Display:

Results

Viewing 61 to 90 of 13181
2015-04-14
Collection
This technical paper collection covers intelligent and efficient approaches to high level system design, analysis and integration as well as considerations for vehicle-level optimization of cost and energy. System definition includes components, sub-assemblies and complete integrated vehicle systems, including electronic systems and human machine interfaces.
2015-04-14
WIP Standard
AS6509
Fibre Channel is the primary avionics bus on many modern military aircraft. It is also the defined High-Speed bus for MIL-STD-1760E weapons applications. Profiled Ethernet networks are the primary avionics bus in many commercial aircraft and Commercial Ethernet is an ever increasing presence in modern military aircraft as well. This network standard is a convergence of Fibre Channel and Ethernet into a unified network standard which will provide a seamless approach to integrating end systems from either technology into a merged network structure. This work is based upon the commercial data storage market industry’s work on the Converged Data Storage Network or FCoE (Fibre Channel over Ethernet). This effort will look at profiling the FCoE work done in the commercial industry and adding information where necessary to affect a networking standard that will seamlessly integrate end systems from Commercial Ethernet, Fibre Channel, or FCoE enhanced devices.
2015-04-14
Technical Paper
2015-01-1701
Luciano Lukacs
Abstract The challenges around global products have been lately one of the key challenges for the lighting community. This paper will present a survey which was held with costumers from China, India, Europe and Brazil understanding the difference and similarities regarding the lighting attributes. It brings also a discussion how to develop a lamp globally that fulfils everyone's needs and addresses potential trade-offs in design and performance.
2015-04-14
Technical Paper
2015-01-0242
Nick Smith
Abstract Correct-by-construction design processes can be dramatically enhanced using simulation techniques, especially early in the design process. But simulation is too often the preserve of specialist staff, who may work disconnected from day-to-day design updates. This paper highlights simulation and analysis tools that can be used by every electrical engineer, addressing topics ranging from functional verification to component sizing to failure modes and effects analysis. Furthermore, valuable results can be obtained with the simplest of models; and the models themselves can mature as the organization's use of simulation matures.
2015-04-14
Technical Paper
2015-01-0259
Tyler Zellmer, Julio Rodriguez, John R. Wagner, Kim Alexander, Philip Pidgeon
Abstract According to the National Highway Traffic Safety Administration (NHTSA), motor collisions account for nearly 2.4 million injuries and 37 thousand fatalities each year in the United States. A great deal of research has been done in the area of vehicular safety, but very little has been completed to ensure licensed drivers are properly trained. Given the inherent risks in driving itself, the test for licensure should be uniform and consistent. To address this issue, an inexpensive, portable data acquisition and analysis system has been developed for the evaluation of driver performance. A study was performed to evaluate the system, and each participant was given a normalized driver rating. The average driver rating was μ=55.6, with a standard deviation of σ=12.3. All but 3 drivers fell into the so-called “Target Zone”, defined by a Driver Rating of μ± 1σ.
2015-04-14
Technical Paper
2015-01-0247
Sonakshi Sharma, Shubhranshu Garg, Vipul Kumar, Sudhir Kashinath Gupte
Abstract There are variety of motors and generators/alternators being manufactured internationally, for variety of applications. It is a difficult task for the user to identify and select the type of motor /generator/alternator for a specific use, by the designer and ultimately the user is totally unaware of what is bought and why. There is a need to designate the motors and generators. So that by interpretation of the identification nomenclature of the motor or generator, its type can be judged. Whether it is a series motor, an induction motor etc, in case of motors. This will eventually make it easy for the manufacturer, the buyer and the consumer to identify the motor or generator type. So a universally accepted and followed identification nomenclature is required to be developed which will henceforth make dealing in motors and generators simpler for all. It will prove to be useful during troubleshooting.
2015-04-14
Technical Paper
2015-01-0274
John Thomas, John Sgueglia, Dajiang Suo, Nancy Leveson, Mark Vernacchia, Padma Sundaram
Abstract The introduction of new safety critical features using software-intensive systems presents a growing challenge to hazard analysis and requirements development. These systems are rich in feature content and can interact with other vehicle systems in complex ways, making the early development of proper requirements critical. Catching potential problems as early as possible is essential because the cost increases exponentially the longer problems remain undetected. However, in practice these problems are often subtle and can remain undetected until integration, testing, production, or even later, when the cost of fixing them is the highest. In this paper, a new technique is demonstrated to perform a hazard analysis in parallel with system and requirements development. The proposed model-based technique begins during early development when design uncertainty is highest and is refined iteratively as development progresses to drive the requirements and necessary design features.
2015-04-14
Technical Paper
2015-01-0271
Fabian Joerg Uwe Koark, Christian Beul
Abstract Functional Safety engineering aligned to an international standard is already a long-lasting discussion. Nevertheless, the requirements of process conformance to assure functional safety have been detailed in description and interpretation. The ISO 26262 is seen as state-of-the-art Functional Safety engineering basement in Europe, the closer interpretation of the IEC 61508 is claimed by assessors in America and Asia. This work shows how stagnation in engineering process improvement is solved by re-engineering projects. The benefits of re-engineering are described in this context. A four month, proven-in-practice project plan is explained. The expected results of such a project are given as generic goals for similar projects. A practice report shows the realistic outcome of such a project for the Chinese automotive industry. The report shows how the motivation of the involved engineers was gained and how existing engineering documentation was used in an efficient way.
2015-04-14
Technical Paper
2015-01-0416
Howard Evans
Abstract This paper summarises the history of Rochdale Motor Panels and Engineering Ltd. (RMP), established in England after the Second World War, from its origins as a small car-repair business though to the manufacture of sports coupés utilising an innovative glass-fibre monocoque construction. The political climate which caused RMP and similar undertakings to develop and flourish in the 1950s and 60s is explained together with details of the three men who had the defining influence on the cars that were created. Products, including aluminium-bodied cars, produced primarily for racing, are described, leading into the introduction of glass-fibre construction which enabled a profitable transition into higher volume body and chassis manufacture, and ultimately completely assembled cars.
2015-04-14
Technical Paper
2015-01-0446
Ronald Lannan
Abstract Use of Model-Based Design (MBD) processes for embedded controls software development has been purported for nearly the last decade to result in cost, quality, and delivery improvements. Initially the business case for MBD was rather vague and qualitative in nature, but more data is now becoming available to support the premise for this development methodology. Many times the implementation of MBD in an organization is bundled with other software process improvements such as CMMI or industry safety standards compliance, so trying to unbundle the contributions from MBD has been problematic. This paper addresses the dominant factors for MBD cost savings and the business benefits that have been realized by companies in various industries engaged in MBD development. It also summarizes some key management best practices and success factors that have helped organizations achieve success in MBD deployment.
2015-04-14
Technical Paper
2015-01-0447
Venkatesh Agaram, Julian Venegas
Abstract System dynamics modeling of complex processes such as product development, manufacturing, and service, is an efficient approach for assessing value potential of different business transformation alternatives at small and large enterprises. Process elements such as generation of concepts, detailed designs, pilot level plant trials, etc. can be modeled including first-pass work, testing and review, rework identification and defect fixing, along with release readiness, staffing, schedule pressures, overtime and many other business metrics. Enterprise level processes, with their complex logic loops, can be represented as a system of coupled nonlinear differential equations, whose solutions can reveal the intricate underlying dynamics. Design of experiments, performed on the system dynamics models representing the business processes, are an inexpensive way of gaining insights into the impact of interactions between the numerous process control variables.
2015-04-14
Journal Article
2015-01-0460
Saket Kansara, Sumeet Parashar, Zhendan Xue
Abstract Decision making in engineering design is complicated, especially when dealing with high-dimensional data. Modern software tools are able to produce a large amount of data while performing optimization studies. A typical optimization problem with many objectives may produce 100s or even 1000s of Pareto Optimal solutions. It is a challenge to analyze this data and make a decision about which design/s to choose for further testing or as a final design. To tackle the problem, two data analysis techniques are used in this paper. Partitive Clustering (PC) is used to locate groups of similar designs in the dataset while Principal Component Analysis (PCA) is used to reduce the dimensionality of the data and visualize it in two and three dimensions. Although these techniques can be used independently, when used together, they prove to be a tremendous help in decision making. This paper underlines the benefit of using these two methods together.
2015-04-14
Technical Paper
2015-01-0459
Vesna Savic, Louis Hector, Hesham Ezzat, Anil Sachdev, James Quinn, Ronald Krupitzer, Xin Sun
Abstract This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
2015-04-14
Journal Article
2015-01-0452
Junqi Yang, Zhenfei Zhan, Chong Chen, Yajing Shu, Ling Zheng, Ren-Jye Yang, Yan Fu, Saeed Barbat
Abstract Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
2015-04-14
Technical Paper
2015-01-0427
Zhigang Wei, Limin Luo, Shengbin Lin
Fatigue testing and related fatigue life assessment are essential parts of the design and validation processes of vehicle components and systems. Fatigue bench test is one of the most important testing methods for durability and reliability assessment, and its primary function is to construct design curves based on a certain amount of repeated tests, with which recommendations on product design can be advised. How to increase the accuracy of predictions from test results, the associated life assessment, and to reduce the cost through reducing test sample size is an active and continuous effort. In this paper the current engineering practices on constructing design curves for fatigue test data are reviewed first.
2015-04-14
Technical Paper
2015-01-1664
Amardeep Singh, Anindya Deb, Amit Mohan Mensi, Ranga Srinivas Gunti
Despite the considerable advancements made in the applications of CAE for evaluation of an IC engine, an integrated approach to the design of such engines based on thermo-mechanical considerations appears to be lacking. The usage of heterogeneous tools for thermal, mechanical and vibration analysis in the industry decreases the efficiency of the product development process. In an effort to reduce this bottleneck, a unified framework is presented here according to which heat transfer and thermo-mechanical stress analysis of a four-stroke single cylinder diesel engine is carried out in a unified manner with the aid of a multi-physics explicit finite element analysis tool, LS-DYNA, with robust contact interfaces leading to a realistic representation of engine dynamics.
2015-04-14
Technical Paper
2015-01-1685
Omar Abu Mohareb, Phan-Lam Huynh, A. Al-Janabi, Michael Grimm, Hans-Christian Reuss
Abstract This paper addresses the performance and potential of using electric vehicles in the Gulf Arab states. Based on a survey executed in Salalah, Oman, a representative test driving cycle has been set up. This cycle is the first of its kind for this region, where it is driven with a vehicle provided with special measurement equipment to log important values, e.g. vehicle's speed and position, temperatures and solar irradiance. More than 40 test drives are performed to obtain a representative driver profile. The driving cycle and driver profile are used in a simulation model which is capable of simulating the energy consumption for internal combustion engine or electric motor propulsion systems. The simulation model which contains detailed models for the driver, driving cycle, vehicle components and its dynamics is validated and used to compare the consumed energy for the two different propulsion systems.
2015-04-14
Technical Paper
2015-01-0131
Nick Smith
Abstract Demand for increased functionality in automotive electrical/electronic (E/E) systems is being propelled by both customers and various governmental regulations and requirements. This demand for more capabilities also introduces new challenges for OEMs who are responsible for implementing these functions. Of course, the cost of system development and manufacturing are considerable, but there are challenges beyond cost that the OEM must deal with, such as increased weight, reliability and quality concerns, exponentially-increasing complexity, and the government requirements. From the point of view of the electrical system platform as a whole, it provides the unique role of integrating all the individual E/E systems. When integrated, unanticipated problems can emerge that require design modifications. Often, these are discovered way down the design path, which results in delays in the program that can lead to missed deadlines and costly rework.
2015-04-14
Technical Paper
2015-01-0130
Julio Rodriguez, Ken Rogich, Philip Pidgeon, Kim Alexander, John R. Wagner
Abstract Driving skills and driving experience develop differently between a civilian and a military service member. Since 2000, the Department of Defense reports that two-thirds of non-related to war fatalities among active duty service members were due to transportation-related incidents. In addition, vehicle crashes are the leading non-related to war cause of both fatalities and serious injuries among active duty Marines. A pilot safe driving program for Marines was jointly developed by the Richard Petty Driving Experience and Clemson University Automotive Safety Research Institute. The pilot program includes four modules based on leading causes of vehicle crashes, and uses classroom and behind the wheel components to improve and reinforce safe driving skills and knowledge. The assessment results of this pilot program conducted with 192 Marines in September 2011 at Camp LeJeune, NC are presented and discussed.
2015-04-14
Technical Paper
2015-01-0144
Diljith Muthuvana, Renuka prasad
Abstract System Engineering is a broad concept that can be applied to any business case to help transform the engineering and the organizational needs into understandable, unambiguous, achievable tasks with a fixed time-line. In today's dynamics of the demanding business needs it has become inevitable to think for solutions that guarantee faster delivery while maintaining the quality standards. Traditional processes tend to fall back when implemented to satisfy the challenges faced by engineers in real world while achieving the business need. Many processes have evolved based on the lessons learnt while organization strives towards continuous improvement and adhering to quality standards. Agile, Lean, Kanban are few proven set of principles and practices that has helped to deliver expected results.
2015-04-14
Technical Paper
2015-01-0137
Ying Fan
Abstract Accurate risk prioritizing is directly related to the effectiveness of risk management. To overcome the shortage of the single numerical evaluation value, aiming at improving the accuracy of risk factors, a new risk priority method was proposed based on geometric characteristics of triangular fuzzy number and Analytic Hierarchy Process (AHP). This method was established on the basis of the fuzzy description of risk factors from experts, after the risk evaluation system was established. Then the fuzzy description of risk was processed with AHP, and fuzzy weights of risk factors were obtained and calculated it by using the geometric characteristics of triangular fuzzy number. Finally, the detailed ranking of risk factors by severity, probability and detection of risk was obtained. The risk priority of forklift system was processed to analyze the feasibility of this method.
2015-04-14
Technical Paper
2015-01-0160
Ingo Stürmer, Elke Salecker
Model-based software development is a well-established software development process and recognized by ISO26262 [1] as allowing for highly consistent and efficient development. Nevertheless, enhancing a model-based development process in such a way that it is compliant with the ISO26262 safety standard is a challenging task. To achieve ISO26262 compliance, the development team of a safety-related software project faces a multitude of additional requirements for the development process without a corresponding increase of the project budget to fulfill them. The fact that many of the requirements of ISO26262 are defined in a very generic way such that an interpretation is required further hampers their implementation. We propose a 10-step strategy to achieve an ISO26262 compliant model-based software development process. This strategy relates ISO26262 requirements with state-of-the art methods and approaches currently used for model-based software development.
2015-04-14
Technical Paper
2015-01-0167
Amrut A. Patki
Abstract Feature Addition or Enhancement is a necessary fragment of product development. Feature Addition or Enhancement is a result of one of the following: scope addition to new product development or customer requirement on current products. When it comes to Scope Addition, most of the times, first phase design and engineering will have been completed. Feature Addition or Enhancement because of scope addition is done to improve quality, cost or marketability. Current or future customer request for a feature addition or enhancement to meet their needs leads to customer requirement Feature Addition or Enhancement. Most of the times, vehicle has already been launched and design is frozen. In both the cases, design and engineering is challenged by Time, Effort and Cost. Model Based Design approach helps save some time for implementation. It also helps to improve required effort and reduces the cost of the feature by optimization.
2015-04-14
Technical Paper
2015-01-0178
James Price
Abstract AUTOSAR 4.x is being deployed by many of the world's top automotive OEMs. It has also seen increased adoption in regions outside of Europe. OEMs exert significant effort in the design, configuration, integration, and final build of AUTOSAR-based systems. This presentation gives an overview on the main advantages and critical gaps of adopting AUTOSAR to E/E design automation, including the digital interaction between Tier 1 suppliers and OEMs. This paper also discusses how the Electronics Architecture and Software Technology Architecture Description Language, or EAST-ADL, complements some of the weaknesses found in the current AUTOSAR release.
2015-04-14
Journal Article
2015-01-0468
Mingxian Wang, Wei Chen, Yan Fu, Yong Yang
Abstract As the world's largest auto producer and consumer, China is both the most promising and complex market given the country's rapid economic growth, huge population, and many regional and segment preference differences. This research is aimed at developing data-driven demand models for customer preference analysis and prediction under a competitive market environment. Regional analysis is first used to understand the impact of geographical factors on customer preference. After a comprehensive data exploration, a customer-level mixed logit model is built to shed light on fast-growing vehicle segments in the Chinese auto market. By combining the data of vehicle purchase, consideration, and past choice, cross-shopping behaviors and brand influence are explicitly modeled in addition to the impact of customer demographics, usage behaviors, and attributes of vehicles.
2015-04-14
Journal Article
2015-01-0470
Joanna Rakowska, Amir Chator, Bruno Barthelemy, Michael Lee, Shawn Morgans, Jeffrey Laya, Gregory Zinn, Ching-Hung Chuang, Sreekanth Reddy Gondipalle
Abstract Designing a vehicle body involves meeting numerous performance requirements related to different attributes such as NVH, Durability, Safety, and others. Multi-Disciplinary Optimization (MDO) is an efficient way to develop a design that optimizes vehicle performance while minimizing the weight. Since a body design evolves in course of the product development cycle, it is essential to repeat the MDO process several times as a design matures and more accurate data become available. This paper presents a real life application of the MDO process to reduce weight while optimizing performance over the design cycle of the 2015 Mustang. The paper discusses the timing and results of the applied Multi-Disciplinary Optimization process. The attributes considered during optimization include Safety, Durability and Body NVH.
2015-04-14
Technical Paper
2015-01-0461
Dennis Craggs
Abstract Automobile companies recognized the need to understand how customers use their vehicles. To this end, telediagnostic modules were installed on fleet vehicles, with the consent of the owner, to collect and store usage data. This data was uploaded to a server when the module was able to communicate via Wi-Fi. The volume of data is enormous. The size of a single vehicle file can be over six gigabytes, contain millions of records, and contain hundreds of millions of measurements. Each vehicle needs to be analyzed and the results from different vehicles combined to determine typical and extreme vehicle usage. With hundreds or thousands of vehicles to be analyzed, the analytic task is daunting. To analyze continuous data, like speed, frequency histograms have been used. It will be shown here that the cumulative percentile histogram provides better information and can display single and multiple vehicle usage patterns.
2015-04-14
Technical Paper
2015-01-0463
Kasiraja Thangapandian, Immanuel Rajkumar
Abstract In recent years the automotive industry is facing unprecedented influx of new technology advancements and ever-increasing consumer demands for media, entertainment and connectivity applications. This drives the automotive industry to deliver the products at a faster pace, thereby reducing time to market which results in issues from end users and dealers. Automotive industries are striving hard to keep pace with these radical changes with increase in software and electronics which in turn necessitates a systematic and effective software engineering approach to deliver high quality product from the core embedded software industry. This paper details how embedded software projects are developed globally and customer issues are collected and analyzed. It also discuss about the method used for performing effective Root cause analysis for identifying the systemic issues and formulating the systemic improvement actions.
2015-04-14
Technical Paper
2015-01-0464
Christian-Andreas Schumann, Eric Forkel, Thomas Klein, Dieter Gerlach, Egon Mueller
Abstract Total quality is becoming increasingly important for competitiveness. In order to achieve high quality, the requirements must be continuously compared with the results achieved in the process. This is done by means of measurement parameters and comparative values. The acquisition of the data requires appropriate measurement methods. The measurement methods and procedures have to be constantly developed in order to measure more precisely and to generate an even higher quality. Thus, the achieved product quality can be determined absolutely and relatively. If deviations from the planned quality parameters occur, the operator will be able to intervene immediately. The presented procedure is one of the noncontact (optical) measurement methods using CMMs, 3D scanners and 3D cameras. It is a combination of stereo photography and photogrammetry.
2015-04-14
Technical Paper
2015-01-0477
Sun Qi, Zhang Wen, Wan Liangyu, Wang Xiaochuan
Abstract The vehicle dimension parameters of the domestic passenger car in current Chinese market were analyzed. Combined with the human body golden ratio, a probability and statistics method was used to propose an intrinsic link between vehicle dimension and platform dimension, an intrinsic link between the dimensions of a vehicle. The proportion of coordination in different styles of models was analyzed also. A reference method was provided for the subsequent development models to define the dimension of the vehicle.
Viewing 61 to 90 of 13181

Filter