Criteria

Text:
Content:
Display:

Results

Viewing 151 to 1 of 1
CURRENT
2016-06-16
Standard
EIAIS632
This standard defines a total system approach for the development of systems. The standard requires: establishing and implementing a structured, disciplined. and documented systems engineering effort incorporating the systems engineering process; multidisciplinary teamwork; and the simultaneous development of the products and processes needed to satisfy user needs. The systems engineering process is defined generically to facilitate broad application. This standard defines the requirements for technical reviews. The tasks in this standard provide a methodology for evaluating progress in achieving system objectives. This standard provides a comprehensive, structured, and disciplined approach for all life-cycle phases, including new system product and process developments, upgrades, modifications, and engineering efforts conducted to resolve problems in fielded systems.
CURRENT
2016-06-16
Standard
EIAIS731_1
The purposeo f this Interim Standard is to support the development and improvement of systems engineering capability. The scope of this standard includesa ll activities that associate with or enable systems engineering. Systems engineering is an inter-disciplinary approach and means to enable the realization of successful systems. In this context, systems engineering is not limited to what either Systems Engineering organizations or Systems Engineers do. Rather it is the interaction of many people, processes, and organizations resulting in the accomplishment of the required activities.
CURRENT
2016-06-16
Standard
EIAQAB7
This document has been formulated as a suggested guide in assisting EIA Engineering Department Panels and JEDEC Councils in cooperating with the Defense Department and other Federal agencies in the preparation of suggested reliability requirements for various types of electronic products as part of a program designed to enhance the reliability of defense and related equipment. The document is to be followed merely as a guide and is not intended to limit technical groups in the consideration of the factors to be taken into account in the development of reliability specifications for recommendation to the Government.
CURRENT
2016-06-16
Standard
EIAIS731_2
This document describes the Appraisal Method (AM ) for the Systems Engineering Capability Model (SECM). An appraisal compares an organization's Systems Engineering capabilities against the Specific Practices of the Focus Areas and the Generic Characteristics defined in EIA/731, Part 1.
CURRENT
2016-06-16
Standard
EIAAB3D
Scope is unavailable.
CURRENT
2016-06-16
Standard
EQB1
Scope is unavailable.
CURRENT
2016-06-16
Standard
EIAEDIF1
The increase in the number of silicon foundries and CAD/CAE system and workstation companies, and the problem of movement of data among in-house design systems has made a standard interchange format for electronic design data essential. The benefits of the general adoption of a standard interchange format are important and far reaching. The customer receives a much wider variety of feasible choices, and free competition in both CAEYCAD system/tool businesses and foundry businesses is enhanced. The electronic circuit designer and customer of CAE/CAD system and foundry service can expect compatibility among these products. The designer can choose equipment and services best suited for a particular task with a minimum of overhead. Foundries can work with customers regardless of the CAE/CAD equipment that the customer is using.
CURRENT
2016-06-16
Standard
EIAEP12A
Scope is unavailable.
CURRENT
2016-06-16
Standard
EMCB1_1
This EIA Bulletin No. EMCB1-1, "Historical Rationale for Military EM1 Limits", is presented by the Electronic Industries Association G46 Electromagnetic Compatibility Committee. It has been prepared to provide a reference source for electromagnetic compatibility practitioners to enable more knowledgeable application of EMI requirements in equipment and system specifications and designs.
CURRENT
2016-06-16
Standard
EIAEP2F
The Electronic Industries Association is the national trade organization representing electronic industry interests in the United States. Its primary mission is to enhance the competitiveness of the American producer. EIA supports and advances national defense, economic growth, technological progress, and all interests of the electronic industries compatible with the public welfare. We represent the full spectrum of manufacturers in the electronic industries, from manufacturers of the smallest electronic part to corporations that design and produce the most complex systems used in defense, space and industry.
CURRENT
2016-06-16
Standard
EQB4
This report on quantification of Essentiality (W) and Utilization (U) terms extends the scope of the basic expression for system effectiveness (Es = ADC) to include the additional "W" and "U" paramenters needed for the quantification of multi-functioned and multi-missioned systems. Methods and procedures for applying these terms to system effectiveness quantification are discussed and simple examples to demonstrate the principles of usage are included. The need to look at the system being quantified in terms of its level in the mission/function hierarchical tree is explained. The relationships between system elements (hardware, software, and personnel) and performance functions are discussed and illustrated with examples. Two methods for applying the "W"'and "U" weight factors, LOGIC AND (weak link model) and LOGIC OR (degraded operational modes model) are described and examples are shown for these cases.
CURRENT
2016-06-16
Standard
EQB3
The Electronic Industries Association (EIA) G-47 Effectiveness QuantificationCommittee has a basic task to quantify system effectiveness. Since the support parameters underly any prime parameter quantification, the topic of support system analysis is a fundamental one to this basic committee task. The charts contained in this bulletin were developed and used for presentations to aircraft support engineering groups, to comunicate the logic and scope of system analysis applied to support system optimization.
CURRENT
2016-06-16
Standard
EQB2
Program Managers have considered the subject of effectiveness quantification from three diverse points of view. The first viewpoint, in conjunction with the system effectiveness analyst, is to quantify everything and to consider everything quantifiable into a figure of merit. The result is a numerical decision aid that usually has some undesirable attributes such as oversimplification, non-sensitivity to critical parameters, hidden calculations, and difficulty in exercise of the model. This technique is characterized by mathematical models, computer programs, and attempted optimizations. The second viewpoint, in conjunction with the controller, is to consider the effectiveness as specified and concentrate on cost reduction, This has a danger of formulating all technical problems in terms of cost or economic considerations. This technique is characterized by closely controlled work packages.
CURRENT
2016-06-16
Standard
EIA441
This standard is intended to serve as a guide in the coordination of system design to promote uniformity of the nomenclature and description of the operator devices.
CURRENT
2016-06-16
Standard
EIA830
To describe a model that is applicable during the acquisition process to gain insight into suppliers' approaches to using metrics in monitoring, managing, and improving their processes and products. This model also facilitates a common framework to understand and recognize potential suppliers' performance on relevant past contracts or purchase orders.
CURRENT
2016-06-16
Standard
IEEEEIA12207_1
This guide provides guidance for recording life cycle data resulting from the life cycle processes of IEEE/EIA 12207.0.
CURRENT
2016-06-16
Standard
IEEEEIA12207_2
This guide provides implementation consideration guidance for the normative clauses of IEEE/EIA 12207.0. The guidance is based on software industry experience with the life cycle processes presented in IEEE/EIA 12207.0.
CURRENT
2016-06-15
Standard
EIAIS106
This standard will assist the vendors and users of CASE tools in developing mechanisms for interchanging information between CASE tools. This standard specifies an element of a family of related standards. When used together, these standards specify a mechanism for transfemng information between CASE tools. This standard, EIAIIS-IO6 CDIF - CASE Data Interchange Format - Overview, describes the architecture of the CDIF Family of Standards and provides an overview to all the current standards that form the CDIF Family of Standards.
CURRENT
2016-06-15
Standard
EIAIS107
This standard will assist the vendors and users of CASE tools in developing mechanisms for interchanging information between CASE tools. This standard specifies an element of a family of related standards. When used together, these standards specify a mechanism for transferring information between CASE tools.
CURRENT
2016-06-15
Standard
EIAIS108
This standard defines how CDIF supports multiple exchange Syntaxes and Encoding, and describes how CDIF meta-models are concretely represented during a transfer. EIAIZS-IO9 CDIF - Trartsfer- Format - Syntax SYNTAX.1 and EIAIIS-II0 CDIF - Transfer Format - Encoding ENCODING.1 define one specific CDIF Syntax and Encoding.
CURRENT
2016-06-15
Standard
EIAIS109
The CDIF Family of Standards is primarily designed to be used as a description of a mechanism for transferring information between CASE tools. It facilitates a successful transfer when the authors of the importing and exporting tools have nothing in common except an agreement to conform to CDIF. The language that is defined for the Transfer Format also has applicability as a general language for ImportExport from repositories. The CDIF Integrated Meta-model defined for CASE also has applicability as the basis of standard definitions for use in repositories.
CURRENT
2016-06-15
Standard
EIAIS111
This document is intended to be used by anyone wishing to understand and/or use CDIF. This document provides a definition of a single subject area of the CDIF integrated Meta-model. It is suitable for: -those evaluating CDIF -those who wish to understand the principles and concepts of a CDIF transfer -those developing importers and exporters.
CURRENT
2016-06-15
Standard
EIAIS110
This document is intended to be used by anyone wishing to understand and/or use CDIF. This dticument provides a definition of an encoding for CDIF transfers. -those evaluating CDIF -those who wish to understand the principles and concepts of a CDIF transfer -those developing importers and exporters.
CURRENT
2016-05-31
Standard
EIA267C
This Standard defines a machine coordinate system and motion nomenclature for numerically controlled machines. It is intended to eliminate misunderstandings between manufacturers, programmers, and users of machine tools, to simplify programming, to facilitate the interchangeability of recorded data between machines of like configuration, and to simplify the training of programmers by the standardization of machine coordinate system and motion nomenclature. This Standard defines a machine coordinate system and machine movements so that a machine tool programmer can describe machining operations without having to know whether the tool approaches the workpiece or the workpiece approaches the tool. The rules contained in this Standard were developed with the cooperation of private industry and Government and are based on widely accepted industry practice and usage. They are also based, in part, on standards used in the international machine tool market.
CURRENT
2016-05-31
Standard
CRB1
Expert systems are a wave of the information processing future. As time goes on they will become more and more part of the mainstream. However, a necessary prerequisite to moving them into widespread use is to reduce the methodologies for expert system development closer to the more generally accepted software engineering techniques. This report offers a step towards that goal. It describes an alternative software life cycle model for expert system development. Since the field of Artificial Intelligence is so broad, this report limits the software to be considered. Systems that would be of the greatest interest to DoD over the next 5 to 7 years would be expert systems that have the following attributes: - may reason with uncertainty - are not necessarily rule-based - are non-learning systems. For these systems, a developmental cycle is articulated, and each phase of the cycle described.
CURRENT
2016-05-31
Standard
ARP4072A
This SAE Aerospace Recommended Practice (ARP) provides information and recommended guidelines for handling carry-on baggage prior to emergencies and during the emergency evacuation of transport category aircraft. Recommendations are provided on limiting the size, amount, and weight of carry-on baggage brought into the cabin, improved stowage of carry-on baggage to minimize hazards to passengers in flight and during emergency evacuations, and procedures to ensure carry-on baggage is not removed during an emergency evacuation.
CURRENT
2016-05-26
Standard
J2208_201605
To provide a Recommended Practice for validating the function and integrity of an automatic transmission park mechanism with its associated control system and environment.
2016-05-17
WIP Standard
AS6174/2
The purpose of AS6174/F is to provide detailed requirements that supplement the requirements of the base AS6174 standard to preclude the use of counterfeit fasteners in end-item equipment where the consequence of such use cannot be tolerated. AS6174/F is a mandatory part of the base AS6174 standard when the Customer has invoked AS6174/F in the contract, unless otherwise specified and/or approved in the contractual language by the Customer.
2016-05-16
WIP Standard
AS6171/14
The intent of this document is to define the methodology for suspect/counterfeit parts inspection using REME Analysis. The purpose of REME Analysis for suspect counterfeit part inspection is to detect misrepresentation or tampering of a part. REME Analysis can also potentially detect unintentional damage to the part resulting from improper removal of the part from assemblies, exposure to electrostatic discharge, exposure to radiation outside of acceptable limits (ionizing or high-power electromagnetic), or degradation. Improper removal of part from assemblies may include, but is not limited to, prolonged elevated temperature exposure during desoldering operations or mechanical stresses during removal. Degradation may include, but is not limited to, prolonged burn-in/testing, exposure to out-of-specification environmental conditions, or use outside of expected electrical tolerances.
CURRENT
2016-05-13
Standard
J1982_201605
This SAE Recommended Practice establishes uniform engineering nomenclature for the most common wheel constructions, and their components used on passenger cars, light trucks, and multipurpose vehicles. These wheel constructions are welded “Disc Wheels”, “Cast Wheels” and “Forged Wheels”. This nomenclature and the accompanying drawings are intended to define fundamental wheel terms rather than to provide a comprehensive tabulation of all wheel design types.
Viewing 151 to 1 of 1