Display:

Results

Viewing 1 to 30 of 13054
2017-10-08
Technical Paper
2017-01-2198
Zhihong Li, Guoxiu Li, Lan Wang, Hongmeng Li, Jie Wang, Haizhou Guo, Shuangyi He
The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The result shows that the electromagnetic force of the solenoid valve enhanced with the increasing driving current and reduced with the decreasing of working condition.
2017-10-01
Book
He Tang
The evolution and execution of automotive manufacturing are explored in this fundamental manual. It is an excellent reference for entry level manufacturing engineers and also serves as a training guide for nonmanufacturing professionals. The book covers the major areas of vehicle assembly manufacturing and addresses common approaches and procedures of the development process. Having held positions as both a University Professor and as a Lead Engineering Specialist in industry, the author draws on his experience in both theory and application to fill the gap between academic research and industrial practices. This concisely written, comprehensive review discusses the sophisticated principles and concepts of automotive manufacturing from development to applications and includes: • 250 illustrations and 90 tables. • End-of-chapter review questions. • Research topics for in-depth case studies, literature reviews, and/or course projects. • Analytical problems for additional practice.
2017-09-23
Technical Paper
2017-01-2009
Kuiyuan Guo, Yan Yan, Juan Shi, Runqing Guo, Yuguang Liu
In order to speed up the development of vehicle active safety technology in China, C-NCAP plans to add AEB and AEB VRU system as assessment items in 2018. With the purpose of studying the assessment protocol of AEB system, we have carried out 400,000 km road information collection and then we acquired the statistics of the operation conditions of dangerous situations.
2017-09-23
Technical Paper
2017-01-2011
Suyash Singh, Ankur Mathur, Sandeep Das, Purnendu Sinha, Vinay Singh
In the Smart Cities, main objective is to promote cities that provide core infrastructure and give a decent quality of life to its citizens, a clean and sustainable environment and application of ‘Smart’ Solutions. The process said for utilization of available resources is the best fit for our concept. Our Concept is to convert and refurbish the old and scrap vehicles which will also increase their longevity and can be used in any smart city in India or abroad. The ultimate aim to provide this technology for the development of any new smart city in India is the utilization of available resources and reduction in the junk materials and environmental pollution. Refurbishing the old and scrap vehicles with replacement of IC engines doesn’t mean that they will be kept as a scrap and be thrown away, our idea is to utilize maximum of all the available resources. The IC engines taken out of these vehicles will be re-used appropriately.
2017-09-19
Technical Paper
2017-01-2133
Donald Jasurda
The purpose of this paper is to demonstrate how advanced QMS systems, once the purview of large aerospace OEM’s, are now accessible to the small and medium supplier market through the Cloud. This is important, as these systems have proven track records of improving visibility in manufacturing and decreasing non-conformance errors that cause expensive defects. This, in turn, creates cost reductions that can be passed up the supply chain. Utilizing effective quality systems to manage manufacturing processes is a large feat. It often includes expensive IT costs for setting up servers, configuring systems, creating internal processes and then managing the enormous amounts of data that are fed into it. Historically, these systems are cost prohibitive for aerospace suppliers and small to medium sized businesses. Now, with the rise of Cloud-Based Software, QMS systems are available at a fraction of the cost.
2017-09-19
Technical Paper
2017-01-2142
Brandon Mahoney, Jamie Marshall, Thomas Black, Dennis Moxley
It is well recognized that weight savings within an airframe can result in significant lifetime cost savings and increased flight range. The transition of aluminum alloys to lighter, composite materials is an increasingly prevalent strategy to reduce weight on aircraft. This paper describes the application of a lightweight carbon fiber composite technology to aviation, engine start lithium batteries. The transition of lithium battery chassis technology from metal to composite introduces technical challenges not found with traditional battery chassis. Modern lithium batteries contain more than energy cells; common internal components include switch mode battery chargers, health and safety monitoring electronics, and even environmental control circuitry such as heaters. Consequently, electromagnetic interference disruption potential created by the electronics must be addressed.
2017-09-19
Technical Paper
2017-01-2019
Rakshath G Poojary, Mohammed Ali Jouhar, Abubakar K
Human Powered Helicopter which uses man power to operate. The main aim of this paper is to design commercially available vehicle for an Adventure Sporting under 5-6 lakh Indian Rupees. This structural design is extremely lightweight and strong. The product is designed in such a way that it can be easily assembled and dismantled for transportability and storage. We developed an aero-structural optimization scheme for rotor design, including an aerodynamic model with included ground effect prediction, finite-element analysis and integrated composite failure analysis, and a detailed weight estimation scheme. This was solely build on computer CAD models. This design includes the use of gear box to increase the output. The Aerodynamic analysis was done using CFD and BET (blade element theory-Bhramwell) in MATLAB.
2017-09-17
Technical Paper
2017-01-2498
David B. Antanaitis, E Lloyd
This paper describes the development work that went into the creation of the J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications of it. The J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command).
2017-09-04
Technical Paper
2017-24-0044
Jeremy Rochussen, Jeff Son, Jeff Yeo, Mahdiar Khosravi, Patrick Kirchen, Gordon McTaggart-Cowan
Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared (IR) absorption, and multi-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The design of the all-new cylinder head was derived from a production cylinder head, which was sectioned and laser scanned to create a parametric model.
2017-09-04
Technical Paper
2017-24-0135
Shuxia Miao, Lin Luo, Yan Liu, Zhangsong Zhan
New emissions regulations of light-duty vehicles (China 6) will be implemented in China from July 1, 2020. This standard includes two stages, China 6a and China 6b, in which the PM limits of 4.5 mg/km and 3.0 mg/km are introduced respectively, the PN limit is set to be 6×10e11 #/km for both stages. The WLTC testing cycle will be implemented in China 6 regulation as well. In this study a light-duty vehicle satisfying China 6(b) emission standards was developed by improving the engine raw emissions, optimizing the calibration and adding a coated GPF to the after-treatment system. The impacts of ash content and consumption of engine oil and the fast ash accumulation to vehicle emissions and backpressure were analyzed through dynamometer testing. The vehicle after-treatment system was then designed and developed to meet China 6(b) emission standards. The characteristics of soot accumulated through mimicking routine driving under cold environments were tested.
2017-09-04
Journal Article
2017-24-0147
Marco Chiodi, Andreas Kaechele, Michael Bargende, Donatus Wichelhaus, Christian Poetsch
In the competition for the powertrain of the future the internal combustion engine faces tough challenges. Reduced environmental impact, higher mileage, low cost and new technologies are required to maintain its global position in public and private mobility. For decades researchers have been investigating the Homogeneous Charge Compression Ignition (HCCI) promising higher efficiency due to the rapid combustion and therefore low exhaust gas temperatures. Consequently there is no need for a rich mixture to cool the turbocharger under high load. As the combustion does not have a distinguished flame front it is able to burn very lean mixtures, reducing HC and CO emissions. However, until recently, HCCI was considered to be only applicable as a part load process. The 3D engine development tool QuickSim which has been developed at the FKFS in Stuttgart is able to simulate the entire flow path of the engine, including conventional and HCCI combustion.
2017-09-04
Journal Article
2017-24-0152
Mirko Baratta, Daniela Misul, Jiajie Xu, Alois Fuerhapter, Rene Heindl, Cesare Peletto, Jean Preuhs, Patrick Salemi
The present paper is the outcome of the research activity carried out by Centro Ricerche Fiat, Politecnico di Torino, Delphi and AVL within the Gason research project of the EC (H2020 program). The overall goal of the research project is to develop CNG-only SI engines which are able to comply with post-EuroVI emission regulations and 2020+ CO2 emission targets, with reference to the new homologation cycle and real driving conditions. The work presented in this paper aimed at developing a small displacement turbocharged engine, which combines the advanced VVA MultiAir system for the air metering with the direct injection of natural gas. The activity focused on the development and fluid-dynamic characterization of the gaseous-fuel injector. Moreover, the combined use of CFD analysis and optical-access PLIF experimental techniques allowed the design of the combustion chamber to be optimized from the mixture formation point of view.
2017-09-04
Journal Article
2017-24-0151
Matteo De Cesare, Nicolo Cavina, Luigi Paiano
New gasoline engine design is highly influenced by CO2 and emission limits defined by legislations, the demand for real-conditions fuel economy, higher torque, higher specific power and lower costs. Downsizing concepts, including turbocharging in combination with direct injection, have contributed significantly to the recent improvement of gasoline engines. However, other technologies are under evaluation to allow further steps of enhancement for the even more challenging requirements. The main issues of gasoline engines in terms of efficiency and performance are knocking, part-load losses, and thermal stress at high power conditions. This work presents a comparison at concept level between the main technologies that are currently being developed, considering not only the technical benefits, but also their cost-effectiveness.
2017-09-04
Journal Article
2017-24-0159
Davide Di Battista, Marco Di Bartolomeo, Carlo Villante, Roberto Cipollone
Internal combustion engines is actually one of the most important source of pollutants and greenhouse gases emissions. In particular, on-the-road transportation sector has taken this environmental challenge and worldwide governments set up regulations in order to limit the emissions and fuel consumption from vehicles. Among the several technologies under development, an ORC unit bottomed exhaust gas seems to be very promising, but it still has several complications when it is applied on board of a vehicle (weight, encumbrances, backpressure effect on the engine, safety, reliability). In this paper, a comprehensive mathematical model of an ORC unit bottomed a heavy duty engine, used for commercial vehicle, has been developed. The model is completed with the sizing of the two exchangers involved in the ORC plant: the heat recovery vapor generator (HRVG) and the condenser.
2017-09-04
Technical Paper
2017-24-0174
Laura Tribioli, Paolo Iora, Raffaello Cozzolino, Daniele Chiappini
Road transportation is proved to be one of the main contributor to pollutant and global greenhouse gas emissions. This, together with the rising of fuel price, is striving the automotive sector research towards innovative solutions. Promising solutions fuel cell vehicles, which generally make use of polymer electrolyte membrane fuel cells with the possibility of further reducing pollutant emissions, giving a satisfactory range without the need of an internal combustion engine. Nonetheless, even being a relatively mature technology, there are still some disadvantages related to the use of fuel cells for vehicles, such as high costs, low power density, and lack of hydrogen infrastructures. The latter issue could be solved by using an on-board fuel processor for hydrogen production.
2017-09-04
Technical Paper
2017-24-0120
Matthew Keenan
Abstract The earliest public domain reference regarding full engine testing of an automotive catalyst was from January 1959, written by GM and presented at the annual SAE meeting in Detroit. This current publication will review the first public domain paper referencing different aftertreatment technologies (such as TWC, LNT, DPF and SCR, but not limited to these technologies) and compare the technologies to the current state of the art in aftertreatment technology. This historical review using a range of databases, will show how exhaust aftertreatment technologies have significantly enhanced emissions control over the last 60 years for both gasoline and diesel applications. A timeline will be given showing when various technologies were first presented into the public domain. This will indicate how long it has taken certain emissions control technologies to enter the market.
2017-07-19
WIP Standard
J1939DA_201707
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
2017-07-17
Article
Virtual-reality innovations are emerging as crucial new weapons to enhance - and abbreviate - the automotive product-development process.
2017-07-14
Article
Connectivity, automation and electrification: Three inexorable trends that will largely drive on- and off-highway vehicle developments in the coming years, according to industry experts presenting keynotes at the revamped 2017 SAE COMVEC event. And with greater connectivity comes greater cyber concerns, they warn.
2017-07-12
Article
Performance, reliability, and safety assessments performed using predictive capability for electromechanical systems are on the rise, yet no standard exists in the truck and off-highway engineering design industry for representing the degree to which a model has been validated. Such a standard can enable engineers and managers with a tool to assess the maturity of predictive capability itself.
CURRENT
2017-07-12
Standard
AIR5451A
The landing gear system is a major and safety critical airframe system that needs to be integrated efficiently to meet the overall aircraft program goals of minimizing the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large-scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft. The document structure is divided into four sections: • Landing Gear System Configuration Requirements (Section 3) • Landing Gear System Functional Requirements (Section 4) • Landing Gear System Integrity Requirements (Section 5) • Landing Gear System Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements.
2017-07-10
Technical Paper
2017-28-1930
Anil Kumar Jaswal, Pradeep Chandrasekaran, Surendran Ramadoss
Abstract Indian Automobile Industry has started using Six Sigma for Vehicle Design and process improvement to compete with Global competition. This Paper describes how the Tools of Six Sigma shall be used as an Effective Tool for both redefining the Design and the Process Improvement. This Paper talks on the evolution of DMADV approach in Indian Automobile Industry compared to the related Trends in Other Manufacturing Sectors. The Author describes how the warranty failures in Commercial Segment Vehicle Category which was the selling talk for the Competition was addressed in Leading Indian Automobile OEM. As this Failure was adversely impacting customer satisfaction and no solution seemed forthcoming, top Management indicated to use a radically different approach to solve the problem within a years’ time.
2017-07-10
Technical Paper
2017-28-1933
Alberto Boretti
Abstract The paper captures the recent events in relation with the Volkswagen (VW) Emissions Scandal and addresses the impact of this event on the future of power train development. The paper analyses the impact on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based technology. The operation of the United States Environmental Protection Agency (EPA), VW and the United States prosecutor, sparked by the action of the International Council on Clean Transportation (ICCT) is forcing the Original Equipment Manufacturers (OEM) towards everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) technology, and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
2017-07-10
Technical Paper
2017-28-1959
Abhishek Taluja, Simson T. Wilson, Santosh Lalasure, K. Rajakumar
The Ride Comfort has always been an important attribute of a vehicle that gets trade-off with handling characteristics of a vehicle. However, to cater the growing customer requirements for better ride comfort in a vehicle without compromising on other attributes, evaluating and achieving optimal ride comfort has become a significant process in the vehicle development. In the current engineering capability and virtual engineering simulations, creating an accurate and real time model to predict ride comfort of a vehicle is a challenging task. The qualitative evaluation of ride attributes has always been the proven conventional method to finalize the requirements of a vehicle. However, quantitative evaluation of vehicle ride characteristics benefits in terms of target setting during vehicle development process and in robust validation of the final intended product against its specifications.
CURRENT
2017-07-10
Standard
AIR5565
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems.
2017-07-07
Article
Stringent fuel-efficiency and criteria-pollutant standards call for new combustion strategies. The Advanced Combustion Catalyst and Aftertreatment Technologies consortium led by Southwest Research Institute reinvents existing technologies and experiments with new catalysts to meet standards.
2017-07-06
WIP Standard
SAE1001
The purpose of the "Integrated Project Processes for Engineering a System(IPPES)" Standard is to provide an integrated set of fundamental technical processes to aid a project in the engineering or reengineering of a system over the full life cycle. Covers systems that can be any combination of people (humans); product (hardware or software); or process (service). Applicable to any type of system: commercial or non-commercial; small or large, simple or complex, precedented or unprecedented; new or legacy or any combination of these characteristics.
2017-06-29
Article
Last week, the ceos of suppliers ZF and Hella shook hands to announce a strategic partnership.
CURRENT
2017-06-28
Standard
AS47641A
This document establishes techniques for validating that an Aircraft Station Interface (ASI) complies with the interface requirements delineated in MIL-STD-1760B Notice 3. For validation of aircraft designed to MIL-STD-1760A Notice 2 AS4764 Issued 1995-04 applies.
CURRENT
2017-06-28
Standard
AS47642B
This document establishes techniques for validating that an Aircraft Station Interface (ASI) complies with the interface requirements delineated in MIL-STD-1760C. For validation of aircraft designed to MIL-STD-1760A Notice 2 AS4764 Issued 1995-04 applies. For validation of aircraft designed to MIL-STD-1760B Notice 3 AS47641 Issued 1999-08 applies.
Viewing 1 to 30 of 13054

Filter