Display:

Results

Viewing 91 to 120 of 13367
2016-04-05
Journal Article
2016-01-0467
Haizhen Liu, Weiwen Deng, Rui He, Jian Wu, Bing Zhu
Abstract This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
2016-04-05
Technical Paper
2016-01-1245
Jonathan D. Cox, Michael Leamy
Abstract The Georgia Tech EcoCAR 3 team’s selection of a parallel hybrid electric vehicle (HEV) architecture for the EcoCAR 3 competition is presented in detail, with a focus on the team’s modeling and simulation efforts and how they informed the team’s architecture selection and subsequent component decisions. EcoCAR 3, sponsored by the United States Department of Energy and General Motors, is the latest in a series of Advanced Vehicle Technology Competitions (AVTCs) and features 16 universities from the United States and Canada competing to transform the 2016 Chevrolet Camaro into a hybrid electric American performance vehicle. Team vehicles will be scored on performance, emissions, fuel economy, consumer acceptability, and more over the course of the four-year competition. During the first year, the Georgia Tech team considered numerous component combinations and HEV architectures, including series RWD and AWD, parallel, and power-split.
2016-04-05
Technical Paper
2016-01-1252
Arjun Khanna, Sam Yacinthe, Jason Ward, M.J. Yatsko, Shawn Midlam-Mohler
The Ohio State University EcoCAR 3 team is designing a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed to have a 44-mile all-electric range. The vehicle is to consist of an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak-power electric machine. This report details the model and controls development process followed by the Ohio State team during Year 1 of the EcoCAR 3 competition. The focus of the paper will be on overall development of a vehicle model, initial simulation results, and supervisory controls development. Finally, initial energy consumption results from the model and future improvements will be discussed.
2016-04-05
Technical Paper
2016-01-1248
Brian Magnuson, Michael Ryan Mallory, Brian Fabien, Ajay Gowda
Abstract This study investigates using driver prediction to anticipate energy usage over a 160-meter look-ahead distance for a series, plug-in, hybrid-electric vehicle to improve conventional thermostatic powertrain control. Driver prediction algorithms utilize a hidden Markov model to predict route and a regression tree to predict speed over the route. Anticipated energy consumption is calculated by integrating force vectors over the look-ahead distance using the predicted incline slope and vehicle speed. Thermostatic powertrain control is improved by supplementing energy produced by the series generator with regenerative braking during events where anticipated energy consumption is negative, typically associated with declines or decelerations.
2016-04-05
Technical Paper
2016-01-1247
Kevin L. Snyder, Jerry Ku
Abstract The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
2016-04-05
Technical Paper
2016-01-1256
Miriam Di Russo, Zhuoran Zhang, Hao Wu, Kathryn della Porta, Jerry C. Ku
Abstract This paper details the first year of modeling and simulation, and powertrain control development for the Wayne State University EcoCAR 3 vehicle. Included in this paper are the processes for developing simulation platforms, plant models and electronic control units to support the supervisory control system development. The EcoCAR 3 competition challenges sixteen North American universities to re-engineer the 2016 Chevrolet Camaro to reduce its environmental impact without compromising its performance and consumer acceptability. The team is in the final stages of competition Year One, which, as the “non-vehicle year,” focuses on the preliminary design, simulation, and hybrid modes selection for the team’s selected vehicle architecture.
2016-04-05
Technical Paper
2016-01-1255
David Mackanic, Eduardo D. Marquez, James Dennington, Jacob McClean, Kaitlyn Wheeler, Douglas Nelson
Abstract The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is currently going through several modeling and testing stages to develop models that represent the P3 PHEV powertrain the team is building as part the EcoCAR 3 competition. The model development process consists of several major steps. First, Model-in-the-Loop (MIL) testing is conducted to validate a conventional vehicle model, down-select a desired powertrain configuration, and generate initial vehicle technical specifications. HEVT is pursuing a performance powertrain that balances high performance with minimal energy consumption. Initial MIL modeling results yield an IVM-60 mph time of 4.9 seconds and an overall UF-weighted 4-cycle energy consumption of 560 Wh/km. MIL modeling provides an initial reference to compare subsequent vehicle modeling.
2016-04-05
Technical Paper
2016-01-1254
Eric Jambor, Thomas Bradley
Abstract EcoCAR 3 is a university based competition with the goal of hybridizing a 2016 Chevrolet Camaro to increase fuel economy, decrease environmental impact, and maintain user acceptability. To achieve this goal, university teams across North America must design, test, and implement automotive systems. The Colorado State University (CSU) team has designed a parallel pretransmission plug in hybrid electric design. This design will add torque from the engine and motor onto a single shaft to drive the vehicle. Since both the torque generating devices are pre-transmission the torque will be multiplied by both the transmission and final drive. To handle the large amount of torque generated by the entire powertrain system the vehicle's rear half-shafts require a more robust design. Taking advantage of this, the CSU team has decided to pursue the use of composites to increase the shaft's robustness while decreasing component weight.
2016-04-05
Technical Paper
2016-01-1253
Patrick Ellsworth, Roydon Fraser, Michael Fowler, Daniel VanLanen, Ben Gaffney, Caixia Wang, Trong Shen, Wenhao Wu, Paul McInnis
Abstract The drive to improve and optimize hybrid vehicle performance is increasing with the growth of the market. With this market growth, the automotive industry has recognized a need to train and educate the next generation of engineers in hybrid vehicle design. The University of Waterloo Alternative Fuels Team (UWAFT), as part of the EcoCAR 3 competition, has developed a control strategy for a novel parallel-split hybrid architecture. This architecture features an engine, transmission and two electric motors; one pre-transmission motor and one post-transmission motor. The control strategy operates these powertrain components in a series, parallel, and all electric power flow, switching between these strategies to optimize the energy efficiency of the vehicle. Control strategies for these three power flows are compared through optimization of efficiencies within the powertrain.
2016-04-05
Technical Paper
2016-01-1257
Sam Yacinthe, Arjun Khanna, Jason Ward, M.J. Yatsko, Shawn Midlam-Mohler
The design of a performance hybrid electric vehicle includes a wide range of architecture possibilities. A large part of the design process is identifying reasonable vehicle architectures and vehicle performance capabilities. The Ohio State University EcoCAR 3 team designed a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed with a 44-mile all-electric range. It also features an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak electric machine. This report details the design and modeling process followed by the Ohio State team during Year 1 of the competition. The process included researching the customer needs of the vehicle, determining team design goals, initial modeling, and selecting a vehicle architecture.
2016-04-05
Technical Paper
2016-01-0667
Kookjin Hwang, Iljoong Hwang, Hwangbok Lee, Hyunil Park, Hoyeon Choi, Kwanwoo Lee, Wootae Kim, Heungchul Kim, Bonghoon Han, Jongsub Lee, Bosung Shin, Dongsuk Chae
Abstract Hyundai/Kia Motor Company will introduce new Kappa 1.6L GDI engine dedicated for hybrid vehicles, starting production for Korean market in the early 2016. It has achieved the challenging level of 40% maximum thermal efficiency as a gasoline engine. Even though it has the highest fuel efficiency, it can generate sufficient power to provide vehicle's dynamic driving performance. The new Kappa 1.6L GDI engine has been developed focusing on the fuel efficiency. To maximize fuel efficiency, compact combustion chamber is designed with 1.35 stroke-bore ratio. And other key technologies such as Atkinson cycle with high compression ratio, cooled EGR system with high energy ignition coil and high tumble intake ports are applied. The knock has been suppressed significantly to improve fuel efficiency by split cooling system with two thermostats and block insert, the piston cooling jet and the sodium-filled exhaust valve.
2016-04-05
Technical Paper
2016-01-0883
Walter Mirabella, Francesco Avella, Marco Di Girolamo, Tim Abbott, Oliver Busch
Abstract A thorough bibliographic survey was carried out to collect literature-available information about blending octane numbers (BONs) of most widely used ethers by the refining industry (mainly MTBE and ETBE). The intention was to review the publicly reported BONs values, to suggest the most appropriate figures for future reference, while also understanding the causes of the differences. Summary tables feature all BON values, either explicitly reported in literature or calculated based on experimental results. Due to synergistic intermolecular interactions with hydrocarbons, BONs typically depend on base stock composition. The octane gain tends to grow as the paraffin content in the base stock increases. Moreover BONs tend to decrease as the octane numbers (ON) of the base stock increase.
2016-04-05
Technical Paper
2016-01-1012
Seiji Furumata, Takashi Kakinuma, Hirokazu Tochiki
Abstract This paper introduces the newly developed super sports car engine mounted in the new model NSX. A super sports car engine was newly developed to satisfy the high power performance required by the body package. Higher power and compactness were simultaneously achieved by selecting an engine displacement of 3.5 L and by using a V6 layout and a turbocharger. This enabled to mount a power train that combines a hybrid motor with a newly developed transmission in the rear of the body. The lubrication system uses a dry sump system capable of maintaining reliable lubrication in all possible super sports car driving scenarios. The combustion system uses high tumble-flow ports, a direct injection and a port injection system that increase power performance and thermal efficiency, emission reduction. To support the increased heat load due to higher power, a 3-piece water jacket is used around the combustion chamber and the exhaust ports.
2016-04-05
Technical Paper
2016-01-0088
Tervin Tan, Jin Seo Park, Patrick Leteinturier
Abstract The constant motivation for lower fuel consumption and emission levels has always been in the minds of most auto makers. Therefore, it is important to have precise control of the fuel being delivered into the engine. Gasoline Port fuel injection has been a matured system for many years and cars sold in emerging markets still favor such system due to its less system complexity and cost. This paper will explain injection control strategy of today during development, and especially the injector dead-time compensation strategy in detail and how further improvements could still be made. The injector current profile behavior will be discussed, and with the use of minimum hardware electronics, this paper will show the way for a new compensation strategy to be adopted.
2016-04-05
Journal Article
2016-01-0693
Daishi Takahashi, Koichi Nakata, Yasushi Yoshihara, Tetsuo Omura
Abstract Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society, and an effective way of accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid vehicles and conventional vehicles in recent years. Cooled EGR has the potential to achieve further lower fuel consumption if the EGR ratio can be increased. Fast combustion is an important and effective way for expanding the EGR ratio. The engine combustion enhancement can be categorized into measures to improve ignition characteristics and methods to promote flame propagation.
2016-04-05
Journal Article
2016-01-1169
Brendan Conlon, Mindy Barth, Charles Hua, Clifford Lyons, Dan Nguy, Margaret Palardy
Abstract GM has developed an all-new gasoline-electric hybrid powertrain for the model year 2016 Chevrolet Malibu Hybrid vehicle, which was designed to achieve excellent fuel economy, performance, and drive quality. The powertrain shares the transmission architecture with the 2016 Chevrolet Volt extended range electric vehicle, but includes changes to optimize the system for engine driven charge sustaining operation in the range of conditions represented by the US EPA 5 cycle fuel economy tests. In this paper, we describe the Malibu Hybrid propulsion system features and components, including the battery pack, transaxle, electric motors and power electronics, engine, and thermal system. The modifications between the Volt and Malibu Hybrid propulsion systems are discussed and explained as resulting from the differences between the primarily electric and gasoline powered applications.
2016-04-05
Technical Paper
2016-01-0127
Agish George, William Taylor, Jody Nelson
Abstract One of the key premises of the ISO 26262 functional safety standard is the development of an appropriate Technical Safety Concept for the item under development. This is specified in detail in Part 4 of the standard - Product development at the system level. The Technical safety requirements and the technical safety concept form the basis for deriving the hardware and software safety requirements that are then used by engineering teams for developing a safe product. Just like any other form of product development, making multiple revisions of the requirements are highly undesirable. This is primarily due to cost increases, chances of having inconsistencies within work products and its impact on the overall project schedule. Good technical safety requirements are in fact the foundation for an effective functional safety implementation.
2016-04-01
Standard
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
2016-04-01
Magazine
CMU goes full futuristic A student team from Carnegie Mellon University offers its take on a proposed new mode of transportation involving tubes and pods. Three CDS teams win MOMENTUM design awards Teams from British Columbia Institute of Technology, University of Idaho and Pakistan Navy Engineering College win competition for best description of an innovation for their 2016 SAE Collegiate Design Series vehicle entry. These pro tips can earn your CDS team point Members of SAE International's Collegiate Design Series staff offer 10 tips to help teams fully realize their potential at competition.
2016-04-01
Magazine
Electronic Warfare Next Generation FPGAs for Electronic Warfare Systems Materials: Composites Managing the Impact of Nanomaterials in Aerospace Manufacturing Aerospace Materials/Manufacturing Turbine Flow Meters Alternative Power Sources Designing a Power Generation System for a More-Electric Aircraft
2016-03-31
Standard
J1939DA_201603
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
2016-03-30
Standard
J2735_201603
This SAE Standard specifies a message set, and its data frames and data elements, specifically for use by applications intended to utilize the 5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments (DSRC/WAVE, referenced in this document simply as “DSRC”) communications systems. Although the scope of this Standard is focused on DSRC, this message set, and its data frames and data elements, have been designed, to the extent possible, to be of potential use for applications that may be deployed in conjunction with other wireless communications technologies as well. This Standard therefore specifies the definitive message structure and provides sufficient background information to allow readers to properly interpret the message definitions from the point of view of an application developer implementing the messages according to the DSRC Standards.
2016-03-29
Standard
AS9117
This standard specifies requirements for DPRV to establish common product/service requirements for use at all levels of the supply chain. This standard shall apply when an organization elects to delegate product release verification by contractual flow down to their supplier (reference 9100 and 9110 standards); to perform product acceptance on their behalf. The delegating organization shall use this standard as the baseline for establishing a DPRV process, although they may include additional contract requirements to meet their specific needs.
2016-03-27
Article
Self-driving car project CEO John Krafcik discussed Google's work underway toward fully autonomous vehicles, at a recent NY forum. First likely market: the elderly and impaired.
2016-03-24
Article
In this Q&A, Toyota Technical Center President Seiya Nakao discusses future mobility development, technical innovation, Toyota's recent reorganization, and the ever-changing automotive engineering profession.
2016-03-12
Article
Cloud service providers are playing an increasingly growing role in the drive to provide more features, functions and services. Companies are working on strategies that provide "cloud" access without compromising safety.
2016-03-12
Article
Jeep Design is taking seven new concept vehicles, including two interesting pickups, to the Utah off-road festival where the hardest-core Jeep enthusiasts gather annually.
2016-03-04
Book
This valuable resource lists all Aerospace Standards (AS), Aerospace Recommended Practices (ARP), Aerospace Information Reports (AIR), and Aerospace Resource Documents (ARD) published by SAE. Each listing includes title, subject, document number, key words, new and revised documents, and DODISS-adopted documents. AMS Index - Now Available!
2016-03-03
WIP Standard
EIA649C
When effectively and consistently applied, Configuration Management (CM) provides a positive impact on product quality, cost, and schedule. This standard is intended to assist in establishing, performing, or evaluating CM systems. CM is an integrated system of processes that ensure consistency of a product's performance, functional and physical attributes with its requirements, design, and operational information. The essence of CM, as portrayed in this consensus standard, is the common application of CM functions and their underlying fundamental principles, which have universal applicability across the broad spectrum of commercial and government enterprises. The standard provides an understanding of what to do, why a customer/suppler should do it, and when it is necessary to tailor the application of CM functions. This standard fulfills the important function of providing a rational basis upon which to apply good judgment in both planning for and executing CM across the enterprise.
2016-03-03
Magazine
Multi-material structures move mpg upward The quest to improve fuel economy is not waning, nor is the desire to achieve higher mpg through the use of just the right lightweight material for the right vehicle application. Cars poised to become 'a thing' Making automobiles part of the Internet of Things brings both risks and rewards. Agility training for cars Chassis component suppliers refine vehicle dynamics at the high end and entry level with four-wheel steering and adaptive damping. SAE 2016 World Congress Preview Technology trends and exhibitor products are highlighted in this special section, which features Toyota's plans for the show floor, tech sessions, and more.
Viewing 91 to 120 of 13367

Filter