Display:

Results

Viewing 1 to 30 of 12964
2014-11-11
Technical Paper
2014-32-0104
Alexander Shkolnik, Daniele Littera, Mark Nickerson, Nikolay Shkolnik, Kukwon Cho
Abstract This paper describes the development of small rotary internal combustion engines developed to operate on the High Efficiency Hybrid Cycle (HEHC). The cycle, which combines high compression ratio (CR), constant-volume (isochoric) combustion, and overexpansion, has a theoretical efficiency of 75% using air-standard assumptions and first-law analysis. This innovative rotary engine architecture shows a potential indicated efficiency of 60% and brake efficiency of >50%. As this engine does not have poppet valves and the gas is fully expanded before the exhaust stroke starts, the engine has potential to be quiet. Similar to the Wankel rotary engine, the ‘X’ engine has only two primary moving parts - a shaft and rotor, resulting in compact size and offering low-vibration operation. Unlike the Wankel, however, the X engine is uniquely configured to adopt the HEHC cycle and its associated efficiency and low-noise benefits. The result is an engine which is compact, lightweight, low-vibration, quiet, and fuel-efficient.
2014-11-07
Book
Ian K. Jennions
Integrated Vehicle Health Management: Implementation and Lessons Learned is the fourth title in the IVHM series published by SAE International. This new book introduces a variety of case studies, lessons learned, and insights on what it really means to develop, implement, or manage an integrated system of systems. Integrated Vehicle Health Management: Implementation and Lessons Learned brings to the reader a wide set of hands-on stories, made possible by the contribution of twenty-three authors, who agreed to share their experience and wisdom on how new technologies are developed and put to work. This effort was again coordinated by Dr. Ian K. Jennions, Director of the IVHM Centre at Cranfield University (UK), and editor of the previous books in the series. Integrated Vehicle Health Management: Implementation and Lessons Learned, with seventeen, fully illustrated chapters, covers diverse areas of expertise such as the impact of trust, human factors, and evidential integrity in system development.
2014-11-07
Book
Gijs Mom
This book covers one and a quarter century of the automobile, conceived as a cultural history of its technology, aimed at engineering students and all those who wish to have a concise introduction into the basics of automotive technology and its long-term development . Its approach is systemic and includes the behavior of drivers, producers, nonusers, victims, and other "stakeholders" as well as the discourse around mobility. Nowadays, students of innovation prefer the term co-evolution, emphasizing the parallel and mutually dependent development of technology and society. This acknowledges the importance of contingency and of the impact of the past upon the present, the very reason why The Evolution of Automotive Technology: A Handbook looks at car technology from a long-term perspective. Often we will conclude that the innovation was in the (re)arrangement of existing technologies. Since its beginnings, car manufacturers have brought a total of 1 billion automobiles to the market. We are currently witnessing an explosion toward the second billion.
2014-10-20
Book
Kirsten M. Koepsel
Electronic parts are used throughout industry to run everyday products, such as cell phones, and also highly technical products, such as aircraft, missiles, and spacecraft. Unlike cell phones, which are often replaced every year, the highly technical products may remain in service from 20 to more than 80 years. But what happens if the original electronic part, with a life cycle of 18 months, is no longer available? Some manufacturers have discovered that they have unwittingly purchased counterfeit ones. Counterfeit Electronic Parts and Their Impact on Supply Chains examines how these items are negatively affecting the aviation, spacecraft, and defense sectors and what can be done about it. As the inflow of counterfeit electronic parts does not appear to be slowing down, Counterfeit Electronic Parts and Their Impact on Supply Chains investigates the possible solutions to combat the issue, including legislation and standards, and other solutions that are government driven but that may be impacted by continuing budget cuts.
2014-10-13
Technical Paper
2014-01-2703
Xiuliang Zhao, Yong Cheng, Limei Wang
Abstract The surface vibration signals are widely used since they have much combustion information. However, for an Internal Combustion Engine (ICE), the measured surface vibration signals are difficult to utilize because they contain non in-cylinder pressure excitation response. The vibration response signals excited by the in-cylinder pressure excitation (ICPE) and the reciprocating inertia force excitation (RIFE) are overlapped in both time and frequency domain. That means they cannot be separated effectively by conventional signal processing method. In this paper, a new strategy to extract ICPE response from measured vibration signals by pattern recognition method is proposed. A model is established to describe the RIFE response. Then, the RIFE response could be predicted and subtracted directly from the measured vibration velocity signals. The processing results indicate that a fourth-order model and the data of initial compression stroke can reach satisfactory results. The impact of the speed fluctuation can be ignored.
2014-10-13
Technical Paper
2014-01-2707
Brian C. Kaul, Benjamin J. Lawler, Charles E.A. Finney, Michelle L. Edwards, Robert M. Wagner
Abstract Advances in engine controls and sensor technology are making advanced, direct, high-speed control of engine combustion more feasible. Control of combustion rate and phasing in low-temperature combustion regimes and active control of cyclic variability in dilute SI combustion are being pursued in laboratory environments with high-quality data acquisition systems, using metrics calculated from in-cylinder pressure. In order to implement these advanced combustion controls in production, lower-quality data will need to be tolerated even if indicated pressure sensors become available. This paper examines the effects of several data quality issues, including phase shifting (incorrect TDC location), reduced data resolution, pressure pegging errors, and random noise on calculated combustion metrics that are used for control feedback. Symbolic data analysis is an effective technique for identifying underlying patterns in noisy data, and has been applied to cyclic variability of dilute SI combustion, identifying deterministic effects that underlie the stochastic variations that are present.
2014-10-13
Technical Paper
2014-01-2910
Thomas Bradley, Benjamin Geller, Jake Bucher, Shawn Salisbury
Abstract EcoCAR 2 is the premiere North American collegiate automotive competition that challenges 15 North American universities to redesign a 2013 Chevrolet Malibu to decrease the environmental impact of the Malibu while maintaining its performance, safety, and consumer appeal. The EcoCAR 2 project is a three year competition headline sponsored by General Motors and U.S. Department of Energy. In Year 1 of the competition, extensive modeling guided the Colorado State University (CSU) Vehicle Innovation Team (VIT) to choose an all-electric vehicle powertrain architecture with range extending hydrogen fuel cells, to be called the Malibu H2eV. During this year, the CSU VIT followed the EcoCAR 2 Vehicle Design Process (VDP) to develop the H2eV's electric and hydrogen powertrain, energy storage system (ESS), control systems, and auxiliary systems. From the design developed in Year 1 of the EcoCAR 2 competition, a Malibu donated by General Motors was converted into a concept validating prototype during Year 2.
2014-10-13
Technical Paper
2014-01-2908
Katherine Bovee, Amanda Hyde, Margaret Yatsko, Matthew Yard, Matthew Organiscak, Eric Gallo, Andrew Huster, Jason Ward, Giorgio Rizzoni, Shawn W. Midlam-Mohler
Abstract The EcoCAR 2 team at the Ohio State University has designed an extended-range electric vehicle capable of 44 miles all-electric range, which features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and a 6-speed automated manual transmission. This vehicle is designed to reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report documents the team's refinement work on the vehicle during Year 3 of the competition, including vehicle improvements, control strategy calibration and dynamic vehicle testing, culminating in a 99% buy off vehicle that meets the goals set forth by the team. This effort was made possible through support from the U.S. Department of Energy, General Motors, The Ohio State University, and numerous competition and local sponsors.
2014-10-13
Technical Paper
2014-01-2909
Chris D. Monaco, Chris Golecki, Benjamin Sattler, Daniel C. Haworth, Jeffrey S. Mayer, Gary Neal
Abstract As one of the fifteen universities in North America taking part in the EcoCAR 2: Plugging into the Future competition, The Pennsylvania State University Advanced Vehicle Team (PSUAVT) designed and implemented a series plug-in hybrid electric vehicle (PHEV) that reduces fuel consumption and emissions while maintaining high consumer acceptability and safety standards. This architecture allows the vehicle to operate as a pure electric vehicle until the Energy Storage System (ESS) State of Charge (SOC) is depleted. The Auxiliary Power Unit (APU) then supplements the battery to extend range beyond that of a purely electric vehicle. General Motors (GM) donated a 2013 Chevrolet Malibu for PSUAVT to use as the platform to implement the PSUAVT-selected series PHEV design. A 90 kW electric traction motor, a 16.2 kW-hr high capacity lithium-ion battery pack, and Auxiliary Power Unit (APU) are now integrated into the vehicle. The APU is a 750cc, two-cylinder engine running on an 85% ethanol/15% gasoline (E85) mixture coupled to an electric generator.
2014-10-13
Technical Paper
2014-01-2906
Trevor Crain, Michael Ryan Mallory, Megan Cawley, Brian Fabien, Per Reinhall
Abstract This paper details the control system development process for the University of Washington (UW) EcoCAR 2 team over the three years of the competition. Particular emphasis is placed upon the control system development and validation process executed during Year 3 of the competition in an effort to meet Vehicle Technical Specifications (VTS) established and refined by the team. The EcoCAR 2 competition challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising consumer acceptability. The project takes place over a three year design cycle, where teams select a hybrid architecture and fuel choice before defining a set of VTS goals for the vehicle. These VTS are selected based on the desired static and dynamic performance targets to balance fuel consumption and emissions with consumer acceptability requirements. The UW team selected a Parallel through the Road hybrid architecture due to its combination of performance capabilities, high power path efficiency, and reliability due to separated electric and biodiesel powertrains.
2014-10-13
Technical Paper
2014-01-2907
Di Zhu, Ewan Pritchard
Abstract EcoCAR 2: Plugging in to the Future is a three-year collegiate engineering competition established by the U.S. Department of Energy (DOE) and General Motors (GM). North Carolina State University is designing a Series Plug-in Hybrid Electric Vehicle (PHEV) on a 2013 Chevrolet Malibu vehicle platform. The designed vehicle has a pure electric range of 55 miles and an overall range of 235 miles with a range extension system. The vehicle is designed to reduce fuel consumption and gas emission while maintaining consumer acceptability in the areas of performance, utility, and safety. This reports details the vehicle development process with an emphasis on control system development and refinement. Advanced manufacturing, modeling, and simulation have been used to ensure a safe and functional vehicle at the upcoming year 3 final competition.
2014-10-13
Technical Paper
2014-01-2904
P. Christopher Manning, Eduardo D. Marquez, Leonard Figueroa, Douglas J. Nelson, Eli Hampton White, Lucas Wayne Shoults
Abstract The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is ready to compete in the Year 3 Final Competition for EcoCAR 2: Plugging into the Future. The team is confident in the reliability of their vehicle, and expects to finish among the top schools at Final Competition. During Year 3, the team refined the vehicle while following the EcoCAR 2 Vehicle Development Process (VDP). Many refinements came about in Year 3 such as the implementation of a new rear subframe, the safety analysis of the high voltage (HV) bus, and the integration of Charge Sustaining (CS) control code. HEVT's vehicle architecture is an E85 Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV), which has many strengths and weaknesses. The primary strength is the pure EV mode and Series mode, which extend the range of the vehicle and reduce Petroleum Energy Usage (PEU) and Greenhouse Gas (GHG) emissions. A primary weakness is the architectures complexity, which made it difficult for the team to truly reap the benefits of the added components to the vehicle which are utilized in Parallel mode.
2014-10-13
Technical Paper
2014-01-2905
P. Christopher Manning, Eli White, Eduardo Marquez, Leonard Figueroa, Lucas Shoults, Douglas Nelson
Abstract The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle. The team selected a series-parallel Plug-In Hybrid Electric Vehicle (PHEV) with P2 (between engine and transmission) and P4 (rear axle) motors, a lithium-ion battery pack, an internal combustion engine, and an automatic transmission as the final powertrain of choice.
2014-10-13
Technical Paper
2014-01-2889
Gerhard Kokalj, Patrick Schatz, Christoph Zach
Abstract The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term “hybrid vehicle” can cover a wide range of differing technologies and drivetrain topologies, this has led to a large amount of vehicles that call themselves “hybrid”. This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required. The functional variability of hybrid technology, however, permits a range of possible implementations and the control calibration tasks themselves need to be well structured concerning hand-over, traceability and robustness.
2014-10-06
Article
Under a long-term partnership announced Oct. 3, AKKA Technologies Group engineers will work with the company's 3DEXPERIENCE platform to develop the next generation of its autonomously driving Link&Go concept car using Dassault Systèmes applications to ideate, design, simulate, and validate on a single collaborative platform hosted on the Cloud.
2014-10-06
Standard
J1715_201410
This SAE Information Report contains definitions for HEV and EV terminology. It is intended that this document be a resource for those writing other HEV and EV documents, specifications, standards, or recommended practices.
2014-10-02
WIP Standard
ARP6335
The document will provide industry best practicies to detect, identify and prevent malicious electronic parts and embedded firmware / software for entering the DoD Supply Chain. The best practices will assist the DoD contractors to meet the requirements of DoD D 5000.02, DoD I 5200.39 and DoD I 5200.44 to ensure the integrity and trust of microelectronic components and software being designed and built into DoD systems.
2014-10-01
Technical Paper
2014-01-9027
Berna Balta, Onur Erk, H. Ali Solak, Numan Durakbasa
Rear underrun protection device is crucial for rear impact and rear under-running of the passenger vehicles to the heavy duty trucks. Rear underrun protection device design should obey the safety regulative rules and successfully pass several test conditions. The objective and scope of this paper is the constrained optimization of the design of a rear underrun protection device (RUPD) beam of heavy duty trucks for impact loading using correlated CAE and test methodologies. In order to minimize the design iteration phase of the heavy duty truck RUPD, an effective, real-life testing correlated, finite element model have been constructed via RADIOSS software. Later on, Pareto Optimization has been applied to the finite element model, by constructing designed experiments. The best solution has been selected in terms of cost, manufacturing and performance. Finally, real-life verification testing has been applied for the correlation of the optimum solution.
2014-10-01
Magazine
Buckeye Current's TT triumph The Ohio State University reprised its third-place finish in the 2014 TT Zero for all-electric motorcycles, beating some of the pros on the world's toughest race circuit. Kettering FSAE team improved as season progressed Lowest priced may not mean the best, but certainly not the worst. Leveling the field: getting #girlsinstem Despite facing the brunt of gender segregation, women are forging ahead and dramatically improving STE M, both academically and professionally. Mercedes-AMG's SLS departure opens door to new GT Powering the car is an all-new biturbo 4.0-L V8 available with two power levels: hot (GT) at 340 kW (456 hp) and exceedingly hot (GTS) at 375 kW (503 hp).
2014-09-30
Article
The industry outlook for 2021 underscores engineering efficiency and flexible, modular architectures, according to industry forecasters IHS Automotive.
2014-09-30
Technical Paper
2014-01-2395
Gurunathan Varun Kumar, Meer Reshma Sheerin, Vedachalam Saravana Prabu, Kallikadan Jean, Chaitanya Rajguru, Murugesan Dinesh, Andrew Croft
Abstract Automotive climate control systems are evolving at a rapid pace to meet the overall vehicle requirements and the user expectations for comfort and convenience. This poses a challenge in the product development life cycle of multi-platform vehicle systems with respect to development time and optimal performance in the Heating, Ventilation and Air Conditioning (HVAC) system. This paper proposes rapid HVAC plant model design and development using simplified one-dimensional (1D) simulation models for fast simulations. The specific accuracy limitations of such a simplified model are overcome using limited three-dimensional computational fluid dynamics (3D CFD) modelling. User-level control strategy is developed in an integrated simulation environment that includes a reference 1D model and a control algorithm simulator. The simulation data is used to study and analyse the temperature and airflow distribution in the system. Based on these results, simpler models for the HVAC system are derived.
2014-09-30
Technical Paper
2014-01-2394
Demetrio Cortese
Abstract Using a Model-based approach to the embedded software development process contributed significantly in reducing the development time while also supporting a high quality level of the software code implementation. However, based on our experience with CNH Industrial application scenarios, involving multiple suppliers from vehicle ECU to the engine ECU, it only addressed the need of the implementation phase without any consistent influence in other software development life-cycle phases such as requirements and specification. Mandatory functional safety requirements, new complex functionalities, and reducing time to delivery while maintaining high quality level of software are driving factors in our new software development projects. Ideally the adoption of international standards, as for example the ISO 12007, and the safety standards, as the ISO 26262, ISO 25119 and ISO 13849, should represent a consistent guide to develop software. In this approach, the adoption of them should satisfy both the development guidelines and recommendations while at the same time to meeting application scenario requirements.
2014-09-30
Technical Paper
2014-01-2350
Zhiguo Zhao, Guanyu Zheng, Fengshuang Wang, Suying Zhang, Jianhua Zhang
In order to satisfy China IV emissions regulations, a unique design concept was proposed with injector closely coupled with Selective Catalytic Reduction (SCR) system outer body. The benefit of this design is significant in cost reduction and installation convenience. One paper was published to describe the vertical inlet layout [1]; this work is the second part describing applications of this concept to horizontal inlet configurations. For horizontal inlet pipe, two mixing pipe designs were proposed to avoid urea deposit and meet EU IV emission regulations. Computational Fluid Dynamics (CFD) technique was used to evaluate two design concepts; experiments were performed to validate both designs. CFD computations and experiments give the same direction on ranking of the two decomposition tubes. With the straight decomposition pipe design and unique perforated baffle design, no urea deposits were found; in addition, the emission level satisfied EU IV regulations. Modeling of acoustic insertion loss with GT-Power was implemented and correlated with the tests, the resulting system insertion loss is higher than 20 dB under the rated engine load condition, meeting the acoustic performance targets.
2014-09-30
WIP Standard
AS17108B
The intent is to ballot this drawing package and then stabilize it.
2014-09-30
Technical Paper
2014-01-2410
Xinyu Ge, Jonathan Jackson
Cost reduction in the automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OEMs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in the automotive industry dramatically improved production efficiency in past ten years, they are still facing the pressure of cost control. The big challenge in cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs create constraints for the traditional economic expansion model. Lean manufacturing and other traditional 6 Sigma processes have been widely utilized to reduce waste and improve efficiency in the automotive industry.
2014-09-28
Technical Paper
2014-01-2487
Mohamed Samy Barakat
The Braking System is the most crucial part of the racing vehicle. There is no doubt, that if only one minority failure in the braking system took place, this would be more than enough reason to cause the racing team disqualification from the competition. Time is the main and the most important criteria for any racing competition; on the other hand the formula student “FS UK SAE” competition care the most about developing the automotive engineering sense in the students by putting them under strict rules normally taken from the original version “formula 1” to encourage their creativity to reach the optimum performance under these strict rules. One of the most important rules is “No Braking by wire”, and the obvious consequences are more stopping distance and time. Braking distance is a critical facture in achieving racing success in a competitive domain. This report will cover using the bias bar, dynamic weight distribution “before and after braking” and carefully choosing the braking and suspension system components dimensions, in order to fulfill the main functions of “ABS and EBD” which are preventing the wheels from lock-up and preventing side skid of the vehicle during cornering in the different dynamic tests with full consideration of the maximum approachable deceleration of the vehicle without locking up without using any kind of electronic “actuators or control”.
2014-09-23
WIP Standard
GEIA859B
Data is information (e.g., concepts, thoughts, and opinions) that have been recorded in a form that is convenient to move or process. Data may represent tables of values of various types (numbers, characters, and so on). Data can also take more complex forms such as engineering drawings and other documents, software, pictures, maps, sound, and animation.

Data management, from the perspective of this standard, consists of the disciplined processes and systems that plan for, acquire, and provide stewardship for product and product-related business data, consistent with requirements, throughout the product and data life cycles. Thus, this standard primarily addresses product data and the business data required for collaboration from the team level or extended through the trading partner level during product acquisition and sustainment. It is recognized, however, that the principles described in this standard also have broader application to business data and operational data generally. It is also recognized that the data addressed by this standard is subject to data administration, metadata management, records management, and other processes applied at the enterprise level, and that these principles must be applied in that enterprise context.

2014-09-16
Magazine
Women in Vehicle Engineering Across the industry, talented women are ascending the engineering-career ladder at higher rates than ever before, but they continue to face challenges in a male-dominated industry. In this Special Report, AE speaks with current and future industry leaders from U.S., European, and Asian OEMs, academia, and other experts, and analyzes data, to assess progress to date and plot the future of this critical and dynamic professional trend. Fuel cells As higher-volume mass production gets underway, OEMs and suppliers are finetuning their capabilities.
Viewing 1 to 30 of 12964

Filter

  • Article
    354
  • Book
    184
  • Collection
    7
  • Magazine
    844
  • Technical Paper
    10744
  • Standard
    831