Criteria

Display:

Results

Viewing 1 to 30 of 10833
2015-06-15
Technical Paper
2015-01-2286
Mohammed Eranpurwala, Md Sameer Ajuvath A
A leaf spring is subjected to vibration due to road profile irregularities, which leads to its fatigue failure. Also, if the natural frequency of the leaf spring matches the excitation frequency of the road profile, resonance occurs and the vibration is transmitted to the upper deck of the vehicle causing damage to fragile goods being transported. Hence, it is important to determine the modal frequencies of the leaf spring. This research work aims to highlight the experimental and computational techniques used to determine the modal frequencies of E-Glass/Epoxy mono composite leaf spring designed for the rear suspension of Tata Ace HD pickup truck. A prototype of E-Glass/Epoxy composite leaf is fabricated using conventional hand lay-up process and subjected to free and forced (harmonic) vibration test using DAQ (Data Acquisition) and DSA (Dynamic Signal Analyzer) system. The fundamental modal frequency obtained from real time test is validated using ANSYS Workbench 14.
2015-06-15
Technical Paper
2015-01-2111
Marie-Laure Toulouse, Richard Lewis
The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350 XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests have been carried out in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS25.1419.
2015-06-15
Technical Paper
2015-01-2285
Arne Nykänen, David Lennström, Roger Johnsson
Subjects who are well aware of what to judge commonly yield more consistent results in laboratory listening tests. This awareness may be raised by explicit instructions and training. However, too explicit instructions or use of only trained subjects may direct experiment results in an undesired way. An alternative is to give fairly open instructions to untrained subjects, but give the subjects a chance to get familiar with the product and context by, for example, riding a representative car under representative driving conditions before entering the laboratory. In this study, sound quality assessments of interior sounds of cars made by two groups were compared. In one group subjects were exposed to the same driving conditions that were later assessed in a laboratory listening test by taking them on a ride in one of the cars to be assessed, just before entering the laboratory. In the other group subjects made the laboratory assessments without prior car riding.
2015-06-15
Technical Paper
2015-01-2105
Darren Glenn Jackson
Aircraft icing has been a focus of the aviation industry for many years. While regulations existed for the certification of aircraft and engine ice protection systems, no FAA or EASA regulations pertaining to certification of ice detection systems existed for much of this time. Interim policy on ice detection systems has been issued through the form of AC20-73A as well as FAA Issue Papers and EASA Certification Review Items to deal mainly with Primary Ice Detection Systems. A few years ago, the FAA released an update to FAR 25.1419 which provided the framework for the usage of ice detection systems on aircraft. As a result of the ATR-72 crash in Roselawn, Indiana due to Supercooled Large Droplets (SLD) along with the Air France Flight 447 accident and numerous engine flame-outs due to ice crystals, both the FAA and EASA have developed new regulations to address these concerns.
2015-06-15
Technical Paper
2015-01-2253
Kimitoshi Tsuji, Katsuhiko Yamamoto
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration in advance, on virtual engine specifications and a virtual vehicle frame. In this paper, I will show the power plant model with electrical starter, battery and alternator that can predict transient torque and combustion heat results. Also vibration result with the power plant model connected to vehicle inertia model will be shown. The power plant was 1.3L 4cyl NA. The discussed vehicle was small size and 1300kg. The power plant model was realized by energy based model using VHDL-AMS. Here, VHDL-AMS is modelling language stored in IEC international standard (IEC61691-6) and can realize multi physics on 1D simulation. The modeling language supports electrical, magnetic, thermal, mechanical, fluidic and compressive fluidic domain. The model was created in house by fully VHDL-AMS and validated on ANSYS SIMPLORER.
2015-04-14
Journal Article
2015-01-1103
Taiki Ando, Tooru Yagasaki, Shuji Ichijo, Kyohei Sakagami, Soichiro Sumida
Abstract Pulley thrust control, changes in the trajectory of the belt as it winds around the pulleys, and the amount of friction transmission were focused on in order to reduce transmission loss and increase the transmission efficiency of CVT. In the case of pulley thrust control, making use of the linear relationship between the rotary speed fluctuation transfer characteristic and the torque transmission capacity between the pulleys and the belt, it was possible to reduce the excess safety factor of the torque transmission volume. Due to pulley tilt, the trajectory of the belt displays deviations with the theoretical geometrical winding radius. The structure of the pulleys was modified in order to reduce this deviation and increase transmission efficiency. Optimization of the additives in the CVT fluid increased the coefficient of friction, decreasing pulley thrust and increasing transmission efficiency.
2015-04-14
Technical Paper
2015-01-1101
Jun Hakamagi, Tetsuya Kono, Ryoji Habuchi, Naoki Nishimura, Masahiro Tawara, Naoki Tamura
Abstract In response to increasing demands for measures to conserve the global environment and the introduction of more stringent CO2 emissions regulations around the world, the automotive industry is placing greater focus on reducing levels of CO2 through the development of fuel-efficient technologies. With the aim of improving fuel economy, a new continuously variable transmission (CVT) has been developed for 2.0-liter class vehicles. This new CVT features various technologies for improving fuel economy including a coaxial 2-discharge port oil pump system, wider ratio coverage, low-viscosity CVT fluid, and a flex start system. This CVT is also compatible with a stop and start (S&S) system that reduces fuel consumption by shutting off the engine while the vehicle is stopped. In addition, the development of the CVT improves driveability by setting both the driving force and engine speed independently.
2015-04-14
Technical Paper
2015-01-1091
Fumikazu Maruyama, Moichio Kojima, Tomoyuki Kanda
Abstract A new CVT that is lighter in weight and more highly efficient than the previous CVT for use in compact vehicles has been developed and used in the 2014 model year FIT. The allowable torque capacity was expanded to that of the 1.8-L engine class, making this CVT usable in a greater number of vehicle models. The ratio coverage was also expanded and the transfer efficiency was increased to enhance fuel economy and drivability. Integration of hydraulic control system functional parts and reduction in the number of case component parts were carried out as structural modifications. Pulley side pressures were also reduced by the use of new CVT fluid so that the pulley could be made more compact and lighter in weight. Enhancements were made in CVT shift control, providing more acceleration considered from the driver's acceleration demand and more linearity between vehicle speed and engine speed than in previous models.
2015-04-14
Technical Paper
2015-01-1174
Nobuhiko Nakagaki
Abstract Toyota Boshoku developed two completely new components for the fuel cell vehicle (FCV), Mirai. These are the fuel cell (FC) Separator, and Stack manifold. The separators are made from stamped metal plates. The anode and cathode separators sandwich the MEA(Membrane Electrode Assembly) between them. It has flow paths for the hydrogen, air and FC coolant. The Anode Separator has hydrogen flow paths on one side, and cooling liquid flow paths on the other side. The pitch used in the flow paths is very fine and it improves both the uniformity of the gas flow and of the surface pressure on the MEA. Therefore, it has contributes to improve the electric power generation performance. The FC Stack manifold is a component that attaches to the end of one side of the FC stack. It is a component that integrates end plate and pipes. The end plate is a portion of the FC stack which holds the fastening load of stack and is made of cast aluminum casting alloy.
2015-04-14
Journal Article
2015-01-1175
Norishige Konno, Seiji Mizuno, Hiroya Nakaji, Yuji Ishikawa
Abstract Toyota Motor Corporation (TMC) has been developing fuel cell (FC) technology since 1992, and finally “MIRAI” was launched in 15th Dec. 2014. An important step was achieved with the release of the “FCHV-adv” in 2008. It established major improvements in efficiency, driving range, durability, and cold start capability. However, enhancing performance and further reductions in size and cost are required to facilitate the commercial widespread adoption of fuel cell vehicles (FCVs). TMC met these challenges by developing the world's first FC stack without a humidifying system. This was achieved by the development of an innovative cell flow field structure and membrane electrode assembly (MEA), enabling a compact and high-performance FC stack. Other cost reduction measures incorporated by the FC stack include reducing the amount of platinum in the catalyst by two-thirds and adopting a carbon nano-coating for the separator surface treatment.
2015-04-14
Technical Paper
2015-01-0723
Sebastian Bender, Raymond Khoo, Christoph Große, Felix M. Wunner, Heong Wah Ng, Markus Lienkamp
Abstract Upcoming stringent regulations on emissions and fuel efficiency are driving the automotive industry towards lightweight vehicle design. Thus, a higher share of carbon fiber composite materials in vehicle structures is expected. Current literature addresses development processes of composite components under a limited scope, however the considerations of design parameters used in these studies are inadequate for the realistic development of a full vehicle structure, especially in a resource-constrained development project. In addition, existing vehicle structure design philosophies applied for metal structures cannot be directly ported over for composite design due to differences in material properties, failure modes and design for manufacturing limitations.
2015-04-14
Journal Article
2015-01-0500
Emilio Larrodé, Alberto Torne, Alberto Fraile
Abstract The analysis and decision making on design, behavior and use of a prototype electric vehicle is the main focus has been pursued in this paper. It was modeled a prototype electric vehicle, called Gorila EV, as from the software tool Adams/Car. The dimensional parameters needed to create the model were obtained by measurements, calculations and approximations. Subsequently, it was determined a route to be travelled by the vehicle and proceeded to simulation of the vehicle on that route. Different modifications in the model were performed to compare their results with the original model through simulation in Adams/Car. These changes ranged from a simple change in the mass of the chassis until a change in the type of vehicle traction. After made the changes and simulations, it carried out the analysis of the most remarkable results. These results were studied subsystem by subsystem, beginning with the wheels, to suspensions and engine until vehicle chassis.
2015-04-14
Journal Article
2015-01-1383
Andrew Blum, Richard Thomas Long
Abstract Fires involving cars, trucks, and other highway vehicles are a common concern for emergency responders. In 2013 alone, there were approximately 188,000 highway vehicle fires. Fire Service personnel are accustomed to responding to conventional vehicle (i.e., internal combustion engine [ICE]) fires, and generally receive training on the hazards associated with those vehicles and their subsystems. However, in light of the recent proliferation of electric drive vehicles (EDVs), a key question for emergency responders is, “what is different with EDVs and what tactical adjustments are required when responding to EDV fires?” The overall goal of this research program was to develop the technical basis for best practices for emergency response procedures for EDV battery incidents, with consideration for suppression methods and agents, personal protective equipment (PPE), and clean-up/overhaul operations.
2015-04-14
Technical Paper
2015-01-1235
Kevin L. Snyder, Jerry Ku
Abstract The Wayne State University student team reengineered a mid-sized sedan into a functional plug-in hybrid electric vehicle as participants in the EcoCAR 2 competition sponsored by the US Department of Energy and managed by Argonne National Laboratory. The competition goals included reducing petroleum usage, emissions, and energy consumption through implementing advanced vehicle technologies. During the competition, the team did plug-in charging of the 19 kWh high voltage traction battery, drove in pure electric mode (engine off) until the battery was depleted, then switched to hybrid mode and continued driving by using E85 from the fuel tank. The pure electric mode vehicle driving range was 48 km [30 miles] while pulling an emissions instrumented test trailer and projected to be 58 km [36 miles] without the test trailer load for the competition's city/highway blend drive cycle.
2015-04-14
Technical Paper
2015-01-1229
Katherine Bovee, Amanda Hyde, Margaret Yatsko, Matthew Yard, Matthew Organiscak, Bharatkumar Hegde, Jason Ward, Andrew Garcia, Shawn Midlam-Mohler, Giorgio Rizzoni
Abstract The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
2015-04-14
Technical Paper
2015-01-1228
Zhuoran Zhang, Miriam Di Russo, Xianfeng Yan, Ahmed I. Uddin, Dhanya Sankaran, Jerry C. Ku
Abstract This paper presents the work performed by the Wayne State University (WSU) EcoCAR 3 student design competition team in its preparation for the hybrid electric vehicle architecture selection process. This process is recognized as one of the most pivotal steps in the EcoCAR 3 competition. With a key lesson learned from participation in EcoCAR 2 on “truly learning how to learn,” the team held additional training sessions on architecture selection tools and exercises with the goal of improving both fundamental and procedural skills. The work conducted represents a combination of the architecture feasibility study and final selection process in terms of content and procedure, respectively. At the end of this study the team was able to identify four potentially viable hybrid powertrain architectures, and thoroughly analyze the performance and packaging feasibility of various component options.
2015-04-14
Technical Paper
2015-01-1255
Michael Pontoppidan, Jose G. C. Baeta
Abstract The paper presents a layout of a highly boosted Ethanol Direct Injected (EDI) engine with extreme downsizing, which represents a powerful means to reduce emissions at reduced production costs. The substitution of high-displacement engines (2.4- or 3.0-liter) by a downsized turbocharged EDI-engine is studied. The paper describes the detailed layout of all engine hardware and in particular, the cylinder head structure including the optimized intake and exhaust manifolds as well as implemented DI injectors. The paper continues with a presentation of the experimental data obtained at the engine test rig. The paper concludes presenting a series of experimental data obtained with the downsized engine mounted in a car as a replacement for its original high-displacement engine.
2015-04-14
Journal Article
2015-01-1272
Jeffrey Jocsak, David White, Cedric Armand, Richard S. Davis
Abstract General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
2015-04-14
Technical Paper
2015-01-1390
Venk Kandadai, Helen Loeb, Guyrandy Jean-Gilles, Catherine McDonald, Andrew Winston, Thomas Seacrist, Flaura Winston
Abstract Driving simulators offer a safe alternative to on-road driving for the evaluation of driving performance. Standardized procedures for providing individualized feedback on driving performance are not readily available. The aim of this paper is to describe a methodology for developing standardized procedures that provide individualized feedback (“LiveMetrics”) from a simulated driving assessment used to measure driving performance. A preliminary evaluation is presented to test the performance of the LiveMetrics methodology. Three key performance indicators are used to evaluate the performance and utility of the method in the context of the preliminary evaluation. The results from the preliminary evaluation suggest abilities to customize reporting features for feedback and integrate these into existing driver training and education programs.
2015-04-14
Technical Paper
2015-01-1701
Luciano Lukacs
Abstract The challenges around global products have been lately one of the key challenges for the lighting community. This paper will present a survey which was held with costumers from China, India, Europe and Brazil understanding the difference and similarities regarding the lighting attributes. It brings also a discussion how to develop a lamp globally that fulfils everyone's needs and addresses potential trade-offs in design and performance.
2015-04-14
Technical Paper
2015-01-1685
Omar Abu Mohareb, Phan-Lam Huynh, A. Al-Janabi, Michael Grimm, Hans-Christian Reuss
Abstract This paper addresses the performance and potential of using electric vehicles in the Gulf Arab states. Based on a survey executed in Salalah, Oman, a representative test driving cycle has been set up. This cycle is the first of its kind for this region, where it is driven with a vehicle provided with special measurement equipment to log important values, e.g. vehicle's speed and position, temperatures and solar irradiance. More than 40 test drives are performed to obtain a representative driver profile. The driving cycle and driver profile are used in a simulation model which is capable of simulating the energy consumption for internal combustion engine or electric motor propulsion systems. The simulation model which contains detailed models for the driver, driving cycle, vehicle components and its dynamics is validated and used to compare the consumed energy for the two different propulsion systems.
2015-04-14
Journal Article
2015-01-0783
Raphael Gukelberger, Jess Gingrich, Terrence Alger, Steven Almaraz, Bradley Denton
Abstract The ongoing pursuit of improved engine efficiency and emissions are driving gasoline low-pressure loop EGR systems into production around the globe. To minimize inevitable downsides of cooled EGR while maintaining its advantages, the Dedicated EGR (D-EGR®) engine was developed. The core of the D-EGR engine development focused on a unique concept that combines the efficiency improvements associated with recirculated exhaust gas and the efficiency improvements associated with fuel reformation. To outline the differences of the new engine concept with a conventional low-pressure loop (LPL) EGR setup, a turbocharged 2.0 L PFI engine was modified to operate in both modes and also compared to the baseline. The first part of the cooled EGR engine concept comparison investigates efficiency, emissions, combustion stability, and robustness at throttled part load conditions.
2015-04-14
Technical Paper
2015-01-0178
James Price
Abstract AUTOSAR 4.x is being deployed by many of the world's top automotive OEMs. It has also seen increased adoption in regions outside of Europe. OEMs exert significant effort in the design, configuration, integration, and final build of AUTOSAR-based systems. This presentation gives an overview on the main advantages and critical gaps of adopting AUTOSAR to E/E design automation, including the digital interaction between Tier 1 suppliers and OEMs. This paper also discusses how the Electronics Architecture and Software Technology Architecture Description Language, or EAST-ADL, complements some of the weaknesses found in the current AUTOSAR release.
2015-04-14
Technical Paper
2015-01-0247
Sonakshi Sharma, Shubhranshu Garg, Vipul Kumar, Sudhir Kashinath Gupte
Abstract There are variety of motors and generators/alternators being manufactured internationally, for variety of applications. It is a difficult task for the user to identify and select the type of motor /generator/alternator for a specific use, by the designer and ultimately the user is totally unaware of what is bought and why. There is a need to designate the motors and generators. So that by interpretation of the identification nomenclature of the motor or generator, its type can be judged. Whether it is a series motor, an induction motor etc, in case of motors. This will eventually make it easy for the manufacturer, the buyer and the consumer to identify the motor or generator type. So a universally accepted and followed identification nomenclature is required to be developed which will henceforth make dealing in motors and generators simpler for all. It will prove to be useful during troubleshooting.
2015-04-14
Technical Paper
2015-01-0242
Nick Smith
Abstract Correct-by-construction design processes can be dramatically enhanced using simulation techniques, especially early in the design process. But simulation is too often the preserve of specialist staff, who may work disconnected from day-to-day design updates. This paper highlights simulation and analysis tools that can be used by every electrical engineer, addressing topics ranging from functional verification to component sizing to failure modes and effects analysis. Furthermore, valuable results can be obtained with the simplest of models; and the models themselves can mature as the organization's use of simulation matures.
2015-04-14
Technical Paper
2015-01-0259
Tyler Zellmer, Julio Rodriguez, John R. Wagner, Kim Alexander, Philip Pidgeon
Abstract According to the National Highway Traffic Safety Administration (NHTSA), motor collisions account for nearly 2.4 million injuries and 37 thousand fatalities each year in the United States. A great deal of research has been done in the area of vehicular safety, but very little has been completed to ensure licensed drivers are properly trained. Given the inherent risks in driving itself, the test for licensure should be uniform and consistent. To address this issue, an inexpensive, portable data acquisition and analysis system has been developed for the evaluation of driver performance. A study was performed to evaluate the system, and each participant was given a normalized driver rating. The average driver rating was μ=55.6, with a standard deviation of σ=12.3. All but 3 drivers fell into the so-called “Target Zone”, defined by a Driver Rating of μ± 1σ.
2015-04-14
Technical Paper
2015-01-0325
Alberto Boretti
Abstract The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. This design also permits central direct injection and ignition by spark or jets. The dual rotary valve design is applied to a naturally aspirated V-four engine of 1000cc displacement, gasoline, methane or hydrogen fuelled with central direct injection and spark ignition. The engine is modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The novelty in the proposed dual rotary valve system is the combustion chamber of good shape and high compression ratio with central direct injector and spark plug or jet ignition, coupled to the large gas exchange areas of the rotary system.
2015-04-14
Technical Paper
2015-01-0416
Howard Evans
Abstract This paper summarises the history of Rochdale Motor Panels and Engineering Ltd. (RMP), established in England after the Second World War, from its origins as a small car-repair business though to the manufacture of sports coupés utilising an innovative glass-fibre monocoque construction. The political climate which caused RMP and similar undertakings to develop and flourish in the 1950s and 60s is explained together with details of the three men who had the defining influence on the cars that were created. Products, including aluminium-bodied cars, produced primarily for racing, are described, leading into the introduction of glass-fibre construction which enabled a profitable transition into higher volume body and chassis manufacture, and ultimately completely assembled cars.
2015-04-14
Technical Paper
2015-01-0411
Richard K. Stobart, W. Ethan Eagle, Xunzhe Zhang
Abstract Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
2015-04-14
Technical Paper
2015-01-0427
Zhigang Wei, Limin Luo, Shengbin Lin
Fatigue testing and related fatigue life assessment are essential parts of the design and validation processes of vehicle components and systems. Fatigue bench test is one of the most important testing methods for durability and reliability assessment, and its primary function is to construct design curves based on a certain amount of repeated tests, with which recommendations on product design can be advised. How to increase the accuracy of predictions from test results, the associated life assessment, and to reduce the cost through reducing test sample size is an active and continuous effort. In this paper the current engineering practices on constructing design curves for fatigue test data are reviewed first.
Viewing 1 to 30 of 10833