Display:

Results

Viewing 1 to 30 of 6258
2017-04-11
Journal Article
2017-01-9076
Ioannis Karakitsios, Evangelos Karfopoulos, Nikolay Madjarov, Aitor Bustillo, Marc Ponsar, Dionisio Del Pozo, Luca Marengo
Abstract The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
2017-03-28
Technical Paper
2017-01-0234
Assam Alzookery
In today’s era, real time data tagging is significant for research and development of new automotive technology. The ability to tag and classify data increases operational efficiency in terms of improvements of algorithms and enhancements of sensors used in current and future vehicle technology. Real Time Data Tagging Software (RT-DTS) application was developed to use in conjunction with the data acquisition system. In addition, this application will help the user to tag quickly and efficiently, identify data that are unique and significant enough to undergo extensive analyses to further enhance and improve algorithms and features that correlates to increased safety, which is the paramount goal across the automotive industry. The application currently runs in iOS and can be installed on Apple devices.
2017-03-28
Technical Paper
2017-01-0065
Bülent Sari, Hans-Christian Reuss
Safety is becoming more and more important with the ever increasing level of safety related E/E Systems built into the cars. Increasing functionality of vehicle systems through electrification of power train and autonomous driving leads to complexity in designing system, hardware, software and safety architecture. The application of multicore processors in the automotive industry is becoming necessary because of the needs for more processing power, more memory and higher safety requirements. Therefore it is necessary to investigate the safety solutions particularly for ASIL-D-Systems. This brings additional challenges because of additional requirements of ISO 26262 for ASIL-D safety concepts. The ISO 26262 provides the possibility to apply decomposition approach for ASIL-D safety requirements. An appropriate decomposition has the advantage to reduce the ASIL rating of the top events.
2017-03-28
Technical Paper
2017-01-0632
Chen Yang, Haiyuan Cheng, Zizhu fan, Jiandong Yin, Yuan Shen
Abstract In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of engine systems, especially for combustion system.
2017-03-28
Journal Article
2017-01-0642
Richard Osborne, Trevor Downes, Simon O'Brien, Ken Pendlebury, Mark Christie
Abstract The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
2017-03-28
Journal Article
2017-01-0651
Yaodong Hu, Siyuan Feng, Changsheng Yao, Wenbo Shao, Lubing Xu, Xieyuan Zhang, Li Lin, Jinyu Zhang, Fuyuan Yang, Rusheng Yan
Abstract This paper conducts an investigation on the operating cycle of Bus No. 306, which is equipped with wireless charging system, in Changsha, Hunan Province, China. The wireless charging system and electric buses are manufactured by ZTE Corporation (Zhongxing Telecommunication Equipment Corporation) and BYD Company Limited, respectively. In this paper, the operating cycle is quantified and modeled based on experimental data. The real-time bus route and SOC (state of charge) during daytime operation are recorded with the help of GPS (global position system) and BMS (battery management system). The wireless charging process is tested with a power analyzer and its charging efficiency is compared with a plug-in system. Besides, the radiation level while charging is also taken into consideration. Currently, the buses are designed to operate in daytime and get charged at night.
2017-03-28
Technical Paper
2017-01-0650
Xinyu Li, Xinyu Ge, Ying Wang
Abstract The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
2017-03-28
Technical Paper
2017-01-0455
Harshad Hatekar, Baskar Anthonysamy, V. Saishanker, Lakshmi Pavuluri, Gurdeep Singh Pahwa
Abstract Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
2017-03-28
Technical Paper
2017-01-0173
Stephen Andersen, Sourav Chowdhury, Timothy Craig, Sangeet Kapoor, Jagvendra Meena, Prasanna Nagarhalli, Melinda Soffer, Lindsey Leitzel, James Baker
Abstract This paper quantifies and compares the cooling performance and refrigerant and fuel cost savings to automobile manufacturers and owners of secondary-loop mobile air conditioners (SL-MACs) using refrigerants hydrofluorocarbon (HFC)-134a and the available alternatives HFC-152a and HFO-1234yf. HFC-152a and HFO-1234yf are approved for use by the United States Environmental Protection Agency (US EPA) and satisfy the requirements of the European Union (EU) F-Gas Regulations. HFC-152a is inherently more energy efficient than HFC-134a and HFO-1234yf and in SL-MAC systems can generate cooling during deceleration, prolong comfort during idle stop (stop/start), and allow powered cooling at times when the engine can supply additional power with the lowest incremental fuel use. SL-MAC systems can also reduce the refrigerant charge, emissions, and service costs of HFO-1234yf.
2017-03-28
Technical Paper
2017-01-0278
John Kelly Villota Pismag, Hisham Alawneh, Cristian Adam, Samir A. Rawashdeh, Pramita Mitra, Yifan Chen, Gary Strumolo
Abstract The potential for Augmented Reality (AR) spans many domains. Among other applications, AR can improve the discovery and learning experience for users inspecting a particular item. This paper discusses the use of AR in the automotive context; particularly, on improving the user experience in a dealership show room. Visual augmentation, through a tablet computer or glasses allows users to take part in a self-guided tour in learning about the various features, details, and options associated with a vehicle. The same approach can be applied to other learning scenarios, such as training and maintenance assistance. We evaluated a set of AR Glasses and a general purpose tablet. A table-top showroom was developed demonstrating what the actual user experience would be like for a self-guided dealership tour using natural markers and three-dimensional content spatially registered to physical objects in the user’s field of view.
2017-03-28
Journal Article
2017-01-0271
Robert Jane, Gordon G. Parker, Wayne Weaver, Ronald Matthews, Denise Rizzo, Michael Cook
Abstract This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures.
2017-03-28
Journal Article
2017-01-0325
Samer Abbas, John Joyce
Abstract Severity-mitigating mechanisms (typically software-based) detect failures in a system and perform functions in order to reduce the severities of failures. Various approaches to FMEA analysis of severity-mitigating mechanisms exist within the industry. Three are compared and contrasted. Each method is compared against its ability to capture the three fundamental failures of a system that has severity-mitigating mechanisms: 1 a failure occurs and mitigating action is taken,2 a failure occurs and mitigating action is not taken,3 no failure occurs but mitigating action is taken. One method is advocated over the others because it: uses existing FMEA formatting; addresses all three cases; supports consistent linkage between FMEAs in a hierarchy of systems with any number of layers.
2017-03-28
Journal Article
2017-01-0322
Samer Abbas, John Joyce
Abstract When analyzing the failure rate (or occurrence) of a system failure cause, the typical approach is to obtain an occurrence rating from the results of testing. However, in many cases, the occurrence of a system failure cause can be derived from a combination of occurrences of failure causes of the element (sub-system) failure mode coinciding with the system failure cause being assessed. This paper explores a few approaches for deriving occurrences from element FMEAs over a majority of cases before settling on a probabilistic approach that converts occurrences to worst-case failure rates to achieve the most fine-tuned combined occurrence rating. Finally, a “complex analysis” worksheet, where the logical combination of occurrences and failure rates is custom defined by the engineer, is introduced for handling special cases.
2017-03-28
Technical Paper
2017-01-0326
Samuel J. Tomlinson, Martin J D Fisher, Thomas Smith, Kevin Pascal
Abstract When sealing an application with a radial O-ring system design there is a balance that must be struck between O-ring function and the ease of assembly. If design parameters are not properly controlled or considered it is possible to design an O-ring seal that would require assembly insertion forces that exceed acceptable ergonomic practices from a manufacturing standpoint. If designs are released into production with these high insertion forces manufacturing operators will struggle to assemble parts, creating opportunity for potential operator injury due to repetitive strain or CTD. In this study several variables impacting O-ring system insertion forces were tested to quantify the effects. Results were analyzed to identify design controls that could be implemented from an early design phase to optimize both functionality and ease of assembly.
2017-03-28
Technical Paper
2017-01-0375
Ligong Pan, Seung Hyun Jung, Sushanth Ramavath, Mohamed El-Essawi, Randall Frank, Jiawei Qin, Ramarajan Ilankamban, Yuan Yao, Homa Torab, Yuzhao Song, Jim Alanoly
Abstract Over the past decades, Computer Aided Engineering (CAE) based assessment of vehicle durability, NVH (Noise, Vibration and Harshness) and crash performance has become very essential in vehicle development and verification process. CAE activity is often organized as different groups based on the specific attributes (durability, NVH and crash). Main reasons for this are the expertise required and the difference in the finite element software technologies (explicit vs implicit) used to perform and interpret various CAE analyses in each of the attributes. This leads to individual attribute team creating its own model of the vehicle and there is not much exchange of the CAE models between the attribute teams. Different model requirements for each attribute make model sharing challenging. However, CAE analyses for all attributes start with common CAD and follow the same sub-process in vehicle development cycle.
2017-03-28
Technical Paper
2017-01-1029
Mitsuhiro Shibata, Masashi kawamata, Hirotaka Komatsu, Kazuki Maeyama, Masaru Asari, Naoki Hotta, Kazutaka Nakada, Hisashi Daicho
Abstract To comply with the environmental demands for CO2 reduction without compromising driving performance, a new 1.0 liter I3 turbocharged gasoline direct injection engine has been developed. This engine is the smallest product in the new Honda VTEC TURBO engine series (1), and it is intended to be used in small to medium-sized passenger car category vehicles, enhancing both fuel economy through downsizing, state-of-the-art friction reduction technologies such as electrically controlled variable displacement oil pump and timing belt in oil system, and also driving performance through turbocharging with an electrically controlled waste gate. This developed engine has many features in common with other VTEC TURBO engines such as the 1.5 liter I4 turbocharged engine (2) (3), which has been introduced already into the market.
2017-03-28
Technical Paper
2017-01-1022
Kazuhiro Ogino, Yoshinori Yakabe, Keisuke Chujo
Abstract 1 The new V6 3.5L gasoline direct injection engine, VQ35DD, was developed for the midsize premium SUV segment. This engine is the newest descendant of the VQ engine family and incorporates the latest technologies focused on enhanced driving performance, combined with high-level of environmental performance. Additional improvements include torque and power increase as well as improved fuel economy and emission performance. Simultaneous realization of both throttle response and smoothness are also in focus. To achieve these features, direct injection system, high response motor-driven intake Continuously Variable Valve Timing Control (e-Motor VVT), individual spark timing, mirror bore spray coating on the cylinder block, and various friction reduction technologies, such as variable displacement oil pump, are applied. Maximum engine power and torque are increased by 8 to 10%.
2017-03-28
Technical Paper
2017-01-1012
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Salim Abbasbhai Channiwala
Abstract In developing countries like India, large numbers of portable gensets are used as a power source due to the scarcity of grid power supply. The portable gensets, ranging from 0.5 kW to 5 kW are very popular in the residential areas, for example, small restaurants, and shopping complexes, etc. These gensets are using various fuels like gasoline, diesel, LPG, and kerosene in small internal combustion engines. Such engines are the significant source of air pollution, as these are running in the vicinity of populated areas and higher human exposure to these pollutants.Theses gensets are regulated by exhaust and noise emissions norms, set by statutory bodies like the ministry of environment and forest and central pollution control board of India.
2017-03-28
Technical Paper
2017-01-1209
Zhichao Luo, Xuezhe Wei
Abstract Nowadays, wireless power transfer (WPT) gradually prevails and many researchers have devoted themselves to it because it is a safe, convenient and reliable way for recharging electric vehicles comparing to the conventional plug-in contact-based methods. Square coils are commonly used in WPT systems. However, there is few theoretical analysis of self- and mutual inductance of square coils between two magnetic shielding materials. In this paper, in order to study the spatial magnetic field distribution, the analytical model of n-turn square planar spiral coils between two semi-infinite multilayer media is developed based on the Maxwell equations and the Dual Fourier transformation. And then, by means of surface integrals, the self- and mutual inductance can be carried out, with respect to the main parameters of the WPT systems such as the operating frequency, the geometry feature of the coupling coils and the properties of the multilayer media.
2017-03-28
Journal Article
2017-01-1221
Shingo Soma, Haruhiko shimizu, Eiji Shirado, Satoshi Fujishiro
Abstract As heavy rare earth elements are become less prevalent, because one-tenth as often in ore deposits as light rare earth elements. Future usage of need to be reduces heavy rare earth, because of resource risks and costs. As such, a method was developed to recover reductions in coercive force and prevent demagnetization temperature from reducing without adding any heavy rare earth elements. First, a heavy rare-earth-free magnet was developed by hot deformation, which limits growth of crystal grain size, and relationships were clarified between coercive force and optimal deforming temperatures, speed, and total rare earth amounts for heavy rare-earth-free magnets. Second, it was made clear that the permeance coefficient can be increased by reshaping the flux barriers, and that the developed hot deformed magnet can be adopted.
2017-03-28
Technical Paper
2017-01-1245
Takamitsu Tajima, Hideki Tanaka, Takeo Fukuda, Yoshimi Nakasato, Wataru Noguchi, Yoshikazu Katsumasa, Tomohisa Aruga
Abstract The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
2017-03-28
Technical Paper
2017-01-1130
Shinya Takamatsu, Nobuharu Imai, Koji Tsurumura, Seiji Yamashita, Hiroaki Tashiro
Abstract The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
2017-03-28
Technical Paper
2017-01-1141
Bashar Alzuwayer, Robert Prucka, Imtiaz Haque, Paul Venhovens
Abstract Fuel economy regulations have forced the automotive industry to implement transmissions with an increased number of gears and reduced parasitic losses. The objective of this research is to develop a high fidelity and a computationally efficient model of an automatic transmission, this model should be suitable for controller development purposes. The transmission under investigation features a combination of positive clutches (interlocking dog clutches) and conventional wet clutches. Simulation models for the torque converter, lock-up clutch, transmission gear train, interlocking dog clutches, wet clutches, hydraulic control valves and circuits were developed and integrated with a 1-D vehicle road load model. The integrated powertrain system model was calibrated using measurements from real-world driving conditions. Unknown model parameters, such as clutch pack clearances, compliances, hydraulic orifice diameters and clutch preloads were estimated and calibrated.
2017-03-28
Journal Article
2017-01-1154
Jimmy Kapadia, Daniel Kok, Mark Jennings, Ming Kuang, Brandon Masterson, Richard Isaacs, Alan Dona, Chuck Wagner, Thomas Gee
Abstract The automotive industry is rapidly expanding its Hybrid, Plug-in Hybrid and Battery Electric Vehicle product offerings in response to meet customer wants and regulatory requirements. One way for electrified vehicles to have an increasing impact on fleet-level CO2 emissions is for their sales volumes to go up. This means that electrified vehicles need to deliver a complete set of vehicle level attributes like performance, Fuel Economy and range that is attractive to a wide customer base at an affordable cost of ownership. As part of “democratizing” the Hybrid and plug-In Hybrid technology, automotive manufacturers aim to deliver these vehicle level attributes with a powertrain architecture at lowest cost and complexity, recognizing that customer wants may vary considerably between different classes of vehicles. For example, a medium duty truck application may have to support good trailer tow whereas a C-sized sedan customer may prefer superior city Fuel Economy.
2017-03-28
Technical Paper
2017-01-1174
Vincent Freyermuth, Aymeric Rousseau
Today’s value proposition of plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) remain expensive. While the cost of lithium batteries has significantly decreased over the past few years, more improvement is necessary for PHEV and BEV to penetrate the mass market. However, the technology and cost improvements of the primary components used in electrified vehicles such as batteries, electric machines and power electronics have far exceeded the improvements in the main components used in conventional vehicles and this trend is expected to continue for the foreseeable future. Today’s weight and cost structures of electrified vehicles differ substantially from that of conventional vehicles but that difference will shrink over time. This paper highlights how the weight and cost structures, both in absolute terms and in terms of split between glider and powertrain, converge over time.
2017-03-28
Technical Paper
2017-01-1118
Isamu Hachisuwa, Naoki Kato, Daisuke Kusamoto, Hideki Miyata, Takuya Okada, Hitoshi matsunaga, Takamitsu Kuroyanagi, Makoto nakazuru
Abstract Increasingly stringent environmental regulations requiring lower CO2 emissions and higher fuel economy have made it essential to develop vehicles with superior fuel efficiency and cleaner emissions. At the same time, there is growing demand for even more powerful and quieter vehicles. To help satisfy these requirements, Toyota Motor Corporation has developed a new 8-speed automatic transmission for front wheel drive vehicles, incorporating its first compact torque converter with a multiple disk lock-up mechanism. This newly developed compact torque converter with a multiple disk lock-up mechanism was designed under the Toyota New Global Architecture (TNGA) development concept to achieve an excellent balance between higher efficiency through the commonization of components and stronger product appeal through installation on a whole family of transmissions. This compact torque converter is compatible with a variety of engines from inline 4-cylinder to V6 configurations.
2017-03-28
Technical Paper
2017-01-1262
David Baker, Zachary Asher, Thomas Bradley
Abstract The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
2017-03-28
Journal Article
2017-01-1099
Seiji Masunaga, Terufumi Miyazaki, Yohei Habata, Kazuhiko Yamada, Yoshio Hasegawa, Takahiro Kondo, Ichiro Kitaori, Akira Takeichi
Abstract Toyota Motor Corporation has developed an innovative 10-speed longitudinal automatic transmission called the Direct Shift-10AT. The Direct Shift-10AT is a significant contributor to the excellent dynamic performance of the Lexus LC500. A wide gear spread with close gear ratios allows for rhythmical shifting, smooth and powerful acceleration from a standing start, along with quiet and relaxed high- speed driving due to low engine speeds. The lock-up area is expanded to a wider range of vehicle speeds (excluding low-speed regions such as when starting off), by the adoption of a multi-plate lock-up clutch, a newly developed torque converter, and a high-precision controller. As a result, the shift control can match the driver's intended operation more directly because the main cause of the response delay (transient changes in engine speed (flare)) is eliminated. Furthermore, fuel economy is improved due to the adoption of low friction clutches.
2017-03-28
Technical Paper
2017-01-1263
Dennis Kibalama, Andrew Huster, Arjun Khanna, Aditya Modak, Margaret Yatsko, Gregory Jankord, Shawn Midlam-Mohler
Abstract The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
2017-03-28
Journal Article
2017-01-1273
Qiang Dai, Jarod C. Kelly, Amgad Elgowainy
Abstract Vehicle lightweighting has been a focus of the automotive industry, as car manufacturers seek to comply with corporate average fuel economy (CAFE) and greenhouse gas (GHG) emissions standards for model year (MY) 2017-2025 vehicles. However, when developing a lightweight vehicle design, the automotive industry typically targets maximum vehicle weight reduction at minimal cost increase. In this paper, we consider the environmental impacts of the lightweighting technology options. The materials used for vehicle lightweighting include high-strength steel (HSS), aluminum, magnesium and carbon fiber reinforced plastic (CFRP). Except for HSS, the production of these light materials is more GHG-intensive (on a kg-to-kg basis) compared with the conventional automotive materials they substitute. Lightweighting with these materials, therefore, may partially offset the GHG emission reductions achieved through improved fuel economy.
Viewing 1 to 30 of 6258