Display:

Results

Viewing 91 to 120 of 13195
2015-04-14
Technical Paper
2015-01-0137
Ying Fan
Abstract Accurate risk prioritizing is directly related to the effectiveness of risk management. To overcome the shortage of the single numerical evaluation value, aiming at improving the accuracy of risk factors, a new risk priority method was proposed based on geometric characteristics of triangular fuzzy number and Analytic Hierarchy Process (AHP). This method was established on the basis of the fuzzy description of risk factors from experts, after the risk evaluation system was established. Then the fuzzy description of risk was processed with AHP, and fuzzy weights of risk factors were obtained and calculated it by using the geometric characteristics of triangular fuzzy number. Finally, the detailed ranking of risk factors by severity, probability and detection of risk was obtained. The risk priority of forklift system was processed to analyze the feasibility of this method.
2015-04-14
Technical Paper
2015-01-0160
Ingo Stürmer, Elke Salecker
Model-based software development is a well-established software development process and recognized by ISO26262 [1] as allowing for highly consistent and efficient development. Nevertheless, enhancing a model-based development process in such a way that it is compliant with the ISO26262 safety standard is a challenging task. To achieve ISO26262 compliance, the development team of a safety-related software project faces a multitude of additional requirements for the development process without a corresponding increase of the project budget to fulfill them. The fact that many of the requirements of ISO26262 are defined in a very generic way such that an interpretation is required further hampers their implementation. We propose a 10-step strategy to achieve an ISO26262 compliant model-based software development process. This strategy relates ISO26262 requirements with state-of-the art methods and approaches currently used for model-based software development.
2015-04-14
Technical Paper
2015-01-0167
Amrut A. Patki
Abstract Feature Addition or Enhancement is a necessary fragment of product development. Feature Addition or Enhancement is a result of one of the following: scope addition to new product development or customer requirement on current products. When it comes to Scope Addition, most of the times, first phase design and engineering will have been completed. Feature Addition or Enhancement because of scope addition is done to improve quality, cost or marketability. Current or future customer request for a feature addition or enhancement to meet their needs leads to customer requirement Feature Addition or Enhancement. Most of the times, vehicle has already been launched and design is frozen. In both the cases, design and engineering is challenged by Time, Effort and Cost. Model Based Design approach helps save some time for implementation. It also helps to improve required effort and reduces the cost of the feature by optimization.
2015-04-14
Technical Paper
2015-01-0461
Dennis Craggs
Abstract Automobile companies recognized the need to understand how customers use their vehicles. To this end, telediagnostic modules were installed on fleet vehicles, with the consent of the owner, to collect and store usage data. This data was uploaded to a server when the module was able to communicate via Wi-Fi. The volume of data is enormous. The size of a single vehicle file can be over six gigabytes, contain millions of records, and contain hundreds of millions of measurements. Each vehicle needs to be analyzed and the results from different vehicles combined to determine typical and extreme vehicle usage. With hundreds or thousands of vehicles to be analyzed, the analytic task is daunting. To analyze continuous data, like speed, frequency histograms have been used. It will be shown here that the cumulative percentile histogram provides better information and can display single and multiple vehicle usage patterns.
2015-04-14
Technical Paper
2015-01-0463
Kasiraja Thangapandian, Immanuel Rajkumar
Abstract In recent years the automotive industry is facing unprecedented influx of new technology advancements and ever-increasing consumer demands for media, entertainment and connectivity applications. This drives the automotive industry to deliver the products at a faster pace, thereby reducing time to market which results in issues from end users and dealers. Automotive industries are striving hard to keep pace with these radical changes with increase in software and electronics which in turn necessitates a systematic and effective software engineering approach to deliver high quality product from the core embedded software industry. This paper details how embedded software projects are developed globally and customer issues are collected and analyzed. It also discuss about the method used for performing effective Root cause analysis for identifying the systemic issues and formulating the systemic improvement actions.
2015-04-14
Technical Paper
2015-01-0464
Christian-Andreas Schumann, Eric Forkel, Thomas Klein, Dieter Gerlach, Egon Mueller
Abstract Total quality is becoming increasingly important for competitiveness. In order to achieve high quality, the requirements must be continuously compared with the results achieved in the process. This is done by means of measurement parameters and comparative values. The acquisition of the data requires appropriate measurement methods. The measurement methods and procedures have to be constantly developed in order to measure more precisely and to generate an even higher quality. Thus, the achieved product quality can be determined absolutely and relatively. If deviations from the planned quality parameters occur, the operator will be able to intervene immediately. The presented procedure is one of the noncontact (optical) measurement methods using CMMs, 3D scanners and 3D cameras. It is a combination of stereo photography and photogrammetry.
2015-04-14
Technical Paper
2015-01-0477
Sun Qi, Zhang Wen, Wan Liangyu, Wang Xiaochuan
Abstract The vehicle dimension parameters of the domestic passenger car in current Chinese market were analyzed. Combined with the human body golden ratio, a probability and statistics method was used to propose an intrinsic link between vehicle dimension and platform dimension, an intrinsic link between the dimensions of a vehicle. The proportion of coordination in different styles of models was analyzed also. A reference method was provided for the subsequent development models to define the dimension of the vehicle.
2015-04-14
Technical Paper
2015-01-0293
Yaamini Devi Loganathan
Abstract Indian automobile production increased at a CAGR of 12.2% over FY05-FY13, with a decline in Commercial Vehicle (CV) growth rate during FY09 and FY13. Globally, automotive industry suffered a decline in FY09 due to the global financial crisis and again on a decline in FY12 due to the European sovereign debt crisis. Apart from the global events, there are various internal risks the Indian OEMs need to consider: 1) regulatory risk due to excise duty hikes, decontrol of fuel pricing, etc., 2) market risks due to currency, inflation, interest rates, material cost, 3) industry risks due to increased competition, price war, etc. In this scenario, Indian Original Equipment Manufacturers (OEMs) need to constantly recalibrate their strategies to the changing market dynamics and associated risks. A research on megatrends affecting the Indian CV industry has identified more focus on Total Cost of Ownership (TCO) as one of the megatrend.
2015-04-14
Technical Paper
2015-01-0325
Alberto Boretti
Abstract The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. This design also permits central direct injection and ignition by spark or jets. The dual rotary valve design is applied to a naturally aspirated V-four engine of 1000cc displacement, gasoline, methane or hydrogen fuelled with central direct injection and spark ignition. The engine is modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The novelty in the proposed dual rotary valve system is the combustion chamber of good shape and high compression ratio with central direct injector and spark plug or jet ignition, coupled to the large gas exchange areas of the rotary system.
2015-04-14
Technical Paper
2015-01-0723
Sebastian Bender, Raymond Khoo, Christoph Große, Felix M. Wunner, Heong Wah Ng, Markus Lienkamp
Abstract Upcoming stringent regulations on emissions and fuel efficiency are driving the automotive industry towards lightweight vehicle design. Thus, a higher share of carbon fiber composite materials in vehicle structures is expected. Current literature addresses development processes of composite components under a limited scope, however the considerations of design parameters used in these studies are inadequate for the realistic development of a full vehicle structure, especially in a resource-constrained development project. In addition, existing vehicle structure design philosophies applied for metal structures cannot be directly ported over for composite design due to differences in material properties, failure modes and design for manufacturing limitations.
2015-04-14
Technical Paper
2015-01-1235
Kevin L. Snyder, Jerry Ku
Abstract The Wayne State University student team reengineered a mid-sized sedan into a functional plug-in hybrid electric vehicle as participants in the EcoCAR 2 competition sponsored by the US Department of Energy and managed by Argonne National Laboratory. The competition goals included reducing petroleum usage, emissions, and energy consumption through implementing advanced vehicle technologies. During the competition, the team did plug-in charging of the 19 kWh high voltage traction battery, drove in pure electric mode (engine off) until the battery was depleted, then switched to hybrid mode and continued driving by using E85 from the fuel tank. The pure electric mode vehicle driving range was 48 km [30 miles] while pulling an emissions instrumented test trailer and projected to be 58 km [36 miles] without the test trailer load for the competition's city/highway blend drive cycle.
2015-04-14
Technical Paper
2015-01-1228
Zhuoran Zhang, Miriam Di Russo, Xianfeng Yan, Ahmed I. Uddin, Dhanya Sankaran, Jerry C. Ku
Abstract This paper presents the work performed by the Wayne State University (WSU) EcoCAR 3 student design competition team in its preparation for the hybrid electric vehicle architecture selection process. This process is recognized as one of the most pivotal steps in the EcoCAR 3 competition. With a key lesson learned from participation in EcoCAR 2 on “truly learning how to learn,” the team held additional training sessions on architecture selection tools and exercises with the goal of improving both fundamental and procedural skills. The work conducted represents a combination of the architecture feasibility study and final selection process in terms of content and procedure, respectively. At the end of this study the team was able to identify four potentially viable hybrid powertrain architectures, and thoroughly analyze the performance and packaging feasibility of various component options.
2015-04-14
Technical Paper
2015-01-1229
Katherine Bovee, Amanda Hyde, Margaret Yatsko, Matthew Yard, Matthew Organiscak, Bharatkumar Hegde, Jason Ward, Andrew Garcia, Shawn Midlam-Mohler, Giorgio Rizzoni
Abstract The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
2015-04-14
Technical Paper
2015-01-0974
Aaron Brooker, Jeffrey Gonder, Sean Lopp, Jacob Ward
Abstract The Automotive Deployment Options Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy's Vehicle Technologies Office. It estimates technology improvement impacts on future U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method to estimate vehicle sales. Specifically, it estimate sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced.
2015-04-14
Technical Paper
2015-01-0157
M Abu Anas Shuvom, M Zahurul Haq
Abstract As combustion can vary widely between engine cycles if left uncontrolled, strict and robust control is required to meet optimum performance at different operating conditions. In this research, intelligent control techniques implemented on a Gasoline Direct Compression Injection (GDCI/GDI) engine. A research four cylinder 2.0 L GDI engine modeled with optimal control hardware that is frequently called as the conceptual Cybernetic intelligent GDI or ‘iGDI’ engine. The engine features Free Valve Actuation (FVA) hardware and precision fuel injector connected directly to the engine cylinder that found assistive for control flexibility by technical assessments. Then a mechatronic neural control approach is proposed and discussed with adaptive control techniques. Adaptive and predictive neural network control architectures developed for two distinct plant operation modes.
2015-04-14
Technical Paper
2015-01-0411
Richard K. Stobart, W. Ethan Eagle, Xunzhe Zhang
Abstract Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
2015-04-14
Technical Paper
2015-01-0980
Katsuya Minami, Yasuhiro Yoshimi
Abstract This study aims to build a conceptual simulation used at the early stage of PHEV development. This simulation enables to design vehicle concept and fundamental architecture with regard to fuel economy, vehicle acceleration and electric range. The model based on forward-looking method comprises of plant-model and controller-model which are made by one-dimensional simulation tool “GT-SUITE” and Matlab/SIMULINK respectively. In order to automatically couple between them and to implement iterative calculations of SOC (State-of-Charge) convergence, optimization and automation tool “modeFRONTIER” was used. As a case study of this simulation, we adopted series-parallel type plug-in hybrid electric vehicle (PHEV) and demonstrated the results on fuel economy of a legislative driving cycle and 0-60mph vehicle acceleration.
2015-04-14
Technical Paper
2015-01-0272
Ludovic Pintard, Michel Leeman, Abdelillah Ymlahi-Ouazzani, Jean-Charles Fabre, Karama Kanoun, Matthieu Roy
Abstract The complexity and the criticality of automotive electronic embedded systems are steadily increasing today, and that is particularly the case for software development. The new ISO 26262 standard for functional safety is one of the answers to these challenges. The ISO 26262 defines requirements on the development process in order to ensure the safety. Among these requirements, fault injection (FI) is introduced as a dedicated technique to assess the effectiveness of safety mechanisms and demonstrate the correct implementation of the safety requirements. Our work aims at developing an approach that will help integrate FI in the whole development process in a continuous way, from system requirements to the verification and validation phase.
2015-04-14
Technical Paper
2015-01-1101
Jun Hakamagi, Tetsuya Kono, Ryoji Habuchi, Naoki Nishimura, Masahiro Tawara, Naoki Tamura
Abstract In response to increasing demands for measures to conserve the global environment and the introduction of more stringent CO2 emissions regulations around the world, the automotive industry is placing greater focus on reducing levels of CO2 through the development of fuel-efficient technologies. With the aim of improving fuel economy, a new continuously variable transmission (CVT) has been developed for 2.0-liter class vehicles. This new CVT features various technologies for improving fuel economy including a coaxial 2-discharge port oil pump system, wider ratio coverage, low-viscosity CVT fluid, and a flex start system. This CVT is also compatible with a stop and start (S&S) system that reduces fuel consumption by shutting off the engine while the vehicle is stopped. In addition, the development of the CVT improves driveability by setting both the driving force and engine speed independently.
2015-04-14
Technical Paper
2015-01-1091
Fumikazu Maruyama, Moichio Kojima, Tomoyuki Kanda
Abstract A new CVT that is lighter in weight and more highly efficient than the previous CVT for use in compact vehicles has been developed and used in the 2014 model year FIT. The allowable torque capacity was expanded to that of the 1.8-L engine class, making this CVT usable in a greater number of vehicle models. The ratio coverage was also expanded and the transfer efficiency was increased to enhance fuel economy and drivability. Integration of hydraulic control system functional parts and reduction in the number of case component parts were carried out as structural modifications. Pulley side pressures were also reduced by the use of new CVT fluid so that the pulley could be made more compact and lighter in weight. Enhancements were made in CVT shift control, providing more acceleration considered from the driver's acceleration demand and more linearity between vehicle speed and engine speed than in previous models.
2015-04-14
Technical Paper
2015-01-0972
Alexander Pawlowski, Derek Splitter
Abstract It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number.
2015-04-14
Technical Paper
2015-01-0278
Ingo Stürmer, Heiko Doerr, Thomas End
Managing ISO 26262 software development projects is a challenging task. This paper discusses major challenges in managing safety-critical projects from a high-level perspective, i.e. from a manager's point of view. We address managers (directors) with full project responsibility including software and hardware teams. Rather than discussing how to fulfill (technical) requirements stated by the ISO standard, we highlight major challenges and tough decisions a manager has to face on her way from project start up to delivery of the safety case. We discuss important project management topics and best practices such as negotiation issues with the contractor (OEM), selection of the appropriate functional safety manager, general ISO 262626-related project management matters, as well as contractual issues with supplier such as development interface agreement. We discuss the topics on the basis of real-life experience we collected during several ISO 26262 management projects.
2015-04-14
Journal Article
2015-01-0168
Steffen Lampke, Simon Schliecker, Dirk Ziegenbein, Arne Hamann
Abstract The underlying theories of both control engineering and real-time systems engineering assume idealized system abstractions that mutually neglect central aspects of the other discipline. Control engineering theory, on the one hand, usually assumes jitter free sampling and constant input-output latencies disregarding complex real-world timing effects. Real-time engineering theory, on the other hand, uses abstract performance models that neglect the functional behavior, and derives worst-case situations that have little expressiveness for control functionalities in physically dominated automotive systems. As a consequence, there is a lot of potential for a systematic co-engineering between both disciplines, increasing design efficiency and confidence. We have taken a standard control-engineering tool, Simulink, and combined it with state-of-the-art real-time system design and analysis tools, SymTA/S and TraceAnalyzer from Symtavision.
2015-04-14
Technical Paper
2015-01-0148
Georg Macher, Harald Sporer, Eric Armengaud, Christian Kreiner
Abstract Increasing demands for safety, security, and certifiability of embedded automotive systems require additional development effort to generate the required evidences that the developed system can be trusted for the application and environment it is intended for. Safety standards such as ISO 26262 for road vehicles have been established to provide guidance during the development of safety-critical systems. The challenge in this context is to provide evidence of consistency, correctness, and completeness of system specifications over different work-products. One of these required work-products is the hardware-software interface (HSI) definition. This work-product is especially important since it defines the interfaces between different technologies. Model-based development (MBD) is a promising approach to support the description of the system under development in a more structured way, thus improving resulting consistency.
2015-04-14
Technical Paper
2015-01-1174
Nobuhiko Nakagaki
Abstract Toyota Boshoku developed two completely new components for the fuel cell vehicle (FCV), Mirai. These are the fuel cell (FC) Separator, and Stack manifold. The separators are made from stamped metal plates. The anode and cathode separators sandwich the MEA(Membrane Electrode Assembly) between them. It has flow paths for the hydrogen, air and FC coolant. The Anode Separator has hydrogen flow paths on one side, and cooling liquid flow paths on the other side. The pitch used in the flow paths is very fine and it improves both the uniformity of the gas flow and of the surface pressure on the MEA. Therefore, it has contributes to improve the electric power generation performance. The FC Stack manifold is a component that attaches to the end of one side of the FC stack. It is a component that integrates end plate and pipes. The end plate is a portion of the FC stack which holds the fastening load of stack and is made of cast aluminum casting alloy.
2015-04-14
Technical Paper
2015-01-0459
Vesna Savic, Louis Hector, Hesham Ezzat, Anil Sachdev, James Quinn, Ronald Krupitzer, Xin Sun
Abstract This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
2015-04-14
Technical Paper
2015-01-1268
Tomohiro Shinagawa, Masahito Kudo, Wataru Matsubara, Takashi Kawai
Abstract Toyota Motor Corporation is developing a series of engines belonging to its ESTEC (Economy with Superior Thermal Efficient Combustion) development concept. This paper describes the development of 8NR-FTS after the subsequent launch of the 2.0-liter DI Turbocharged 8AR-FTS. 8NR-FTS is a 1.2-liter inline 4-cylinder spark ignition downsized turbocharged direct injection (DI) gasoline engine. By following the same basic concepts as 8AR-FTS engine [1], the 8NR-FTS incorporates various fuel efficient technologies such as a cylinder head with an integrated exhaust manifold, the Atkinson cycle using the center-spooled variable valve timing with mid-position lock system (VVT-iW), and intensified in-cylinder turbulence to achieve high-speed combustion.
2015-04-14
Technical Paper
2015-01-0178
James Price
Abstract AUTOSAR 4.x is being deployed by many of the world's top automotive OEMs. It has also seen increased adoption in regions outside of Europe. OEMs exert significant effort in the design, configuration, integration, and final build of AUTOSAR-based systems. This presentation gives an overview on the main advantages and critical gaps of adopting AUTOSAR to E/E design automation, including the digital interaction between Tier 1 suppliers and OEMs. This paper also discusses how the Electronics Architecture and Software Technology Architecture Description Language, or EAST-ADL, complements some of the weaknesses found in the current AUTOSAR release.
2015-04-14
Journal Article
2015-01-1208
Sinisa Jurkovic, Khwaja Rahman, Nitin Patel, Peter Savagian
This paper presents the design and performance details of electric propulsion system for GM's second generation Extended Range Electric Vehicle (EREV). First generation Chevrolet Volts have been driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric. The second generation of Volt brings a significant mass reduction and increased performance, EV driving range and fuel economy while simultaneously reducing rare earth content in its traction electric motors. The electric propulsion system is built on two electric machines; both PMAC topology. While hybrid-electric vehicles are gaining in popularity in hopes of addressing cleaner, energy sustainable technology in transportation, materials sustainability and rare earth dependence mitigation has not been the first priority in the hybrids available on the market today.
2015-04-14
Journal Article
2015-01-1175
Norishige Konno, Seiji Mizuno, Hiroya Nakaji, Yuji Ishikawa
Abstract Toyota Motor Corporation (TMC) has been developing fuel cell (FC) technology since 1992, and finally “MIRAI” was launched in 15th Dec. 2014. An important step was achieved with the release of the “FCHV-adv” in 2008. It established major improvements in efficiency, driving range, durability, and cold start capability. However, enhancing performance and further reductions in size and cost are required to facilitate the commercial widespread adoption of fuel cell vehicles (FCVs). TMC met these challenges by developing the world's first FC stack without a humidifying system. This was achieved by the development of an innovative cell flow field structure and membrane electrode assembly (MEA), enabling a compact and high-performance FC stack. Other cost reduction measures incorporated by the FC stack include reducing the amount of platinum in the catalyst by two-thirds and adopting a carbon nano-coating for the separator surface treatment.
Viewing 91 to 120 of 13195

Filter