Display:

Results

Viewing 1 to 30 of 12924
Technical Paper
2014-11-11
Thomas Vendittelli, Gregory W. Davis, Arnaldo Mazzei
Clean snowmobile technology has been developed and applied to a commercially available two cylinder, four-stroke snowmobile. The goals of this effort included reducing exhaust and noise emissions to levels below the U.S National Parks Service Best Available Technology (BAT) standard while increasing vehicle dynamic performance while providing an increase in peak power over the original equipment version. Further, for maximum rider convenience, this snowmobile can operate using any blend of gasoline, ethanol, and isobutanol fuel. All goals were achieved while keeping the cost affordable. The details of this design effort including noise, performance and emissions data are discussed in this paper. Specifically, the effort to improve the dynamic performance, fuel efficiency, and emissions of a commercially available two cylinder, four-stroke snowmobile is described. Engine efficiency has been increased through Late Intake Valve Closure (LIVC) valve timing modification for Miller cycle operation, while high load power was increased through the implementation of a turbocharger and variable boost control.
Technical Paper
2014-11-11
Claudio Annicchiarico, Renzo Capitani
In a Formula SAE, as for almost all racecars, suppressing or limiting the differential action of the differential mechanism is the technique mostly adopted to improve the traction exiting the high lateral acceleration corners. The devices carrying out this function are usually called LSD, “Limited Slip Differentials”, which unbalance the traction force distribution, generating as a secondary effect a yaw torque acting on the vehicle. If the differential action is electronically controlled, this yaw torque can be used as a torque vectoring technique to affect the attitude of car. The yaw torque introduced by an electronically controlled LSD (also called SAD, “Semi-Active Differential”) could suddenly change from oversteering (i.e. pro-yaw) to understeering (i.e. anti-yaw), depending on the riding conditions. Therefore, controlling the vehicle attitude with a SAD could be quite tricky, and its effectiveness could be low if compared to the common torque vectoring systems, which usually act on the brake system of the car.
Technical Paper
2014-11-11
Jeffrey Blair, Glenn Bower
Operation of snowmobiles in national parks is restricted to vehicles meeting the Best Available Technology standard for exhaust and noise emissions as established by the National Parks Service. An engine exceeding these standards while operating on a blend of gasoline and bio-isobutanol has been developed based on a production 4 stroke snowmobile engine. Miller cycle operation was achieved via late intake valve closing and turbocharging. The production Rotax ACE 600cc 2 cylinder engine was modeled using Ricardo Wave. After this model was validated with physical testing, different valve lift profiles were evaluated for brake specific fuel consumption and brake power. The results from this analysis were used to determine the cam profile for Miller cycle operation. This was done to reduce part load pumping losses and increase engine efficiency while maintaining production power density. A catalytic converter was added to reduce exhaust gas emissions, as measured by the EPA 40 CFR Part 1051 5-mode emissions test cycle.
Technical Paper
2014-10-13
P. Christopher Manning, Eduardo D. Marquez, Leonard Figueroa, Douglas J. Nelson, Eli Hampton White, Lucas Wayne Shoults
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is ready to compete in the Year 3 Final Competition for EcoCAR 2: Plugging into the Future. The team is confident in the reliability of their vehicle, and expects to finish among the top schools at Final Competition. During Year 3, the team refined the vehicle while following the EcoCAR 2 Vehicle Development Process (VDP). Many refinements came about in Year 3 such as the implementation of a new rear subframe, the safety analysis of the high voltage (HV) bus, and the integration of Charge Sustaining (CS) control code. HEVT’s vehicle architecture is an E85 Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV), which has many strengths and weaknesses. The primary strength is the pure EV mode and Series mode, which extend the range of the vehicle and reduce Petroleum Energy Usage (PEU) and Greenhouse Gas (GHG) emissions. A primary weakness is its complexity, which made it difficult for the team to truly reap the benefits of the added components to the vehicle which are utilized in Parallel mode.
Technical Paper
2014-10-13
R. Pradeepak, Mihir Bhambri
Motor scooters are popular in most parts of the world, especially in countries with local manufacturers. Parking, storage, and traffic issues in crowded cities, along with the easy driving position makes them a popular mode of transportation. Motor scooters are the segment of 2 wheelers which is driven by the entire family with ease unlike motorcycles which is a male dominated segment. Due to the importance that the scooters hold in the present time, it has become very important to manufacture stable, light weight yet robust scooters. For the best product in the market, testing is given a great importance in automotive manufacturing companies. Virtual testing has been the latest development in terms of testing a vehicle during the design stage itself. Multi Body Dynamics approach is used to study - 1) the articulation of various sub-assemblies and 2) the static & dynamic loads generated at various attachment points of the scooter. Integration of sub-assemblies into a final product creates a minimal scope of modification of the location of different components.
Technical Paper
2014-10-13
Trevor Crain
This paper details the control system development process for the University of Washington (UW) EcoCAR 2 team over the three years of the competition. Particular emphasis is placed upon the control system development and validation process executed during Year 3 of the competition in an effort to meet Vehicle Technical Specifications (VTS) established and refined by the team. The EcoCAR 2 competition challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising consumer acceptability. The project takes place over a three year design cycle, where teams select a hybrid architecture and fuel choice before defining a set of VTS goals for the vehicle. These VTS are selected based on the desired static and dynamic performance targets to balance fuel consumption and emissions with consumer acceptability requirements. The UW team selected a Parallel through the Road hybrid architecture due to its combination of performance capabilities, high power path efficiency, and reliability due to separated electric and biodiesel powertrains.
Technical Paper
2014-10-13
Thomas Bradley, Benjamin Geller, Jake Bucher, Shawn Salisbury
EcoCAR 2 is the premiere North American collegiate automotive competition that challenges 15 North American universities to redesign a 2013 Chevrolet Malibu to decrease the environmental impact of the Malibu while maintaining its performance, safety, and consumer appeal. The EcoCAR 2 project is a three year competition headline sponsored by General Motors and U.S. Department of Energy. In Year 1 of the competition, extensive modeling guided the Colorado State University (CSU) Vehicle Innovation Team (VIT) to choose an all-electric vehicle powertrain architecture with range extending hydrogen fuel cells, to be called the Malibu H2eV. During this year, the CSU VIT followed the EcoCAR 2 Vehicle Design Process (VDP) to develop the H2eV’s electric and hydrogen powertrain, energy storage system (ESS), control systems, and auxiliary systems. From the design developed in Year 1 of the EcoCAR 2 competition, a Malibu donated by General Motors was converted into a concept validating prototype during Year 2.
Technical Paper
2014-10-13
Chris D. Monaco, Chris Golecki, Benjamin Sattler, Daniel C. Haworth, Jeffrey S. Mayer, Gary Neal
As one of the fifteen universities in North America taking part in the EcoCAR 2: Plugging into the Future competition, The Pennsylvania State University Advanced Vehicle Team (PSUAVT) designed and implemented a series plug-in hybrid electric vehicle (PHEV) that reduces fuel consumption and emissions while maintaining high consumer acceptability and safety standards. This architecture allows the vehicle to operate as a pure electric vehicle until the Energy Storage System (ESS) State of Charge (SOC) is depleted. The Auxiliary Power Unit (APU) then supplements the battery to extend range beyond that of a purely electric vehicle. General Motors (GM) donated a 2013 Chevrolet Malibu for PSUAVT to use as the platform to implement the PSUAVT-selected series PHEV design. A 90 kW electric traction motor, a 16.2 kW-hr high capacity lithium-ion battery pack, and Auxiliary Power Unit (APU) are now integrated into the vehicle. The APU is a 750cc, two-cylinder engine running on an 85% ethanol/15% gasoline (E85) mixture coupled to an electric generator.
Technical Paper
2014-10-13
Di Zhu, Ewan Pritchard
EcoCAR 2: Plugging in to the Future is a three-year collegiate engineering competition established by the U.S. Department of Energy (DOE) and General Motors (GM). North Carolina State University is designing a Series Plug-in Hybrid Electric Vehicle (PHEV) on a 2013 Chevrolet Malibu vehicle platform. The designed vehicle has a pure electric range of 55 miles and an overall range of 235 miles with a range extension system. The vehicle is designed to reduce fuel consumption and gas emission while maintaining consumer acceptability in the areas of performance, utility, and safety. This reports details the vehicle development process with an emphasis on control system development and refinement. Advanced manufacturing, modeling, and simulation have been used to ensure a safe and functional vehicle at the upcoming year 3 final competition.
Technical Paper
2014-09-30
Xinyu Ge, Jonathan Jackson
Cost reduction in automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OMEs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in automotive industry dramatically improved production efficiency in past ten years, they are still facing up with the pressure of cost control. The big challenge in the cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs construct constrains for the traditional economic expansion model. Lean manufacturing and other traditional Six Sigma processes have been widely utilized to reduce waste and improve efficiency further in the automotive industry.
Technical Paper
2014-09-30
Venkatesan C, DeepaLakshmi R
The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care to be taken while selecting the appropriate material. Polyamide 12(PA12) is the commonly available material which is currently used for ABT applications. Availability and cost factor is always a major concern for commercial vehicle industries. This paper presents the development of an alternative material which has superior heat resistance. Thermoplastic copolyester (TEEE) materials were tried in place Polyamide 12 for many good reasons. The newly developed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn’t require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time. Also it has got better heat ageing properties and higher burst pressure at elevated temperature.
Technical Paper
2014-09-30
Marc Auger, Larry Plourde, Melissa Trumbore, Terry Manuel
Design of body structures for commercial vehicles differs significantly from automotive due to government, design, usage requirements. Specifically the design of heavy truck doors differ as they are not required to meet side impact requirements due to their height off the ground as compared to automobiles. However, heavy truck doors are subjected to higher loads, longer life and less damage from events. Past aluminum designs relied either on bent extrusions around the periphery of the door or multiple steel and/or aluminum reinforcements joined to the inner in order to provide the necessary structure. Doors using aluminum extrusions for the peripheries were limited to two dimensional bending for the extrusions resulting in a planar door with limited styling features an opportunity for aerodynamic improvements. Doors with stamped reinforcements and door mounted mirrors require joining the inner and outer structure at the lower mirror mount forcing the use of a division bar to split the glass that impedes vision and drives cost for the extra parts.
Technical Paper
2014-09-16
Louis Columbus
Aerospace suppliers face the daunting task of constantly improving time-to-market, reducing cost of quality and turning compliance into a competitive advantage. Managing to these constraints while staying profitable is a challenge faced by the entire aerospace supply chain face today. The intent of this presentation is to share five lessons learned on how aerospace suppliers can optimize for these three constraints while growing their businesses. The first is electronically enabling traceability both within a multi-tier supply chains and throughout suppliers. Automating traceability at the shop floor improves quality management and accelerates compliance. Specific methodologies and metrics used to accomplish this will be provided. Second, lessons learned from implementing Manufacturing Execution Systems (MES) showing how shop floor visibility has a direct effect on supplier performance is illustrated with case studies and metrics. Third, lessons learned in making compliance pay by benchmarking performance to AS9100C, ISO9001, and ITAR standards is provided.
Standard
2014-07-29
This SAE Standard standardizes practices to: a. maximize availability of authentic materiel, b. procure materiel from reliable sources, c. assure authenticity and conformance of procured materiel, including methods such as certification, traceability, testing and inspection appropriate to the commodity/item in question, d. control materiel identified as fraudulent/counterfeit, e. and report suspect or confirmed fraudulent/counterfeit materiel to other potential users and Authority Having Jurisdiction.
Article
2014-07-23
The new facility in suburban Detroit puts Aisin World Corp. of America and Aisin Technical Center of America under one roof, adds dynamometer and other resources.
Article
2014-07-23
The 2014 Collegiate Design Series season concluded with the co-located FSAE Lincoln and FSAE Electric events. The University of Kansas placed first in the combustion class, and Universidade Estadual de Campinas did same in the electric class.
WIP Standard
2014-07-22
This standard defines the requirements for fully replacing undesirable surface finishes using solder dip. Requirements for qualifying and testing the refinished piece parts are also included. This standard covers the replacement of pure tin and Pb-free tin alloy finishes with SnPb finishes. This dipping is different from dipping to within some distance of the body for the purposes of solderability; solder dipping for purposes other than full replacement of pure tin and other Pb-free tin alloy finishes are beyond the scope of this document. It covers process and testing requirements for robotic and semi-automatic dipping process but does not cover purely manual dipping processes, due to the lack of understanding of the appropriate requirements for hand-dipping for tin whisker mitigation at this time. This standard does not apply to piece-part manufacturers who build piece parts with a hot solder dip finish. It applies to refinishing performed by any other group, including a third party supplier, production facilities at the supplier and other organizations, whenever the intent of the dipping is to have full coverage and replacement of Pb-free tin.
Article
2014-07-20
Formerly spread across 12 different buildings on Porsche's development center in Weissach, Germany, engineers doing electrical and electronics work now are co-located as part of an expansion at the Weissach campus.
WIP Standard
2014-07-18
The terms included in the Glossary are general in nature and may not apply to all manufacturers’ systems. All terms in Section 3 apply to automotive inflatable restraint systems in general which are initiated by an electric or mechanical stimulus upon receipt of a signal from a sensor. These terms are intended to reflect existing designs and the Glossary will be updated as information on other types of systems becomes available. Appendix A is included to identify terminology that is no longer in common use or specifically applicable to inflatable restraint systems, but was published in the December 2001 version of SAE J1538.
Standard
2014-07-17
To provide standard terminology and definitions with regard to ignition systems for spark-ignited internal combustion engines.
Article
2014-07-11
Infor Automotive Exchange from Infor is an electronic data interchange (EDI) and release accounting system designed specifically for automotive tier suppliers.
Article
2014-07-09
Sixteen university teams from the U.S. and Canada will revamp a Chevrolet Camaro into an energy-efficient, eco-smart muscle car without compromise to the vehicle's performance, utility, and safety.
WIP Standard
2014-07-01
The federal government and industry have moved to concurrent acquisition and development processes using integrated process teams (IPTs). These processes are supported by timely, accurate, cross functional access to data within an integrated data environment (IDE) enabled by advances in information technology (IT). Since the advent of acquisition reform in 1994, Data Management (DM) practices have evolved from being directed by a prescriptive set of standards and procedures to use of the guidance in a principles-based standard -- ANSI/EIA 859.

GEIA Handbook 859 provides implementation guidance for ANSI/EIA 859, with discussions of applications of the standard's principles, tools, examples, and case studies. Handbook 859 is organized according to the lifecycle of data management and covers activities from the pre-RFP stage through records disposition. It also provides annexes on topics which apply at multiple stages in the lifecycle, such as protection of data, continuous improvement and knowledge management.

Magazine
2014-07-01
Global Viewpoints The latest strategies are investigated for vehicle development by automakers and major suppliers. Sports cars embrace array of green technology IMSA Tudor United SportsCar Championship promotes a variety of green technologies to link racing to the road. More gears, more challenges Many strategies, as well as key software and hardware aspects related to controllers, networks, sensors, and actuators, must be considered to keep automatic transmissions shifting smoothly as more gears are added to improve fuel economy. Advancing structural composites Industry experts address the opportunities and challenges involved with moving toward composite-intensive vehicles, including Nissan's effort to produce a high-volume, fully recyclable composite liftgate with low metal content.
Technical Paper
2014-06-30
Gilles Nghiem, Shanjin Wang
Abstract The vehicle pass-by noise regulation will change in the near future and noise limits will be lowered significantly. This evolution will require improvement of engine's sound radiation. On the other hand, under the current pressure for fuel economy, future engines will be more and more lightened, and this will have negative impact on engine's sound emission. Therefore, the requirements related to the new pass-by noise regulation should be taken into account in the design of new powertrains, and in some cases, innovative solutions must be developed in order to improve the level of noise of the engine while reducing the masse of the engine. One effective way is to optimize the design of some key engine parts, such as crankshaft and engine bottom structure. Original approaches had been conducted and showed how much these engine parts can affect powertrain radiated noise, and in addition to find a quantitative relationship between crankshaft stiffness and powertrain radiated noise.
Article
2014-06-27
The Autotech Council announced Thursday in a release that it is joining the AutoHarvest Foundation as a strategic partner. Based in San Jose, Calif., the Autotech Council is a group of technology innovators.
Standard
2014-06-26
This SAE Standard covers the relative position and direction of motion of controls which influence the movement of the machine and the operating direction only of equipment controls. There is no intention to eliminate or restrict the use of combination controls, automatic controls, or special operating controls. Purpose This document is intended as a guide for designing uniform operator controls for graders. Graders are defined in SAE J/ISO 6165.
Article
2014-06-19
Lack of voice recognition and clumsy Bluetooth pairing were cited by owners of new vehicles as being among the most common type of problems they experience in the first 90 days of vehicle ownership, according to the J.D. Power 2014 Initial Quality Study (IQS).
WIP Standard
2014-06-19
This document describes an evaluation method which measures the effectiveness of a specified test plan used to screen for counterfeit parts. The method includes the determination of the types of defects detected using a specified test plan along with the related counterfeit type coverage. The output of this evaluation will produce the counterfeit defect coverage (CDC), the not-covered defects (NCD), the under-covered defects (UCD), and the counterfeit type coverage (CTC). This information will be supplied to the test laboratory’s customer in both the test report and the Certificate of Quality Conformance. This evaluation method does not address the effectiveness of detecting tampered type devices.
Viewing 1 to 30 of 12924

Filter

  • Article
    344
  • Book
    180
  • Collection
    7
  • Magazine
    839
  • Technical Paper
    10732
  • Standard
    822
  • Article
    822