Criteria

Text:
Content:
Display:

Results

Viewing 181 to 210 of 1192
CURRENT
2016-05-11
Standard
AS5658A
This SAE Aerospace Standard (AS) defines the editorial format and policies necessary for the publication of platform/subsystem Interface Control documents. The Common Interface Control Document Format Standard defines a common format for platform to subsystem interface documents to facilitate subsystem integration. This aerospace standard specifies the common technical data sections for the Common Interface Control Document Format down to the third header level for the majority of sub-sections. The Common Interface Control Document Format Aerospace Standard provides a structured document format in appendixes supported by example paragraphs, drawings, etc.
HISTORICAL
2016-05-02
Standard
TS200AR-43
No Scope available.
CURRENT
2016-04-20
Standard
AS9133A
This standard defines a system for the qualification of standard products for aviation, space, and defense applications. It defines the principles that shall be adhered to when carrying out product qualification; applied in conjunction with the rules and procedures of the CA. The system enables the CA to confirm compliance is achieved and maintained, in accordance with the requirements of its product definition and associated controlling technical specifications by an Original Component Manufacturer (OCM) of standard products. This standard requires an OCM that has been granted product qualification approval to ensure applicable approvals are maintained and renewed in accordance with the CA’s quality system for that qualified product. OCMs and OCM designated Value Added Distributors (VADs) requesting product qualification to this standard, shall as a prerequisite, maintain 9100 standard quality management system certification approval.
2016-04-18
WIP Standard
AS13001A
This standard establishes the common requirements for training of DPRV personnel for use at all levels of the aerospace engine supply chain. This standard shall apply when an organization elects to delegate product release verification by contractual flow down to its suppliers (reference 9100 and 9110 standards) and to perform product acceptance on its behalf. It is intended that organizations specify their DPRV requirements through the application of AS9117. While the delegating organization will use the AS13001 standard as the baseline for establishing DPRV process and product training, it may include additional contractual training requirements to meet its specific needs. The DPRV training material was primarily developed for aerospace engine supply chain requirements however this standard may also be used in other aerospace industry sectors where a DPRV process requiring specific training can be of benefit.
CURRENT
2016-04-05
Standard
J1617_201604
The mechanism of automotive body corrosion is scientific, based on established laws of chemistry and physics. Yet there are many opinions related to the cause of body corrosion, not always based on scientific axioms. The purpose of this SAE Information Report is to present a basic understanding of the types of body corrosion, the factors that contribute to body corrosion, the testing procedures, evaluation of corrosion performance, and glossary of related terms.
CURRENT
2016-04-01
Standard
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
HISTORICAL
2016-03-31
Standard
J1939DA_201603
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
CURRENT
2016-03-30
Standard
J2945/1_201603
This standard specifies the system requirements for an on-board vehicle-to-vehicle (V2V) safety communications system for light vehicles1, including standards profiles, functional requirements, and performance requirements. The system is capable of transmitting and receiving the Society of Automotive Engineers (SAE) J2735-defined Basic Safety Message (BSM) [1] over a Dedicated Short Range Communications (DSRC) wireless communications link as defined in the Institute of Electrical and Electronics Engineers (IEEE) 1609 suite and IEEE 802.11 standards [2] – [6].
CURRENT
2016-03-30
Standard
J2735ASN_201603
This Abstract Syntax Notation (ASN.1) File is the precise source code used for SAE International Standard J2735. As part of an international treaty, all US ITS standards are expressed in "ASN.1 syntax". ASN.1 Syntax is used to define the messages or "ASN specifications". Using the ASN.1 specification, a compiler tool produces the ASN library which will then be used to produce encodings (The J2735 message set uses UPER encoding). The library is a set of many separate files that collectively implement the encoding and decoding of the standard. The library is then used by any application (along with the additional logic of that application) to manage the messages. The chosen ASN tool is used to produce a new copy of the library when changes are made and it is then linked to the final application being developed. The ASN library manages many of the details associated with ASN syntax, allowing for subtle manipulation to make the best advantage of the encoding style.
CURRENT
2016-03-30
Standard
J2735SET_201603
This Abstract Syntax Notation (ASN.1) File is the precise source code used for SAE International Standard J2735. As part of an international treaty, all US ITS standards are expressed in "ASN.1 syntax". ASN.1 Syntax is used to define the messages or "ASN specifications". Using the ASN.1 specification, a compiler tool produces the ASN library which will then be used to produce encodings (The J2735 message set uses UPER encoding). The library is a set of many separate files that collectively implement the encoding and decoding of the standard. The library is then used by any application (along with the additional logic of that application) to manage the messages. The chosen ASN tool is used to produce a new copy of the library when changes are made and it is then linked to the final application being developed. The ASN library manages many of the details associated with ASN syntax, allowing for subtle manipulation to make the best advantage of the encoding style.
CURRENT
2016-03-30
Standard
J2735_201603
This SAE Standard specifies a message set, and its data frames and data elements, specifically for use by applications intended to utilize the 5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments (DSRC/WAVE, referenced in this document simply as “DSRC”) communications systems. Although the scope of this Standard is focused on DSRC, this message set, and its data frames and data elements, have been designed, to the extent possible, to be of potential use for applications that may be deployed in conjunction with other wireless communications technologies as well. This Standard therefore specifies the definitive message structure and provides sufficient background information to allow readers to properly interpret the message definitions from the point of view of an application developer implementing the messages according to the DSRC Standards.
HISTORICAL
2016-03-05
Standard
AS8049/1A
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
2016-03-03
WIP Standard
EIA649_1A
This document is used for placing Configuration Management Requirements on Defense Contracts after being tailored by the Acquirer. When effectively and consistently applied, Configuration Management (CM) provides a positive impact on product quality, cost, and schedule. The planning and execution of Configuration Management (CM) is an essential part of the product development and life cycle management process. It provides control of all configuration documentation, physical parts and software representing or comprising the product. Configuration Management's overarching goal is to establish and maintain consistency of a product's functional and physical attributes with its requirements, design and operational information throughout its life cycle. When effectively and consistently applied, Configuration Management (CM) provides a positive impact on product quality, cost, and schedule.
2016-03-03
WIP Standard
EIA649C
When effectively and consistently applied, Configuration Management (CM) provides a positive impact on product quality, cost, and schedule. This standard is intended to assist in establishing, performing, or evaluating CM systems. CM is an integrated system of processes that ensure consistency of a product's performance, functional and physical attributes with its requirements, design, and operational information. The essence of CM, as portrayed in this consensus standard, is the common application of CM functions and their underlying fundamental principles, which have universal applicability across the broad spectrum of commercial and government enterprises. The standard provides an understanding of what to do, why a customer/suppler should do it, and when it is necessary to tailor the application of CM functions. This standard fulfills the important function of providing a rational basis upon which to apply good judgment in both planning for and executing CM across the enterprise.
CURRENT
2016-03-02
Standard
J1698/1A_201603
SAE J1698-1A creates an appendix to SAE J1698-1. The appendix contains EDR Record parameters and definitions related to light duty passenger vehicle pedestrian protection systems.
CURRENT
2016-03-01
Standard
GEIAHB649A
This handbook is intended to assist the user to understand the ANSI/EIA-649B standard principles and functions for Configuration Management (CM) and how to plan and implement effective CM. It provides CM implementation guidance for all users (CM professionals and practitioners within the commercial and industry communities, DoD, military service commands, and government activities (e.g., National Aeronautics and Space Administration (NASA), North Atlantic Treaty Organization (NATO)) with a variety of techniques and examples. Information about interfacing with other management systems and processes are included to ensure the principles and functions are applied in each phase of the life cycle for all product categories.
HISTORICAL
2016-02-24
Standard
AS1814D
This list of terms, with accompanying photomicrographs where appropriate, is intended as a guide for use in the preparation of material specifications.
CURRENT
2016-02-24
Standard
GEIAHB0005_1A
This handbook is designed to assist a program in assuring the performance, reliability, airworthiness, safety, and certifiability of product(s), in accordance with GEIA-STD-0005-1, “Performance Standard for Aerospace and High Performance Electronic Systems Containing Pb-free Solder”. Please note that the program manager, and managers of systems engineering, Supply Chain and Quality Assurance (along with their respective organizations), and the appropriate enterprise authority need to work together in ensuring that all impacts of Pb-free technology insertion are understood and risks mitigated accordingly. Herein “program management (or manager), supplier chain management (or manager), quality assurance management (or manager) and systems engineering management (or manager) and/or the appropriate enterprise authority” shall be defined as “responsible manager” throughout the remaining document (see Section 3, Terms and Definitions).
HISTORICAL
2016-02-24
Standard
J1939DA_201602
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
2016-02-19
WIP Standard
J3061
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. The best practices are intended to be flexible, pragmatic, and adaptable in their further application to the vehicle industry as well as to other cyber-physical vehicle systems (e.g., commercial and military vehicles, trucks, busses). Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems.
HISTORICAL
2016-02-18
Standard
J2403DA_201602
This document is intended to supplement SAE J2403 by providing the content of Table 1, Table 2, and Table 3 from SAE J2403 in a form that can be sorted and searched for easier use. It is NOT intended as a substitute for the actual document, and any discrepancies between this Digital Annex and the published SAE J2403 document must be resolved in favor of the published document. This document provides the content of Table 1 and Table 2 published in SAE J2403 into the single table in the 'Term' tab, while the 'Recommended Term Definitions' tab provides the content of Table 3 in SAE J2403 and the 'Glossary' tab provides the content of Table 4 in SAE J2403.
HISTORICAL
2016-02-18
Standard
J1939/81_201602
SAE J1939-81 Network Management defines the processes and messages associated with managing the source addresses of applications communicating on an SAE J1939 network. Network management is concerned with the management of source addresses and the association of those addresses with an actual function and with the detection and reporting of network related errors. Due to the nature of management of source addresses, network management also specifies initialization processes, requirements for reaction to brief power outages and minimum requirements for ECUs on the network.
2016-02-15
WIP Standard
AS6171/16
Netlist Assurance Test Methods exist to assess microcircuit designs for maliciously added, removed, or modified functions detrimental to system operation. In the context of the Microcircuit fabrication design process, these methods will be used to analyze a computer aided design (CAD) representation of the microcircuit. The Netlist Assurance Test Methods discover vulnerabilities, undisclosed functions (e.g. "kill switch", paths to leak passwords, or triggers of malicious activity) and changes from the original specifications of the devices. These methods are intended to be used with standard verification methods that the implemented design has remained unchanged through the many transformations in the design flow.
2016-02-04
WIP Standard
J3131
SAE J3131 defines an automated driving reference architecture that contains functional modules supporting future application interfaces for Levels 3 through 5 (J3016). The architecture will model scenario-driven functional and nonfunctional requirements, automated driving applications, functional decomposition of an automated driving system, and relevant functional domains (i.e., functional groupings). Domains include, but are not limited to, automated driving (i.e., automation replacing the human driver), by-wire and active safety, and those related to automated recovery from faults and system failures (e.g., system bringing the vehicle to a safe state). The architecture will address Tier 1 and Tier 2 functional groupings. The document will include one example instantiation being divides the functionality into two functionality groupings, and will detail the functional and information interface between the groups.
2016-02-03
WIP Standard
AS6171/15
Non-conformance and now Suspect counterfeit packaging represents a hazard to electrostatic discharge (ESD) sensitive devices or components through cross contamination during transport and storage while generating high voltage discharges to ESD sensitive devices during in shipping, the inspection process, handling and manufacturing. Several aerospace related issues involve long-term storage supplier non-conformance with antistatic foams, antistatic bubble, antistatic pink poly, vacuum formed antistatic polymers, Type I moisture barrier bags and Type III static shielding bags have posed issues. The late John Kolyer, Ph.D. (Boeing, Ret.) and Ray Gompf, P.E., Ph.D. (NASA-KSC, Ret.) were advocates in the utilization of a formalized physical testing material qualification process. Today, however, prime contractors and CMs rely heavily upon a visual inspection process for ESD packaging materials.
HISTORICAL
2016-01-19
Standard
J2735_201601
This SAE Standard specifies a message set, and its data frames and data elements, specifically for use by applications intended to utilize the 5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments (DSRC/WAVE, referenced in this document simply as “DSRC”) communications systems. Although the scope of this Standard is focused on DSRC, this message set, and its data frames and data elements, have been designed, to the extent possible, to be of potential use for applications that may be deployed in conjunction with other wireless communications technologies as well. This Standard therefore specifies the definitive message structure and provides sufficient background information to allow readers to properly interpret the message definitions from the point of view of an application developer implementing the messages according to the DSRC Standards.
CURRENT
2016-01-14
Standard
J3061_201601
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. The best practices are intended to be flexible, pragmatic, and adaptable in their further application to the vehicle industry as well as to other cyber-physical vehicle systems (e.g., commercial and military vehicles, trucks, busses). Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems.
CURRENT
2016-01-02
Standard
AS1990D
The purpose of this SAE Aerospace Standard (AS) is to provide a description of the temper nomenclature system for aluminum alloys used in the aerospace industry by combining information from different sources for the benefit of the user.
Viewing 181 to 210 of 1192