Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 905
2016-02-04
WIP Standard
J3131
The goal of the SAE ORAV RAI task force is to develop a shared framework and language for addressing the basic system functions and functional interfaces in the form of a reference architecture for automated vehicle to support the SAE levels of driving automation for on-road vehicles (e.g., J3016). While the final architecture may eventually support conformance testing for component level interoperability the deliverable for this task force (i.e., white paper) will describe of how requirements will be achieved through a model-based representation of reusable patterns of activity, functionality, information/data flows, and scenarios of sequenced responses to time events. To achieve this goal, the task force will conceptualize and define a reference architecture that contains modular software (and possibly hardware) components based on standardized interfaces.
2016-02-03
WIP Standard
AS6171/15
Non-conformance and now Suspect counterfeit packaging represents a hazard to electrostatic discharge (ESD) sensitive devices or components through cross contamination during transport and storage while generating high voltage discharges to ESD sensitive devices during in shipping, the inspection process, handling and manufacturing. Several aerospace related issues involve long-term storage supplier non-conformance with antistatic foams, antistatic bubble, antistatic pink poly, vacuum formed antistatic polymers, Type I moisture barrier bags and Type III static shielding bags have posed issues. The late John Kolyer, Ph.D. (Boeing, Ret.) and Ray Gompf, P.E., Ph.D. (NASA-KSC, Ret.) were advocates in the utilization of a formalized physical testing material qualification process. Today, however, prime contractors and CMs rely heavily upon a visual inspection process for ESD packaging materials.
2016-01-22
WIP Standard
J3016
This Information Report provides a taxonomy for motor vehicle automation ranging in level from no automation to full automation. However, it provides detailed definitions only for the highest three levels of automation provided in the taxonomy (namely, conditional, high and full automation) in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on public roadways. These latter levels of advanced automation refer to cases in which the dynamic driving task is performed entirely by an automated driving system during a given driving mode or trip. Popular, media, and legislative references to “autonomous” or “self-driving” vehicles encompass some or all of these levels of automation. These definitions can be used to describe the automation of (1) on-road vehicles, (2) particular systems within those vehicles, and (3) the operation of those vehicles.
2016-01-15
WIP Standard
J1121
This recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
2016-01-14
Standard
J3061_201601
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. The best practices are intended to be flexible, pragmatic, and adaptable in their further application to the vehicle industry as well as to other cyber-physical vehicle systems (e.g., commercial and military vehicles, trucks, busses). Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems.
2016-01-04
WIP Standard
J511
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
2016-01-04
WIP Standard
J1617
The mechanism of automotive body corrosion is scientific, based on established laws of chemistry and physics. Yet there are many opinions related to the cause of body corrosion, not always based on scientific axioms. the purpose of this SAE Information report is to present a basic understanding of the types of body corrosion, the factors that contribute to body corrosion, the testing procedures, evaluation of corrosion performance, and glossary o related terms. The purpose of this document is to provide a basic understanding of body corrosion as influenced by materials, environment, design, pretreatment and paint systems, and evaluation thereof. If the reader requires in-depth information on these subjects, additional reading material and personal contacts should be pursued with raw material, paint, chemical, and equipment suppliers.
2016-01-02
Standard
AS1990D
The purpose of this SAE Aerospace Standard (AS) is to provide a description of the temper nomenclature system for aluminum alloys used in the aerospace industry by combining information from different sources for the benefit of the user.
2015-12-31
WIP Standard
J670
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response.
2015-12-19
Standard
AS6163
This SAE Aerospace Standard (AS) defines the minimum performance standard to demonstrate compliance with the regulatory design, test and operational requirements for a Temperature Controlled Container (TCC).
2015-12-17
WIP Standard
AS6171/17
This document defines capabilities and limitations of LSM and CLSM as they pertain to counterfeit electronic component detection and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of LSM and CLSM including: operator training, sample preparation, various sampling techniques, data interpretation, equipment maintenance, and reporting of data. This test method is primarily directed to analyses performed in the visible to near infrared (400nm to 1100nm approximately). If SAE AS6171/17 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
2015-12-17
Standard
J1698/1_201512
This Recommended Practice provides common data output formats and definitions for a variety of data elements that may be useful for analyzing vehicle crash and crash-like events that meet specified trigger criteria. The document is intended to govern data element definitions and EDR record format as applicable for light-duty motor vehicle Original Equipment applications.
2015-12-17
Standard
J1698/3_201512
This SAE Recommended Practice defines procedures intended to be used to validate that relevant EDR output records conform within specified limits to measured sensor input to the device.
2015-12-03
Standard
J3077_201512
This document provides a summary of the activities to-date of Task Force #1 - Research Foundations – of the SAE’s Driver Vehicle Interface (DVI) committee. More specifically, it establishes working definitions of key DVI concepts, as well as an extensive list of data sources relevant to DVI design and the larger topic of driver distraction.
2015-11-25
WIP Standard
J3115
This document aims to establish best practices in equipment setup and measurement of brake rotor disk thickness variation (DTV) on vehicle.
2015-11-24
Standard
J1949_201511
This SAE Standard specifies the dimensional requirements for the assembly of high-pressure pipe connections for compression-ignition (diesel) engine fuel injection equipment. It applies to 60 deg female cones with external threaded connectors types 1 and 2, and to the internal threaded tube nuts and male cone type end assembly of high- pressure pipe connections for tubes with diameters up to 12 mm inclusive.
2015-11-24
Standard
J830_201511
This SAE Standard establishes a vocabulary and definitions relating to the components used in fuel injection systems for compression ignition (diesel) engines. Definitions are separated into six sections by topic as follows: Section 3--Fuel Injection Pumps Section 4--Fuel Injectors Section 5--Unit Injectors Section 6--Governors Section 7--Timing Devices Section 8--High Pressure Pipes and Connections NOTE: When the word fuel is used in the terms listed it may be omitted providing there can be no misunderstanding.
2015-11-18
WIP Standard
J2403DA
This document is intended to supplement SAE J2403 by providing the content of Table 1, Table 2, and Table 3 from SAE J2403 in a form that can be sorted and searched for easier use. It is NOT intended as a substitute for the actual document, and any discrepancies between this Digital Annex and the published SAE J2403 document must be resolved in favor of the published document. This document provides the content of Table 1 and Table 2 published in SAE J2403 into the single table in the 'Term' tab, while the 'Recommended Term Definitions' tab provides the content of Table 3 in SAE J2403 and the 'Glossary' tab provides the content of Table 4 in SAE J2403.
2015-10-21
WIP Standard
GEIAHB0007C
This handbook is intended to provide additional information on the use and tailoring of the data in GEIA-STD-0007. The standard provides a new approach to Logistics Support Analysis Record (LSAR) (i.e., MIL-STD-1388-2B) data with emphasis on data transfer (e.g., XML Schemas) versus data storage (e.g., relational tables). GEIA-STD-0007 identifies the range of logistics product data that is generated during the development and acquisition of a system or end item. It does not prescribe the supportability analyses required to generate logistics product data. How the data is generated via analysis techniques/tools, how it is stored and processed, and how the data is used to generate specific logistics support products, is left to the performing activity. GEIA-STD-0007 is a data transfer standard implementing the logistics data concepts of GEIA-STD-927, Common Data Schema for Complex Systems.
2015-10-21
WIP Standard
GEIASTD0007C
This standard defines logistics product data generated during the requirements definition and design of an industry or government system, end item or product. It makes use of the Extensible Markup Language (XML) through the use of entities and attributes that comprise logistics product data and their definitions. The standard is designed to provide users with a standard set of data tags for all or portions of logistics product data and customer defined sub-sets of logistics product data. The standard can be applied to any indsutry or government product, system or equipment acquisition program, major modification program, and applicable research and development projects. This standard is for use by both industry and government activities. As used in this standard, the requiring authority is generally the customer and the customer can be a government or industry activity. The performing activity may be either a industry or government activity.
2015-10-13
WIP Standard
GEIASTD0008A
This Standard specifies the minimum derating requirements for using electronic components in moderately severe environments. These environments are assumed to include Airborne Inhabited Cargo (AIC), Airborne Inhabited Fighter (AIF), Ground Mobile (GM), and Naval Sheltered (NS) environments specified in MIL-HDBK-217. This Standard is intended to supersede the derating limits contained in Defense Standardization Program Office (DSPO) Standardization Directive SD-18, Naval Standard TE000-AB-GTP-010, and Air Force ESD-TR-85-148. It is intended that a future revision of this Standard will include additional requirements for derating for other environments (e.g. Airborne Uninhabited Cargo). Since this Standard specifies the minimum derating requirements, (sub)contractors may derate in excess of these requirements.
2015-09-29
WIP Standard
ARP6348
This document provides additional guidance on performing lifetime assessments and mitigations for ARP6338. It is intended for use by designers, reliability engineers, and others associated with the design, production, and support of electronic sub-assemblies, assemblies, and equipment used in ADHP applications.
2015-09-29
WIP Standard
J386
This standard provides performance and test requirements for operator restraint systems provided for off-road self-propelled work machines. This document applies to pelvic restraint systems (Type 1) for off-road, self-propelled work machines fitted with ROPS and commonly used in construction, earthmoving, forestry, and mining as referred to in SAE J1040 and industrial machines fitted with ROPS as referred to in SAE J1042.
2015-09-28
WIP Standard
TB0003A
This Technical Bulletin covers the following areas of concern. Prevention: Actions recommended for procuring parts and materials with a full warranty; Actions recommended for minimizing risks and protecting your Program from counterfeiting; Actions recommended when buying from a non-authorized supplier. Detection: Actions recommended when procuring parts from an unauthorized supplier or otherwise suspect that a part or material at risk of being counterfeit has been procured. Risk Mitigation: Actions recommended when no reasonable alternatives exist (e.g., a redesign is required, an unacceptable schedule delay will result, the program or customer cannot bear the additional cost) and the decision has been made to procure from a non-authorized supplier.
2015-09-22
WIP Standard
EIA632A
This Standard is intended to enable an enterprise to strengthen its competitiveness in global markets by engineering and producing quality systems, and by delivering its products on time at an affordable price or cost. The focus, therefore, is on conceptualizing, creating and realizing a system and the products that make up a system. This Standards was developed as a joint project of the Electronic Industries Alliance (EIA) and the International Counci on Systems Engineering (INCOSE). This effort was chartered by the G-47 Systems Engineering Committee of EIA and has been designed as Project PN-3537. this Standard has been approved by the EIA Engineering Department Executive Committee.
2015-09-18
WIP Standard
AS6171/13
To define capabilities and limitations of SIMS as it pertains to counterfeit detection of EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of SIMS including: Operator training; Sample preparation; Data interpretation; Equipment maintenance; and Reporting of data.
2015-08-21
WIP Standard
AS6171/12
Acoustic Microscopy Test Methods for Counterfeit Capacitors
2015-08-21
Standard
AS5684B
The SAE Aerospace Information Report AIR5315 – Generic Open Architecture (GOA) defines “a framework to identify interface classes for applying open systems to the design of a specific hardware/software system.” [sae] JAUS Service (Interface) Definition Language defines an XML schema for the interface definition of services at the Class 4L, or Application Layer, and Class 3L, or System Services Layer, of the Generic Open Architecture stack (see Figure 1). The specification of JAUS services shall be defined according to the JAUS Service (Interface) Definition Language document.
2015-08-18
WIP Standard
EIA836C
The primary focus of this standard is information of interest to Configuration Management (CM) practitioners related to the performance of CM functions as products are conceived, proposed, defined, developed, produced, operated, maintained, modified, and disposed. This information is stored when generated and, from time to time, must be moved or shared with others. This standard, through the use of the Data Dictionary, defines real world things of interest to the CM practitioner, which are the foundation of the following CM functional areas, and are needed for effective data exchange and interoperability: Configuration Management Planning and Management; Configuration Identification; Configuration Change Management; Configuration Audit; Configuration Verification; Configuration Status Accounting.
2015-08-15
Standard
CPGM1_16LCVIMPA
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
Viewing 1 to 30 of 905