Criteria

Text:
Content:
Display:

Results

Viewing 31 to 60 of 51508
CURRENT
2017-02-21
Standard
AS6023
The scope of this document is to: Provide a requirements document for RFID Tag Manufacturers to produce active RFID tags for the Aerospace industry. Identify the minimum performance requirements for active RFID tags to be used on or in close proximity to aircraft. Specify the test requirements specific to active RFID tags for aircraft use, in addition to RTCA DO-160 compliance requirements separately called out in this document. Identify existing standards applicable to active RFID Tag. Provide a certification standard for RFID tags which will use permanently-affixed installation on aircraft and aircraft parts. Battery standards are separately captured and not included in this document.
CURRENT
2017-02-21
Standard
AS4074B
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated. This specification defines the following: General Description (3.1): An overview of the LTPB protocol. Physical Media Interface (3.2): This portion of the standard defines the physical interface to both optical and electrical bus media.
2017-02-19
WIP Standard
J183

This SAE Standard outlines the engine oil performance categories and classifications developed through the efforts of the Alliance of Automobile Manufacturers (Alliance), American Petroleum Institute (API), the American Society for Testing and Materials (ASTM), the Engine Manufacturers Association (EMA), International Lubricant Specification Advisory Committee (ILSAC) and SAE. The verbal descriptions by API and ASTM, along with prescribed test methods and limits are shown for active categories in Table 1 and obsolete categories in Table A1. Appendix A is a historical documentation of the obsolete categories.

For purposes of this document, active categories are defined as those (a) for which the required test equipment and test support materials, including reference engine oils and reference fuels, are readily available, (b) for which ASTM or the test developer monitors precision for all tests, and (c) which are currently available for licensing by API EOLCS.

CURRENT
2017-02-16
Standard
J1979DA_201702
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
HISTORICAL
2017-02-09
Standard
J1939DA_201702
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
CURRENT
2017-02-08
Standard
TS200AR-44
No Scope available.
CURRENT
2017-02-07
Standard
AIR1812B
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
CURRENT
2017-02-02
Standard
ARP577E
This SAE Aerospace Recommended Practice (ARP) specifies criteria for the design, development, standardization, and comprehension testing of placards containing pictures, drawings, symbols, and/or written instructions for locating and operating aircraft emergency equipment. This ARP also provides guidance in the selection and implementation of warning placards intended to instruct occupants inside, and rescue personnel outside, the aircraft.
2017-02-01
WIP Standard
AS6171/4A
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: a. prevent inclusion of counterfeit parts in the assembly b. identify defective parts c. aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
CURRENT
2017-01-18
Standard
J2305_201701
This SAE standard applies to horizontal earthboring machines (SAE J2022) of the following types: Auger boring machines; Rod pushers; Rotary rod machines; Impact machines. This document does not apply to specialized horizontal directional drills, mining machines, conveyors, tunnel boring machines, pipe jacking systems, micro tunnelers, or well drilling machines.
2017-01-18
WIP Standard
AS5553C
This standard is for use by organizations that procure and/or integrate EEE parts and/or assemblies containing such items. The requirements of this standard are generic and intended to be applied/flowed down, as applicable, through the supply chain to all organizations that procure EEE parts and/or assemblies, regardless of type, size, and product provided. The mitigation of counterfeit EEE parts in this standard is risk-based and these mitigation steps will vary depending on the application, desired performance, and reliability of the equipment/hardware. The requirements of this document are intended to supplement the requirements of a higher level quality standard (e.g., AS/EN/JISQ9100, ISO-9001, ANSI/ASQC E4, ASME NQA-1, AS9120, AS9003, and ISO/TS 16949 or equivalent) and other quality management system documents.
CURRENT
2017-01-17
Standard
J3085_201701
This SAE standard is intended to create standard terminology related to light and medium duty trailer applications. This includes such trailer types as utility, boat, camping, travel, and special purpose trailers which are normally towed by conventional passenger cars, light-duty commercial vehicles, light trucks, and multipurpose passenger vehicles.
CURRENT
2017-01-12
Standard
AS5609A
This SAE Aerospace Standard (AS) defines the editorial format and policies necessary for the publication of Interface Control documents. The Common Interface Control Document Format Standard defines a common format for aircraft/store interface documents to foster increased interoperability. It is designed with the versatility to serve differing “ICD” philosophies and organizations. This aerospace standard defines the common technical data sections for the Common Interface Control Document Format down to the third header level for the majority of sub-sections. The Common Interface Control Document Format Aerospace Standard provides a structured document format in appendixes supported by example paragraphs, drawings, etc.
CURRENT
2017-01-04
Standard
ARP6239
This SAE Aerospace Recommended Practice (ARP) recommends the design and features of aircraft demonstration emergency equipment for use in passenger safety briefings.
2017-01-03
WIP Standard
AS6294/2
This standard documents and establishes common industry practices, and screening and qualification testing, of Plastic Encapsulated Microcircuits (PEMs) for use in military and avionics application environments.
2016-12-28
WIP Standard
AS8049D

This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29.

Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data.

While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.

CURRENT
2016-12-20
Standard
AIR6519
The Use Case Trace (UCTRACE) is SAE publication AIR6519 of the Department of Defense Unmanned Control Segment (UCS) Architecture. This document is the SAE publication of the Department of Defense UAS Control Segment (UCS) Architecture: Use Case Trace (UCTRACE) Version 3.4(PR) approved for Distribution A public release 15.S-1859. This information is produced from a script run against the System Use Case Model contained in the UCS Architecture Model AS6518-MODEL.eap configuration item. The System Use Case Model includes, at its lowest level of elaboration, use cases Level 2/3 (L2/L3) that describe specific scenarios of message exchanges between Actors and internal system Participants via ServiceInterfaces. These message exchanges provide a way to create detailed traces that answer the question: “What UCS service interfaces must my components implement to satisfy functional requirements represented by a given Level 2/3 UCS use case?”
CURRENT
2016-12-20
Standard
AIR6520
Governance of the Unmanned Aircraft System (UAS) Control Segment (UCS) Architecture was transferred from the United States Office of the Secretary of Defense (OSD) to SAE International in April 2015. Consequently, a subset of the UCS Architecture Library Release 3.4(PR) has been published under SAE as the Unmanned Systems (UxS) Control Segment (UCS) Architecture, AS6512. This Version Description Document (VDD) describes the correspondence and differences between the two architecture libraries.
CURRENT
2016-12-20
Standard
AIR6521
This platform specific Interface Control Document (ICD) provides an example mapping to the Object Management Group’s (OMG) Data Distribution Service (DDS) infrastructure middleware. The mapping is based on the Unmanned Systems (UxS) Control Segment (UCS) Architecture: Model, AS6518. A series of non-normative implementation choices have been made that are specific to this ICD. These implementation choices may not be appropriate for different system implementations. The machine readable ICD and result of this mapping and implementation choices are provided with AIR6521. Use and understanding of this document assumes a working knowledge of the UCS Architecture, the model structure and its contents.
CURRENT
2016-12-20
Standard
AS6522
The UCS technical governance comprises a set of policies, processes, and standard definitions to establish consistency and quality in the development of architecture artifacts and documents. It provides guidance for the use of adopted industry standards and modeling conventions in the use of Unified Modeling Language (UML) and Service Oriented Architecture Modeling Language (SoaML), including where the UCS Architecture deviates from normal UML conventions. This document identifies the defining policies, guidelines, and standards of technical governance in the following subjects: Industry standards adopted by the AS-4UCS Technical Committee: These are the industry standards and specifications adopted by AS-4UCS in the generation and documentation of the architecture. UCS Architecture Development: UCS specific policies on the development of the UCS Architecture. The AS-4UCS Technical Committee governance policies are intentionally minimal.
CURRENT
2016-12-13
Standard
J2012_201612
This document supersedes SAE J2012 DEC2007, and is technically equivalent to ISO 15031-6:2010 with the exceptions described in 1.2. This document is intended to define the standardized Diagnostic Trouble Codes (DTC) that On-Board Diagnostic (OBD) systems in vehicles are required to report when malfunctions are detected. SAE J2012 may also be used for decoding of enhanced diagnostic DTCs and specifies the ranges reserved for vehicle manufacturer specific usage. This document includes: Diagnostic Trouble Code format. A description of the standardized set of Diagnostic Trouble Codes and descriptions contained in SAE J2012DA. The two most significant bytes of a DTC may be decoded according to two different lists; DTC Format Identifier 0x00 and 0x04. A description of the standardized set of Diagnostic Trouble Codes subtypes known as Failure Types contained in SAE J2012-DA (applies only when three byte DTCs are used).
CURRENT
2016-12-13
Standard
J2012DA_201612
The J2012 Digital Annex of Diagnostic Trouble Code Definitions Spreadsheet provides DTC information in an excel format for use in your organization's work processes. The column headings include the same information as contained in the J2012 standard.

There is also a column heading denoting which DTC have been updated in the current version.

2016-12-09
WIP Standard
AS6171/20
To define capabilities and limitations of X-Ray Photoelectron Spectroscopy (XPS) as it pertains to detection of suspect/counterfeit EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of XPS including: operator training and requirements; sample preparation; data interpretation; and data reporting procedures.
2016-12-09
WIP Standard
AS6171/19
This document defines capabilities and limitations of Auger Electron Spectroscopy (AES) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of AES including: operator training and requirements; sample preparation; data interpretation and reporting of data.
2016-12-09
WIP Standard
AS6171/21
This document defines capabilities and limitations of Gas Chromatography/Mass Spectrometry (GC/MS) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of GC/MS including: operator training; sample preparation; various sampling techniques; data interpretation; computerized spectral matching; equipment maintenance; and reporting of data. The discussion is limited to unit mass resolution spectrometers such as quadrupole systems and electron impact ionization.
2016-12-09
WIP Standard
AS6171/18
This test method provides the capabilities, limitations, and suggested possible applications of TMA as it pertains to detection of suspect/counterfeit EEE parts. Additionally, this document outlines requirements associated with the application of TMA including: equipment requirements, test sample requirements, methodology, control and calibration, data analysis, reporting, and qualification and certification.
2016-12-08
WIP Standard
AS6294/1
1. Review existing standards for PEM qualification & screening  NASA: PEM-INST-001, MSFC-STD-3012  QML Class N, Class Y (non-hermetic microcircuits)  QML Class F, Class L (non-hermetic hybrids)  etc. 2. Provide recommendations for unification  Address concerns for Space & terrestrial applications  Address possible holes in current documents  Make recommendations to improve QML Class N and Class Y 3. Be resource to industry when questions come up that are not being addressed by current PEM flows
CURRENT
2016-12-08
Standard
J3114_201612
The aim of this Information Report is to provide terms and definitions that are important for the user’s interaction with L2 through L4 driving automation system features per SAE J3016, which provides a basis for this document.
CURRENT
2016-12-01
Standard
ARP1821B
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields with application to both commercial and military aircraft.
Viewing 31 to 60 of 51508