Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 1149
CURRENT
2017-03-21
Standard
AS15531A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
CURRENT
2017-03-21
Standard
J1468_201703
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
CURRENT
2017-03-17
Standard
J3083_201703
This document should be used as guidance for non-handbook based reliability predictions conducted on automotive electronics products. It presents a method that utilizes warranty and field repair data to calculate the failure rates of individual electronic components and predict the reliability of the entire electronic system. It assumes that the user has access to a database containing field return data with classification of components, times to failure, and a total number of components operating in the field.
2017-03-13
WIP Standard
ARP5283B
The purpose of this specification is to provide airplane operators and tow vehicle manufacturers with: a. General design and operating requirements pertinent to test and evaluation of towbarless tow vehicles. Specific design requirements are provided in ARP4852 and ARP4853. b. Test and evaluation requirements. The results of these test evaluations will determine if the loads induced by the tow vehicle will exceed the design loads of the nose gear, or are within the aircraft manufacturer’s limits so that they do not affect the certified safe limit of the nose gear. The results of these test evaluations will also determine if a stability problem may occur during pushback and/or maintenance towing operations with the tested airplane/tow vehicle combination. This document specifies general test requirements and a test evaluation procedure for towbarless tow vehicles (TLTV) intended for pushback and maintenance towing only.
CURRENT
2017-03-13
Standard
J2995_201703
This recommended practice will specify a standard duty cycle and set of conditions for component-level durability testing. The "duty cycle" refers to a set of loading conditions (e.g. torque or pressure and cycling count), and the 'test conditions" refers to environmental conditions such as temperature, humidity, and part conditioning from prior exposure (e.g. heat aging).
CURRENT
2017-03-09
Standard
J1939/81_201703
SAE J1939-81 Network Management defines the processes and messages associated with managing the source addresses of applications communicating on an SAE J1939 network. Network management is concerned with the management of source addresses and the association of those addresses with an actual function and with the detection and reporting of network related errors. Due to the nature of management of source addresses, network management also specifies initialization processes, requirements for reaction to brief power outages and minimum requirements for ECUs on the network.
CURRENT
2017-03-07
Standard
J1930DA_201703
This Digital Annex contains all of the information previously found within the SAE J1930 tables, including diagnostic terms applicable to electrical/electronic systems and related mechanical terms, definitions, abbreviations, and acronyms.
CURRENT
2017-03-07
Standard
J1930_201703
This SAE Recommended Practice supersedes SAE J1930 Apr 2002, and is technically equivalent to ISO 15031-2. This document is applicable to all light-duty gasoline and diesel passenger vehicles and trucks, and to heavy-duty gasoline vehicles. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair data bases, underhood emission labels, and emission certification applications. This document should be used in conjunction with SAE J1930-DA Digital Annexes, which contains all of the information previously contained within the SAE J1930 tables. These documents focus on diagnostic terms applicable to electrical/electronic systems, and therefore also contains related mechanical terms, definitions, abbreviations, and acronyms.
CURRENT
2017-03-02
Standard
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
2017-03-02
WIP Standard
ARP1962B
This document requires that the company (facility) employing the personnel ensure a verifiable program of on-the-job training, experience, education, classroom instruction, and evaluation of personnel using either company-created programs or programs described herein. It describes the requirements for training and approval of personnel performing certain heat-treating and associated operations. It also establishes that only approved personnel may perform or monitor the functions listed for the processes and materials listed.
CURRENT
2017-02-24
Standard
J1698/1_201702
This Recommended Practice provides common data output formats and definitions for a variety of data elements that may be useful for analyzing vehicle crash and crash-like events that meet specified trigger criteria. The document is intended to govern data element definitions, to provide a minimum data element set,and to specify EDR record format as applicable for light-duty motor vehicle Original Equipment applications.
CURRENT
2017-02-23
Standard
J1301_201702
The scope and purpose of this SAE Recommended Practice is to provide a classification system for deformation sustained by trucks involved in collisions on the highway. Application of the document is limited to medium trucks, heavy trucks, and articulated combinations. The TDC classifies collision contact deformation, as opposed to induced deformation, so that the deformation is segregated into rather narrow limits or categories. Studies of collision deformation can then be performed on one or many data banks with assurance that data under study are of essentially the same type. Many of the features of the SAE J224 MAR80 have been retained in this document, although the characters within specific columns vary. Each document must therefore be applied to the appropriate vehicle type. It is also important to note that the Truck Deformation Classification (TDC) does not identify specific vehicle configurations and body types.
CURRENT
2017-02-23
Standard
J224_201702
The purpose and scope of this SAE Recommended Practice is to provide a basis for classification of the extent of vehicle deformation caused by vehicle accidents on the highway. It is necessary to classify collision contact deformation (as opposed to induced deformation) so that the accident deformation may be segregated into rather narrow limits. Studies of collision deformation can then be performed on one or many data banks with assurance that the data under study are of essentially the same type. The seven-character code is also an expression useful to persons engaged in automobile safety, to describe appropriately a field-damaged vehicle with conciseness in their oral and written communications. Although this classification system was established primarily for use by professional teams investigating accidents in depth, other groups may also find it useful. The classification system consists of seven characters, three numeric, and four alphameric, arranged in a specific order.
CURRENT
2017-02-21
Standard
AS6023
The scope of this document is to: • Provide a requirements document for RFID Tag Manufacturers to produce active RFID tags for the Aerospace industry. • Provide a requirements document for RFID Tag Manufacturers to produce active RFID tags for the Aerospace industry.Identify the minimum performance requirements for active RFID tags to be used on or in close proximity to aircraft. • Provide a requirements document for RFID Tag Manufacturers to produce active RFID tags for the Aerospace industry.Specify the test requirements specific to active RFID tags for aircraft use, in addition to RTCA DO-160 compliance requirements separately called out in this document. • Provide a requirements document for RFID Tag Manufacturers to produce active RFID tags for the Aerospace industry.Identify existing standards applicable to active RFID Tag. • Provide a requirements document for RFID Tag Manufacturers to produce active RFID tags for the Aerospace industry.Provide a certification standard for RFID tags which will use permanently-affixed installation on aircraft and aircraft parts. • Provide a requirements document for RFID Tag Manufacturers to produce active RFID tags for the Aerospace industry.Battery standards are separately captured and not included in this document.
CURRENT
2017-02-21
Standard
AS4074B
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated. This specification defines the following: a. General Description (3.1): An overview of the LTPB protocol. b. Physical Media Interface (3.2): This portion of the standard defines the physical interface to both optical and electrical bus media. c.
2017-02-21
WIP Standard
J1939DA
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
2017-02-19
WIP Standard
J183

This SAE Standard outlines the engine oil performance categories and classifications developed through the efforts of the Alliance of Automobile Manufacturers (Alliance), American Petroleum Institute (API), the American Society for Testing and Materials (ASTM), the Engine Manufacturers Association (EMA), International Lubricant Specification Advisory Committee (ILSAC) and SAE. The verbal descriptions by API and ASTM, along with prescribed test methods and limits are shown for active categories in Table 1 and obsolete categories in Table A1. Appendix A is a historical documentation of the obsolete categories.

For purposes of this document, active categories are defined as those (a) for which the required test equipment and test support materials, including reference engine oils and reference fuels, are readily available, (b) for which ASTM or the test developer monitors precision for all tests, and (c) which are currently available for licensing by API EOLCS.

CURRENT
2017-02-16
Standard
J1979DA_201702
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
2017-02-09
WIP Standard
J2403DA
This document is intended to supplement SAE J2403 by providing the content of Table 1, Table 2, and Table 3 from SAE J2403 in a form that can be sorted and searched for easier use. It is NOT intended as a substitute for the actual document, and any discrepancies between this Digital Annex and the published SAE J2403 document must be resolved in favor of the published document. This document provides the content of Table 1 and Table 2 published in SAE J2403 into the single table in the 'Term' tab, while the 'Recommended Term Definitions' tab provides the content of Table 3 in SAE J2403 and the 'Glossary' tab provides the content of Table 4 in SAE J2403.
CURRENT
2017-02-09
Standard
J1939DA_201702
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
CURRENT
2017-02-08
Standard
TS200AR-44
No Scope available.
CURRENT
2017-02-07
Standard
AIR1812B
The purpose of this document is to provide qualitative information on life cycle cost (LCC) aspects of environmental control systems (ECS) design. This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
CURRENT
2017-02-02
Standard
ARP577E
This SAE Aerospace Recommended Practice (ARP) specifies criteria for the design, development, standardization, and comprehension testing of placards containing pictures, drawings, symbols, and/or written instructions for locating and operating aircraft emergency equipment. This ARP also provides guidance in the selection and implementation of warning placards intended to instruct occupants inside, and rescue personnel outside, the aircraft.
2017-02-01
WIP Standard
AS6171/4A
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: a. prevent inclusion of counterfeit parts in the assembly b. identify defective parts c. aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
2017-01-24
WIP Standard
AS6171/2A
This document describes the requirements of the following test methods for counterfeit detection of electronic components: Method A: General EVI, Sample Selection, and Handling Method B: Detailed EVI, including Part Weight measurement Method C: Testing for Remarking Method D: Testing for Resurfacing Method E: Part Dimensions measurement Method F: Surface Texture Analysis using SEM The scope of this document is focused on leaded electronic components, microcircuits, multi-chip modules (MCMs), and hybrids. Other EEE components may require evaluations not specified in this procedure. Where applicable this document can be used as a guide. Additional inspections or criteria would need to be developed and documented to thoroughly evaluate these additional part types. If SAE AS6171/2 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2017-01-18
Standard
J2305_201701
This SAE standard applies to horizontal earthboring machines (SAE J2022) of the following types: a. Auger boring machines; b. Rod pushers; c. Rotary rod machines; d. Impact machines. This document does not apply to specialized horizontal directional drills, mining machines, conveyors, tunnel boring machines, pipe jacking systems, micro tunnelers, or well drilling machines.
2017-01-18
WIP Standard
AS5553C
This standard is for use by organizations that procure and/or integrate EEE parts and/or assemblies containing such items. The requirements of this standard are generic and intended to be applied/flowed down, as applicable, through the supply chain to all organizations that procure EEE parts and/or assemblies, regardless of type, size, and product provided. The mitigation of counterfeit EEE parts in this standard is risk-based and these mitigation steps will vary depending on the application, desired performance, and reliability of the equipment/hardware. The requirements of this document are intended to supplement the requirements of a higher level quality standard (e.g., AS/EN/JISQ9100, ISO-9001, ANSI/ASQC E4, ASME NQA-1, AS9120, AS9003, and ISO/TS 16949 or equivalent) and other quality management system documents.
CURRENT
2017-01-17
Standard
J3085_201701
This SAE standard is intended to create standard terminology related to light and medium duty trailer applications. This includes such trailer types as utility, boat, camping, travel, and special purpose trailers which are normally towed by conventional passenger cars, light-duty commercial vehicles, light trucks, and multipurpose passenger vehicles.
CURRENT
2017-01-12
Standard
AS5609A
This SAE Aerospace Standard (AS) defines the editorial format and policies necessary for the publication of Interface Control documents. The Common Interface Control Document Format Standard defines a common format for aircraft/store interface documents to foster increased interoperability. It is designed with the versatility to serve differing “ICD” philosophies and organizations. This aerospace standard defines the common technical data sections for the Common Interface Control Document Format down to the third header level for the majority of sub-sections. The Common Interface Control Document Format Aerospace Standard provides a structured document format in appendixes supported by example paragraphs, drawings, etc.
Viewing 1 to 30 of 1149