Display:

Results

Viewing 241 to 270 of 13070
2014-04-01
Technical Paper
2014-01-0218
Helmut Martin, Stephan Baumgart, Andrea Leitner, Daniel Watzenig
Abstract The need for cost efficient development and shorter time to market requires reuse of safety-critical embedded systems. One main challenge for reuse approaches in a safety-critical context is to provide evidence that assumptions of the safety artifacts for the reused component are still valid in the new system definition. This paper summarizes the major findings from an explorative study conducted in order to identify the state of practice of reuse in the context of different functional safety standards. The explorative study consists of a set of questions, which have been discussed with interviewees from companies of various domains. The companies act in safety-critical domains with diverse product portfolios. We covered several points of view by interviewing persons with different background. The results of the study reveal industrial challenges, which built the input for the derivation of possible future work based on the identified practical needs.
2014-04-01
Technical Paper
2014-01-0212
Tomislav Lovric, Manuel Schneider-Scheyer, Samir Sarkic
Abstract Today's Automotive ECU development is a global engineering exercise. It requires efficient planning, design and implementation. Time to market, innovative customer functions and cost effective design are key to success. Not only the technical realization with compressed time schedules and frequent change requests, but also the documentation, and the proof of compliance to ISO-26262 requires efficient solutions to be applied. Key to successful ECU development of complex safety critical systems inside a global team is a systematic approach to identify the ideal realization out of multiple design alternatives. This is why TRW Electronics Engineering for its Braking ECU products decided to design the new product generation with the help of Model Based System Engineering methods (MBSE).
2014-04-01
Technical Paper
2014-01-0291
Gopal Athani, Prasad Yerraguntla, Anand Gajaraj, Kapil Dongare
Abstract Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
2014-04-01
Technical Paper
2014-01-0285
Yaamini Devi Loganathan, Jayakrishnan M
Abstract The automobile industry in India has long been recognized as a core manufacturing sector with the potential to drive national economic growth. India's attraction as a destination for automobile manufacturers has been underscored by the number of new manufacturers entering the country over the last two decades, through FDI. The number of manufacturers has continued to grow in India over the years across vehicle segments. Multinational and Transnational firms may enter a market by different modes of Foreign Direct Investment (FDI), either by Greenfield, Mergers & Acquisitions, Joint Ventures or Contract manufacturing. Indian automobile industry currently has a wide mix of home grown automobile companies and foreign invested companies. In this FDI development and the inclusion of more automobile manufacturers, the product development process of companies also has gone through a change.
2014-04-01
Technical Paper
2014-01-0287
Rajasekhar MV, J. Perumal, Samir Rawte
Abstract The need for automotive OEMs to manage product complexities and tough time to market in a competitive global industry mandates systems-driven product development process, which combines systems engineering methodology across all development domains with an integrated definition of the product. Businesses unable to adapt quickly lose mind share as well as market share. It is critical to the success of an automotive OEM to apply a consistent process framework based on systems engineering to capture, manage and organize information and knowledge, beginning with the voice of the customer, and continuing through product development, service, support and end-of-life. Systems engineering is important because it effectively nourishes an initial idea into a full system description, with all necessary elements integrated to form a complete product.
2014-04-01
Technical Paper
2014-01-0308
Alexandros Mouzakitis, Paul Jennings, Gunwant Dhadyalla, Gerard Lancaster
Abstract Complexity of electronics and embedded software systems in automobiles has been increasing over the years. This necessitates the need for an effective and exhaustive development and validation process in order to deliver fault free vehicles at reduced time to market. Model-based Product Engineering (MBPE) is a new process for development and validation of embedded control software. The process is generic and defines the engineering activities to plan and assess the progress and quality of the software developed for automotive applications. The MBPE process is comprised of six levels (one design level and five verification and validation levels) ranging from the vehicle requirements phase to the start of production. The process describes the work products to be delivered during the course of product development and also aligns the delivery plan to overall vehicle development milestones.
2014-04-01
Technical Paper
2014-01-0746
Lev Klyatis
Abstract This paper will discuss how accurate simulation of the real world conditions and ART/ADT (accelerated reliability/durability testing) technology is influencing accurate efficiency predicting as a final goal of product/process design, manufacturing, and development. The paper begins with the overview of current approaches of predicting the efficiency for a complete product and its components with an examples of life cycle costs (LCC), empirical reliability, physics-based reliability, their benefits and risks. It includes also the history of reliability prediction. As a result of the overview, it will be conclude that one cannot ensure that predicting results will not be misinterpreted or misapplied, even though all assumptions and rationale have been meticulously documented and clearly stated.
2014-04-01
Technical Paper
2014-01-0313
Ingo Stuermer, Ulrich Eisemann, Elke Salecker
Abstract Embedded software in the car is becoming increasingly complex due to the growing number of software-based controller functions and the increasing complexity of the software itself. Model-based development with Simulink combined with TargetLink for automatic code generation helps significantly to improve the quality of the embedded software. The development of large-scale Simulink models in distributed teams is a challenging task, especially when developing safety-critical software that must fulfill requirements stated in the ISO 26262 [1] safety standard. In practice, many questions on how to avoid the pitfalls of distributed model-based development remain open, such as how to define an appropriate model architecture, handle model complexity, and achieve compliance with ISO 26262. The intent of this paper is threefold. Firstly, we summarize those requirements of ISO 26262 that are relevant for developing complex software in a distributed environment.
2014-04-01
Magazine
No hands, lots of brains A hefty amount of computing power built with new hardware and software architectures will be needed when vehicles begin taking over more of the driving tasks. Aerodynamics and flow simulations come of age With the advent of faster computers, engineers are using CFD software as a practical tool, shaping designs early in the product development cycle. The challenges today are in how best to use it and by whom. New rules shuffle the F1 deck New turbocharged hybrid-electric power units and revised aerodynamics may scramble the familiar order in Formula One for 2014. Stars of the show floor The editors of Automotive Engineering annually select from among SAE World Congress exhibitors the technologies that meet their criteria for a coveted Tech Award. Judging is based on level of design and engineering innovation, uniqueness, potential for 'real world' production application, and potential benefit for industry customers and end users.
2014-04-01
Journal Article
2014-01-0379
Mallikarjuna Bennur, Jianmin Guan, Dilip Mandal
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
2014-04-01
Journal Article
2014-01-0421
Yohsuke Tamura, Masayuki Takeuchi, Kiyotaka Maeda, Noriaki Ohtsuka, Kenji Sato
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
2014-04-01
Journal Article
2014-01-1515
Lifeng Wang, Takeshi Kadono, Satoshi Sumiya
Low cost and S(sulphur)-tolerant DOCs (Diesel Oxidation Catalysts) are being demanded in emerging countries such as China and India, where Euro 4 and 5 type emission standards are going to be implemented or are being implemented. However, fuel S content is different in the metros vis-à-vis non metros in many emerging countries. In such a scenario, DOCs need to maintain catalytic performance with high S fuel as well as standard low S fuel. This paper describes the development results of S tolerant Pt-Pd based DOCs. A new washcoat technology (WT D) has been developed for EU 4 passive Pt-Pd DOC applications, in which PGM cost was thrifted by replacing part of Pt by Pd. Vehicle test results after thermal ageing and S poisoning demonstrated that the Pt-Pd DOC (Pt:Pd=4:1) prepared with WT D gave similar tailpipe CO (Carbon monoxide) and HC (Hydrocarbon) emission conversions as a commercially available EU 4 passive Pt-only DOC when 50ppm S diesel fuel was used.
2014-04-01
Journal Article
2014-01-1780
Soovadeep Bakshi, Parveen Dhillon, Teja Maruvada
This paper presents the method of designing an optimized light weight, cost effective planetary gearbox for a Formula Student vehicle. The gearbox has a high speed functioning capability, in addition to the compact size and light weight. The iterative optimization procedure used provides a technique for selecting the best possible configuration of the gearbox. Conventional gearboxes used for this purpose are generally two step reduction gearboxes, which are bulkier in terms of weight and volume. Also, a review of the existing market reveals that the planetary gearboxes manufactured in India are not capable of handling high speeds, thus rendering them futile for racing applications. The target reduction ratio for the gearbox is a fixed parameter. The method involves design and optimization of the gear-train with the calculated ratio.
2014-04-01
Journal Article
2014-01-0184
Daniel S. Dobrzynski, Jason D. Harper
The purpose of this paper is to outline the development and implementation of SAE J2953. SAE J2953 contains the requirements and procedures of interoperability testing. Within SAE J2953 interoperability test articles are defined as an Electric Vehicle Supply Equipment (EVSE) paired with a Plug-in Electric Vehicle (PEV). SAE J2953 requires the development and application of test fixtures with the ability to monitor mechanical forces and electrical signals of a charge system without modification or disassembly of the EVSE and PEV under test. Electrical signal monitoring includes pilot, proximity, and line conductors of the SAE J1772 TM AC coupler. This paper will outline the requirements of the fixtures as well as a specific build. Data will be presented showing full implementation of the SAE J2953 procedures including root-cause analysis and standards gap discovery.
2014-04-01
Journal Article
2014-01-0208
Nico Adler, Stefan Otten, Melanie Schwär, Klaus D. Müller-Glaser
The international standard ISO 26262 for functional safety of road vehicles claims processes and requirements for the entire product lifecycle of automotive electric and electronic systems. The demanded activities and work products within the standard are highly interconnected. Additionally, references to exemplarily external quality management standards or commonly recognized industry sources are given. Therefore, the application of functional safety processes in distributed development is challenging regarding description, understanding, analysis and planning of processes. To overcome these inconveniences, we provide a meta model extension for model-based architecture description languages regarding process description, organizational structures and resource assignment. This is related to the established “Business Process Model and Notation” (BPMN) according to ISO/IEC 19510:2013.
2014-04-01
Journal Article
2014-01-0448
Richard Young
This study reanalyzes the data from a recent experimental report from the University of Utah investigating the effect on driving performance of auditory-vocal secondary tasks (such as cell phone and passenger conversations, speech-to-text, and a complex artificial cognitive task). The current objective is to estimate the relative risk of crashes associated with such auditory-vocal tasks. Contrary to the Utah study's assumption of an increase in crash risk from the attentional effects of cognitive load, a deeper analysis of the Utah data shows that driver self-regulation provides an effective countermeasure that offsets possible increases in crash risk. For example, drivers self-regulated their following distances to compensate for the slight increases in brake response time while performing auditory-vocal tasks. This new finding is supported by naturalistic driving data showing that cell phone conversation does not increase crash risk above that of normal baseline driving.
2014-04-01
Journal Article
2014-01-0760
Michael LaLande
Systems engineering is not a new discipline for todays automotive OEMs and suppliers. So, why is it that many feel the discipline is under-utilized or not utilized at all in main-stream product development? For those that do believe systems engineering is a key activity in the development cycle, why is it common to disagree on a definition of what it is or how it manifests itself in the development cycle? If we examine the development activity of leading OEM's and suppliers in any industry, there can be no doubt that product development is a complex and intensive activity. Many disciplines are utilized with many specialized skills deployed throughout the lifecycle of the typical product, and even more so in the automotive industry. One can point to several processes that seem to indicate the presence of systems engineering, yet the ability to clearly define whether or not - and to what degree - we leverage systems engineering is still difficult.
2014-04-01
Technical Paper
2014-01-0572
Andreas Kremheller
Abstract This paper aims to provide a brief description on the aerodynamics development process of the new Nissan Qashqai using full-scale wind tunnel testing and Computational Fluid Dynamics simulations (CFD). Aerodynamic drag reduction ideas were developed by means of numerical simulations with confirmation of the aerodynamics properties full-scale clay models were tested in the wind tunnel. Key aerodynamic features were developed including the optimization of hood and windscreen angle, roof camber, plan view corner radius, rear combination lamp with boundary layer trip edge and a large rear spoiler with incorporated winglet. The drag contribution of the under body was reduced by optimizing deflectors and panels. The A-pillar and door mirrors were designed to reduce drag and wind noise. Furthermore, the bumper opening area was optimized to balance the airflow for engine cooling and a low cooling drag contribution.
2014-04-01
Journal Article
2014-01-0772
Fengzhu LI, Shunan Bao, Sijun LI
Lean logistics is an application of lean manufacturing principles. The core of lean logistics is to eliminate all non-value-added activities (waste) within productions, movements and storages. It reduces lead time, cuts cost, and improves quality. In order to be competitive, enterprises in western countries widely use lean manufacturing and logistics principles in automotive industries, especially for engine manufacturing system due to its high contents of assembly work. However, in China, lean logistics and its applications are fairly new to many companies. This article analyzes the current status of lean logistics in engine manufacturing in China, summarizes lean logistics principles, put forwards application of lean logistics principles based on a real case study of a new manufacturing system planning.
2014-03-31
Standard
J595_201403
This document provides design guidelines, test procedure references, and performance requirements for directional, single color, flashing optical warning devices used on authorized emergency, maintenance and service vehicles. It is intended to apply to, but not limited to, surface land vehicles.
2014-03-26
Book
IHS SupplierBusiness' new Supplying the Renault-Nissan Alliance report provides a unique insight into the environment in which the OEMs make their critical sourcing decisions, analyzing how Renault-Nissan is moving forward in terms of models and technology. The report also looks at what issues are affecting the OEMs' supply and manufacturing base. The report is based on interviews with key purchasing executives, featuring IHS Automotive's industry standard forecasting and analysis on the following topics, among others: • Product and Platform Strategy • Production Strategy • Purchasing Strategy • Supplier Selection • Global Sourcing • Pricing Policy • Quality Management • Technology Development • OEM-Supplier Relations Survey Results While the primary product of the Renault-Nissan Alliance is new vehicle production, the primary purpose of the Alliance is to achieve cost savings across those business divisions integral to delivering new vehicles.
2014-03-25
Article
Many people are skeptical of electrified vehicles (EVs)—and specifically the battery pack, because it is the most expensive part of the auto. By building an explanation that is more accessible to society, the industry (and the world!) will benefit.
2014-03-24
Technical Paper
2014-01-2030
Bo-Chiuan Chen, Chang-Wei Shih, Yuming Lin
Abstract Time-to-collision (TTC) can be used to design the forward collision warning system (FCWS). Conventional TTC is defined as the relative distance divided by the relative velocity. It might result in estimation errors for maneuvers with non-zero relative accelerations. In order to improve the accuracy of TTC estimation, we consider the relative acceleration and extend the region of interest for FCWS from the main lane to adjacent lanes. If we assume constant relative acceleration within the sample time, the relative distance can be approximated using a second order polynomial. Recursive least square technique is employed to estimate associated coefficients. Variable forgetting factor adjusted using relative acceleration is proposed to enhance the approximation accuracies. Similar process is applied to estimate the coefficients of a second order polynomial for the relative polar angle.
2014-03-24
Technical Paper
2014-01-2027
Adria Ferrer, Carlos Garcia Gutierrez
Abstract South East Asia is one of the regions with highest traffic-related fatality rates worldwide −18.5 fatalities per 100.000 inhabitants-. In response to that, governments of ASEAN countries are currently introducing new regulations, which will help to improve the road safety standards in the region. This paper reviews new safety regulations in force of following ASEAN countries: Singapore, Thailand, Malaysia, Indonesia, Vietnam and the Philippines. General safety trends promote the approach to international standards as well as the adoption of UNECE regulations. In fact, the 1958 agreement was signed by Thailand and Malaysia in 2006. Besides, Malaysia has gradually adopted fifty-three UNECE regulations so far and is currently considering the inclusion of twenty-four more. After the success of other NCAP organizations, the ASEAN NCAP assessment program was established in 2011.
2014-03-19
Article
Ford is using a highly engineered lens with 16 precision optical surfaces and 80 facets in the upcoming 2015 F-150's headlamp to re-create as much as possible a daytime quality of light after the sun goes down. The automaker says no other light-duty pickup truck on the road today uses LED headlamps.
2014-03-18
Magazine
Alternative fuels face challenges With gasoline prices seeming to stabilize and fuel economy measures taking hold is there a compelling need for alternative fuels? Automotive engineers offer some surprising reasons why there is.
2014-03-11
Book
Timothy George Thoppil
Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications provides an in-depth assessment of the most important technology, manufacturing, and supply chain aspects of the fast-paced world of electric motors. A joint effort that brings together the technology and product strategy experience of the P3 Group and the focused reach of SAE International, Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications lends clarity combined with solid data to those interested in understanding the fundamental factors shaping this industry in the next five years. Authored by Timothy G. Thoppil, from the P3 Group, this market study draws on extensive industry experience and is supported by surveys and interviews with industry professionals from OEMs, Tier 1 suppliers, research institutions, and universities.
2014-03-10
Article
Billing itself as the "first-ever open-source race team," Perrinn myTeam is inviting students, professional engineers, and others to contribute and share data for development of a possible sports car entry at Le Mans in 2015.
2014-03-10
Article
CD-adpaco fills the design testing void with multidisciplinary design exploration (MDX), a methodology for automatically testing designs from early in the concept stage.
Viewing 241 to 270 of 13070

Filter