades. Could this be for the next-generation Corvette? In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at the C-8, the first mid-engined Corvette. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
2012-03-23
Video
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
2012-03-23
Video
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
2012-03-21
Video
Many manufacturing companies want to apply AFP technology to complex high-curvature part shapes. As new AFP machine technologies are developed to specifically apply material over complex shapes, new and innovative NC programming approaches are needed to successfully, reliably, and accurately apply material with good consolidation, while meeting the fiber direction and coverage requirements. A big issue with AFP is the production rate vs. part complexity. Most complex shapes can be created with a single .125? wide strip (tow) of material. But the production time would be impractically long. So machine builders create 6, 8, 16, even 32 tow AFP heads, and use the widest tow possible for the highest laydown rates. But then wide compaction rollers on these systems have difficulty consolidating material over curved surfaces, and the minimum steering radius of wider tows challenge the software?s ability to meet the layup requirements.
2012-03-14
Video
With the increased usage of Carbon Fiber Reinforced Plastics (CFRP) in the aircraft industry, there has been increased pressure to improve cutting tool life. Tungsten carbide tools were the first to be applied to CFRP materials. Poly Crystalline Diamond (PCD) tools also became an acceptable material to be used as a cutting tool material. In recent years, Chemical Vapor Deposition (CVD) diamond tools have become more popular as a cutting tool material for CFRP. This study compares these possible cutting tool materials in the drilling of CFRP. Wear is measured as well as hole quality. Life is determined by common industry standards with regard to fiber break out in a common CFRP material. An economic analysis is conducted in order to determine cost per hole. Presenter Christophe Petit
Viewing 1 to 5 of 5

    Filter

    • Video
      5