Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 10729
Technical Paper
2014-10-13
P. Christopher Manning, Eduardo D. Marquez, Leonard Figueroa, Douglas J. Nelson, Eli Hampton White, Lucas Wayne Shoults
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is ready to compete in the Year 3 Final Competition for EcoCAR 2: Plugging into the Future. The team is confident in the reliability of their vehicle, and expects to finish among the top schools at Final Competition. During Year 3, the team refined the vehicle while following the EcoCAR 2 Vehicle Development Process (VDP). Many refinements came about in Year 3 such as the implementation of a new rear subframe, the safety analysis of the high voltage (HV) bus, and the integration of Charge Sustaining (CS) control code. HEVT’s vehicle architecture is an E85 Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV), which has many strengths and weaknesses. The primary strength is the pure EV mode and Series mode, which extend the range of the vehicle and reduce Petroleum Energy Usage (PEU) and Greenhouse Gas (GHG) emissions. A primary weakness is its complexity, which made it difficult for the team to truly reap the benefits of the added components to the vehicle which are utilized in Parallel mode.
Technical Paper
2014-10-13
Di Zhu, Ewan Pritchard
EcoCAR 2: Plugging in to the Future is a three-year collegiate engineering competition established by the U.S. Department of Energy (DOE) and General Motors (GM). North Carolina State University is designing a Series Plug-in Hybrid Electric Vehicle (PHEV) on a 2013 Chevrolet Malibu vehicle platform. The designed vehicle has a pure electric range of 55 miles and an overall range of 235 miles with a range extension system. The vehicle is designed to reduce fuel consumption and gas emission while maintaining consumer acceptability in the areas of performance, utility, and safety. This reports details the vehicle development process with an emphasis on control system development and refinement. Advanced manufacturing, modeling, and simulation have been used to ensure a safe and functional vehicle at the upcoming year 3 final competition.
Technical Paper
2014-10-13
R. Pradeepak, Mihir Bhambri
Motor scooters are popular in most parts of the world, especially in countries with local manufacturers. Parking, storage, and traffic issues in crowded cities, along with the easy driving position makes them a popular mode of transportation. Motor scooters are the segment of 2 wheelers which is driven by the entire family with ease unlike motorcycles which is a male dominated segment. Due to the importance that the scooters hold in the present time, it has become very important to manufacture stable, light weight yet robust scooters. For the best product in the market, testing is given a great importance in automotive manufacturing companies. Virtual testing has been the latest development in terms of testing a vehicle during the design stage itself. Multi Body Dynamics approach is used to study - 1) the articulation of various sub-assemblies and 2) the static & dynamic loads generated at various attachment points of the scooter. Integration of sub-assemblies into a final product creates a minimal scope of modification of the location of different components.
Technical Paper
2014-10-13
Chris D. Monaco, Chris Golecki, Benjamin Sattler, Daniel C. Haworth, Jeffrey S. Mayer, Gary Neal
As one of fifteen universities in North America taking part in the EcoCAR 2: Plugging into the Future competition, The Pennsylvania State University Advanced Vehicle Team (PSUAVT) designed and implemented a series plug-in hybrid electric vehicle (PHEV) to reduce fuel consumption and emissions while maintaining high consumer acceptability and safety standards. This architecture allows the vehicle to operate as a pure electric vehicle until the Energy Storage System (ESS) State of Charge (SOC) is depleted. The Auxiliary Power Unit (APU) then supplements the battery to extend range beyond that of a purely electric vehicle. General Motors (GM) donated a 2013 Chevrolet Malibu for PSUAVT to use as the platform to implement the PSUAVT-selected series PHEV design. A 90 kW electric traction motor, a 16.8 kW-hr high capacity lithium-ion battery pack, and Auxiliary Power Unit (APU) are now integrated into the vehicle. The APU is a 750cc, two-cylinder engine running on an 85% ethanol/15% gasoline (E85) mixture coupled to an electric generator.
Technical Paper
2014-10-13
Trevor Crain
This paper details the control system development process for the University of Washington (UW) EcoCAR 2 team over the three years of the competition. Particular emphasis is placed upon the control system development and validation process executed during Year 3 of the competition in an effort to meet Vehicle Technical Specifications (VTS) established and refined by the team. The EcoCAR 2 competition challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising consumer acceptability. The project takes place over a three year design cycle, where teams select a hybrid architecture and fuel choice before defining a set of VTS goals for the vehicle. These VTS are selected based on the desired static and dynamic performance targets to balance fuel consumption and emissions with consumer acceptability requirements. The UW team selected a Parallel through the Road hybrid architecture due to its combination of performance capabilities, high power path efficiency, and reliability due to separated electric and biodiesel powertrains.
Technical Paper
2014-10-13
Thomas Bradley, Benjamin Geller, Jake Bucher, Shawn Salisbury
EcoCAR 2 is the premiere North American collegiate automotive competition that challenges 15 North American universities to redesign a 2013 Chevrolet Malibu to decrease the environmental impact of the Malibu while maintaining its performance, safety, and consumer appeal. The EcoCAR 2 project is a three year competition headline sponsored by General Motors and U.S. Department of Energy. In Year 1 of the competition, extensive modeling guided the Colorado State University (CSU) Vehicle Innovation Team (VIT) to choose an all-electric vehicle powertrain architecture with range extending hydrogen fuel cells, to be called the Malibu H2eV. During this year, the CSU VIT followed the EcoCAR 2 Vehicle Design Process (VDP) to develop the H2eV’s electric and hydrogen powertrain, energy storage system (ESS), control systems, and auxiliary systems. From the design developed in Year 1 of the EcoCAR 2 competition, a Malibu donated by General Motors was converted into a concept validating prototype during Year 2.
Technical Paper
2014-09-30
Xinyu Ge, Jonathan Jackson
Cost reduction in automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OMEs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in automotive industry dramatically improved production efficiency in past ten years, they are still facing up with the pressure of cost control. The big challenge in the cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs construct constrains for the traditional economic expansion model. Lean manufacturing and other traditional Six Sigma processes have been widely utilized to reduce waste and improve efficiency further in the automotive industry.
Technical Paper
2014-09-30
Venkatesan C, DeepaLakshmi R
The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care to be taken while selecting the appropriate material. Polyamide 12(PA12) is the commonly available material which is currently used for ABT applications. Availability and cost factor is always a major concern for commercial vehicle industries. This paper presents the development of an alternative material which has superior heat resistance. Thermoplastic copolyester (TEEE) materials were tried in place Polyamide 12 for many good reasons. The newly developed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn’t require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time. Also it has got better heat ageing properties and higher burst pressure at elevated temperature.
Technical Paper
2014-09-30
Marc Auger, Larry Plourde, Melissa Trumbore, Terry Manuel
Design of body structures for commercial vehicles differs significantly from automotive due to government, design, usage requirements. Specifically the design of heavy truck doors differ as they are not required to meet side impact requirements due to their height off the ground as compared to automobiles. However, heavy truck doors are subjected to higher loads, longer life and less damage from events. Past aluminum designs relied either on bent extrusions around the periphery of the door or multiple steel and/or aluminum reinforcements joined to the inner in order to provide the necessary structure. Doors using aluminum extrusions for the peripheries were limited to two dimensional bending for the extrusions resulting in a planar door with limited styling features an opportunity for aerodynamic improvements. Doors with stamped reinforcements and door mounted mirrors require joining the inner and outer structure at the lower mirror mount forcing the use of a division bar to split the glass that impedes vision and drives cost for the extra parts.
Technical Paper
2014-09-16
Louis Columbus
Aerospace suppliers face the daunting task of constantly improving time-to-market, reducing cost of quality and turning compliance into a competitive advantage. Managing to these constraints while staying profitable is a challenge faced by the entire aerospace supply chain face today. The intent of this presentation is to share five lessons learned on how aerospace suppliers can optimize for these three constraints while growing their businesses. The first is electronically enabling traceability both within a multi-tier supply chains and throughout suppliers. Automating traceability at the shop floor improves quality management and accelerates compliance. Specific methodologies and metrics used to accomplish this will be provided. Second, lessons learned from implementing Manufacturing Execution Systems (MES) showing how shop floor visibility has a direct effect on supplier performance is illustrated with case studies and metrics. Third, lessons learned in making compliance pay by benchmarking performance to AS9100C, ISO9001, and ITAR standards is provided.
Technical Paper
2014-06-30
Gilles Nghiem, Shanjin Wang
Abstract The vehicle pass-by noise regulation will change in the near future and noise limits will be lowered significantly. This evolution will require improvement of engine's sound radiation. On the other hand, under the current pressure for fuel economy, future engines will be more and more lightened, and this will have negative impact on engine's sound emission. Therefore, the requirements related to the new pass-by noise regulation should be taken into account in the design of new powertrains, and in some cases, innovative solutions must be developed in order to improve the level of noise of the engine while reducing the masse of the engine. One effective way is to optimize the design of some key engine parts, such as crankshaft and engine bottom structure. Original approaches had been conducted and showed how much these engine parts can affect powertrain radiated noise, and in addition to find a quantitative relationship between crankshaft stiffness and powertrain radiated noise.
Technical Paper
2014-06-06
Jayant Hemachandra Bhangale, Ashish Manohar Mahalle
Presently, most of the companies have combination of process and product layout. Cellular manufacturing is a place where company has established one or more manufacturing cells. Due to competition, Automobile industries are changing existing plant layout to “Cellular Layout” in which manufacturing process is carried out by proper arrangement of machines. This research paper aims at the optimization of cellular manufacturing layout using: cell formation stage, cell layout stage. In the first stage, a heuristic based upon the material flow is developed, which allows the machines to be clustered more naturally. In the second stage, a genetic algorithm is used to optimize the machine layout within each cell, in which a previously defined material handling system is provided. This representation allows the design of the layout and aisle-structure simultaneously, and can be converted into a string representation adaptable by a genetic algorithm for optimization. The number of aisles in the optimized aisle-structure is also minimized.
Technical Paper
2014-04-28
Rohitt Ravi, Sivasubramanian, Bade Simhachalam, Dhanooj Balakrishnan, Krishna Srinivas
Abstract Tubular stabilizer bar for commercial vehicle is developed using advanced high strength steel material. Tubular section is proposed to replace the existing solid section. The tubular design is validated by component simulation using ANSYS Software. The tubes are then manufactured of the required size. The bend tool is designed to suit the size of the profile stabilizer bar and the prototypes are made using the tube bending machine. The strength of the tubular stabilizer is increased by using robotic induction hardening system. The tubular stabilizer bar is tested for fatigue load using Instron actuators. Higher weight reduction is achieved by replacing the existing solid stabilizer bar with the tubular stabilizer bar.
Technical Paper
2014-04-01
Parul Goyal, Feng Liang, Olof Oberg
Abstract The aim of the paper is to describe how Volvo Construction Equipment uses a virtual product development process to analyze potential risks, find root causes and optimize future product development. A model based method is used to analyze a potential risk in the design of Wheel Loader transmissions. The risk was recognized from failure mode and effect analysis (FMEA), and a simulation model using AMESim modeling tool was developed to analyze the behavior of the new design. Together with test rig result, it is proved that the model based method gives a considerably accurate prediction of the system behavior. By using the model based approach, lead time for development process is reduced and important feedbacks from simulation model are obtained on early stage of the development. This paper further presents the use of the simulation model as a tool to predict the potential risks in the extreme operating conditions, which are difficult to test on the vehicle test bench.
Technical Paper
2014-04-01
Richard A. Scholer, Hank McGlynn
Abstract This paper is the fifth in the series of documents designed to identify the progress on the SAE Plug-in Electric Vehicle (PEV) communication task force that follows 2010-01-0837, 2011-01-0866, 2012-01-1036 and 2013-01-1475. The primary focus of this paper is to discuss the most recent revision of J2847/1 [1], which deals with Smart Charging applications, plus the initial release of J2847/3 [2], which can be thought of as dealing with “Smart Discharging” applications. Both documents are based on the use of the Smart Energy Profile 2.0 (SEP2) Application Protocol Standard (V1.0) which was completed by the ZigBee Alliance in April 2013. The standard was then accepted by the IEEE and subsequently released as IEEE 2030.5 [3]. SEP2 started with a Marketing Requirements Document (MRD) that J2836/1™ [4]expanded for the automotive Use Cases for Smart Charging, The MRD was then used to generate the SEP2 Technical Requirements Document (TRD) that set the automotive requirements in J2931/1 [5].
Technical Paper
2014-04-01
Robert Jesse Alley, Patrick Walsh, Nicole Lambiase, Brian Benoy, Kristen De La Rosa, Douglas Nelson, Shawn Midlam-Mohler, Jerry Ku, Brian Fabien
Abstract EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles. During the first and second years of EcoCAR 2, teams executed an Energy Storage System (ESS) design, integration and commissioning process.
Technical Paper
2014-04-01
Idan Kovent, Jerry Ku
Abstract The Wayne State University EcoCAR2 team provided its members with Modeling and Simulation training course for the second summer of the competition. EcoCAR2 is a three-year Advanced Vehicle Technology Competition (AVTC) sponsored by General Motors and the Department of Energy. The course lasted three months and included 45 hours of formal lectures and class hands-on work and an estimated one hundred and fifty hours in home assignments that directly contributed to the team's deliverables. The course described here is unique. The design and class examples were extracted from an in-house complete vehicle simulation and control code to ensure hands-on, interactive training based on real-world problems. The course investigated the physics behind every major powertrain component of a hybrid electric vehicle and the different ways to model the components into a full vehicle simulation. Different engineering approaches were discussed to improve performance and fuel consumption while addressing the different tradeoffs.
Technical Paper
2014-04-01
Lev Klyatis
Abstract This paper will discuss how accurate simulation of the real world conditions and ART/ADT (accelerated reliability/durability testing) technology is influencing accurate efficiency predicting as a final goal of product/process design, manufacturing, and development. The paper begins with the overview of current approaches of predicting the efficiency for a complete product and its components with an examples of life cycle costs (LCC), empirical reliability, physics-based reliability, their benefits and risks. It includes also the history of reliability prediction. As a result of the overview, it will be conclude that one cannot ensure that predicting results will not be misinterpreted or misapplied, even though all assumptions and rationale have been meticulously documented and clearly stated. The paper will demonstrate the proposed principles of solution for accurate efficiency predicting through obtaining accurate initial information for this predicting and improving engineering culture.
Technical Paper
2014-04-01
Seyed M. Mirmiran, Vern Scott, Bill Swenson, Stephen Funtig
Abstract The Sarbanes-Oxley Act created new standards for corporate accountability pertaining to all publicly-owned and traded firms. It holds top executives accountable for the accuracy of all financial data and statements, including reported tangible assets. It requires existence of auditable internal accounting control measures and specifies adherence to new internal controls and procedures designed to ensure the validity of their financial records and physical assets. The Act presents a challenge to every manufacturing firm to have a low-cost system implemented that can produce an exact physical-asset location, existence, verification and accounting on demand. Clearly, such low-cost solutions for enterprise-wide compliance would also provide verifiable and reliable data for corporate property tax, loan collateral, and audit requirements. In 2011, Chrysler LLC conducted a study for an improved and efficient process to locate, verify and track OEM-owned tooling assets at supplier sites, located across the globe.
Technical Paper
2014-04-01
Miwoo Han, Yongpyo Lim, Seong-ho An
Abstract Many high risks of failure in developing and applying new technologies exist in the recent automotive industry because of big volume of selling cars in a global market. Several recalls cost companies more than $ 100 million per problem. New technologies always have uncertainty in performing intended functions at various given conditions despite the fact that engineers do their best to develop technologies to meet all the requirements. Uncertainty of new technologies put companies into danger of failing in their business. Therefore, many companies tend to take interest in reducing risks from the uncertainty in technologies, but the increasing complexity of modern automotive technologies make it difficult to develop complete technologies. A new engineering methodology called SPEED Engineering was introduced to reduce the risks of new technology applications and to facilitate engineers to conceive innovative ideas dominating the market in the future. Also it is used to help engineers solve engineering problems caused by system conflicts or complex factors.
Technical Paper
2014-04-01
Richard Young
This study reanalyzes the data from a recent experimental report from the University of Utah investigating the effect on driving performance of auditory-vocal secondary tasks (such as cell phone and passenger conversations, speech-to-text, and a complex artificial cognitive task). The current objective is to estimate the relative risk of crashes associated with such auditory-vocal tasks. Contrary to the Utah study's assumption of an increase in crash risk from the attentional effects of cognitive load, a deeper analysis of the Utah data shows that driver self-regulation provides an effective countermeasure that offsets possible increases in crash risk. For example, drivers self-regulated their following distances to compensate for the slight increases in brake response time while performing auditory-vocal tasks. This new finding is supported by naturalistic driving data showing that cell phone conversation does not increase crash risk above that of normal baseline driving. The Utah data are next compared to those from a larger study that included visual-manual as well as auditory-vocal tasks.
Technical Paper
2014-04-01
Andreas Kremheller
Abstract This paper aims to provide a brief description on the aerodynamics development process of the new Nissan Qashqai using full-scale wind tunnel testing and Computational Fluid Dynamics simulations (CFD). Aerodynamic drag reduction ideas were developed by means of numerical simulations with confirmation of the aerodynamics properties full-scale clay models were tested in the wind tunnel. Key aerodynamic features were developed including the optimization of hood and windscreen angle, roof camber, plan view corner radius, rear combination lamp with boundary layer trip edge and a large rear spoiler with incorporated winglet. The drag contribution of the under body was reduced by optimizing deflectors and panels. The A-pillar and door mirrors were designed to reduce drag and wind noise. Furthermore, the bumper opening area was optimized to balance the airflow for engine cooling and a low cooling drag contribution. In addition, an active grille shutter was developed to limit the amount of cooling airflow into the lower bumper opening to a minimum.
Technical Paper
2014-04-01
Richard K. Stobart, Xunzhe Zhang
Abstract There has probably never been such a demand for professionally qualified engineers, and yet both the number and diversity of people entering the profession continue to decline. Worldwide, there are very many initiatives - some generally encouraging interest in the profession, and others targeting specific audiences. The reports speak of local success, but the overall picture remains discouraging. In this paper we focus on the “pipeline” from primary education through to the transition from graduate engineer into an experienced member of engineering staff. We have based the discussion on both the presentations and comments made during a panel discussion held at the 2013 SAE International Congress. The paper is intended as a summary of the points raised during that discussion and, we hope proves to be starting point for further investigation and analysis. Of particular note is the sheer diversity of initiatives, and the pressing need for role models and mentoring. The experience of engineers during the early part of their career continues to be highly variable and even at this late stage there is a talent drain from the profession and diminishing diversity.
Technical Paper
2014-04-01
Mariaeugenia Salas Acosta, Krishan Bhatia, Eric Constans, Jennifer Kadlowec, Thomas Merrill, Hong Zhang
Abstract The Rowan University Mechanical Engineering program is studying the use of a long-term (five semester) design project on student learning and concept retention. The project, a bench-scale hybrid electric powertrain system, is designed, analyzed and fabricated by students in five modules, starting in their sophomore year and culminating in their final semester as seniors (see prior ASEE publication [1]). This complex project has been selected in order to integrate the core mechanical engineering courses: Mechanical Design, Thermodynamics, System Dynamics and Control, and Fluid Mechanics. A bench-scale hybrid-electric vehicle powertrain has sufficient complexity to involve all Mechanical Engineering disciplines and the simplicity to be built by students over the course of five semesters. In addition, hybrid-electric technology is at the cutting-edge of automotive technology, and has been found to hold a special fascination for most mechanical engineering students. A “faculty prototype” has been built and tested, both as a demonstration and for educational purposes.
Technical Paper
2014-04-01
Ingo Stuermer, Ulrich Eisemann, Elke Salecker
Abstract Embedded software in the car is becoming increasingly complex due to the growing number of software-based controller functions and the increasing complexity of the software itself. Model-based development with Simulink combined with TargetLink for automatic code generation helps significantly to improve the quality of the embedded software. The development of large-scale Simulink models in distributed teams is a challenging task, especially when developing safety-critical software that must fulfill requirements stated in the ISO 26262 [1] safety standard. In practice, many questions on how to avoid the pitfalls of distributed model-based development remain open, such as how to define an appropriate model architecture, handle model complexity, and achieve compliance with ISO 26262. The intent of this paper is threefold. Firstly, we summarize those requirements of ISO 26262 that are relevant for developing complex software in a distributed environment. Secondly, we provide best practices for distributed development of large-scale controllers with MATLAB, Simulink, and TargetLink in compliance with ISO 26262.
Technical Paper
2014-04-01
Alexandros Mouzakitis, Paul Jennings, Gunwant Dhadyalla, Gerard Lancaster
Abstract Complexity of electronics and embedded software systems in automobiles has been increasing over the years. This necessitates the need for an effective and exhaustive development and validation process in order to deliver fault free vehicles at reduced time to market. Model-based Product Engineering (MBPE) is a new process for development and validation of embedded control software. The process is generic and defines the engineering activities to plan and assess the progress and quality of the software developed for automotive applications. The MBPE process is comprised of six levels (one design level and five verification and validation levels) ranging from the vehicle requirements phase to the start of production. The process describes the work products to be delivered during the course of product development and also aligns the delivery plan to overall vehicle development milestones. MBPE enables early confirmation of fitness of the embedded system and the detection of software errors during product development, by bringing a more robust and efficient development, verification and validation process across all stakeholder departments within the organisation and supplier base.
Technical Paper
2014-04-01
Ken Archibald, William Schnaidt, Rick Wallace, Kyle Archibald
Abstract SAE J2562 defines the background, apparatus and the directions for modifying the Scaled Base Load Sequence for a given a wheel rated load for a wheel design. This practice has been conducted on multiple wheel designs and over one hundred wheel specimens. All of the wheels were tested to fracture. Concurrently, some of the wheel designs were found to be unserviceable in prior or subsequent proving grounds on-vehicle testing. The remainder of the wheel designs have sufficient fatigue strength to sustain the intended service for the life of the vehicle. This is termed serviceable. Using the empirical data with industry accepted statistics a minimum requirement can be projected, below which a wheel design will likely have samples unserviceable in its intended service. The projections of serviceability result in a recommendation of a minimum cycle requirement for SAE J2562 Ballasted Passenger Vehicle Load Sequence.
Technical Paper
2014-04-01
Ben Wen, Gregory Rogerson, Alan Hartke
Abstract Tire rolling resistance is one of tire performance indicator that represents a force needed to maintain the constant rolling of a tire. There are quite few methods and standards to measure tire rolling resistance, such as ISO-28585, ISO-18164, SAE-J1269, SAE-J2452, …. These tests have been used by tire companies, vehicle manufactures, and government agencies to evaluate tire rolling resistance performance. SAE-J1269 and SAE-J2452 are two popularly used multi-condition rolling resistance tests for passenger and light truck tires. Examining the test conditions and procedures of these two test standards showed that some key procedures and conditions from both standards are similar although there are many difference as well. The study presented here is to analyze test results from both tests and their correlation under certain conditions. If the correlation exists, one test may provide test results for both test conditions, therefore, test efficiency can be improved.
Technical Paper
2014-04-01
Helmut Martin, Stephan Baumgart, Andrea Leitner, Daniel Watzenig
Abstract The need for cost efficient development and shorter time to market requires reuse of safety-critical embedded systems. One main challenge for reuse approaches in a safety-critical context is to provide evidence that assumptions of the safety artifacts for the reused component are still valid in the new system definition. This paper summarizes the major findings from an explorative study conducted in order to identify the state of practice of reuse in the context of different functional safety standards. The explorative study consists of a set of questions, which have been discussed with interviewees from companies of various domains. The companies act in safety-critical domains with diverse product portfolios. We covered several points of view by interviewing persons with different background. The results of the study reveal industrial challenges, which built the input for the derivation of possible future work based on the identified practical needs. Our main findings show the current predominance of ad-hoc reuse techniques and the need for more systematic approaches for reuse.
Technical Paper
2014-04-01
Gopal Athani, Prasad Yerraguntla, Anand Gajaraj, Kapil Dongare
Abstract Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities. This scenario poses a great challenge to conduct the system performance checks at End of Line testing stations in assembly lines, and also in after sales service stations, as the battery data is not available, without which the micro hybrid systems cannot perform their full set of functions.
Viewing 1 to 30 of 10729