Display:

Results

Viewing 1 to 30 of 6263
2017-10-08
Technical Paper
2017-01-2198
Zhihong Li, Guoxiu Li, Lan Wang, Hongmeng Li, Jie Wang, Haizhou Guo, Shuangyi He
The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The result shows that the electromagnetic force of the solenoid valve enhanced with the increasing driving current and reduced with the decreasing of working condition.
2017-10-08
Technical Paper
2017-01-2448
Jesse Schneider, Kensuke Kamichi, Daniel Mikat, Mohamad Abdul-Hak, Robert Sutton, Yusuke Minagawa, Hiroyuki Abeta, Eloi Taha, Rich Boyer, Jonathan Sirota, Morris Kesler, Richard Carlson, Mark Klerer, Sebastian Mathar
Wireless Power Transfer (WPT) is to be commercialized in the very near future. There are however many technology challenges. The SAE J2954 Taskforce published a guideline or Technical Information Report in 2016 to help in the harmonization in the first phase of this technology. SAE J2954 is a performance-based approach for WPT by specifying ground and assembly coils to be used in a test stand (per Z-Height) to validate interoperability. However, there were two types of technologies used for the topologies of these coils in SAE J2954. The main goal of this SAE J2954 testing campaign was to prove interoperability and the guideline contained within. The main challenge is that this type of testing had not been done before on such a scale with real automaker and supplier systems. Automakers, suppliers and government employees worked together to create this test plan and resuts.
2017-09-23
Technical Paper
2017-01-2011
Suyash Singh, Ankur Mathur, Sandeep Das, Purnendu Sinha, Vinay Singh
In the Smart Cities, main objective is to promote cities that provide core infrastructure and give a decent quality of life to its citizens, a clean and sustainable environment and application of ‘Smart’ Solutions. The process said for utilization of available resources is the best fit for our concept. Our Concept is to convert and refurbish the old and scrap vehicles which will also increase their longevity and can be used in any smart city in India or abroad. The ultimate aim to provide this technology for the development of any new smart city in India is the utilization of available resources and reduction in the junk materials and environmental pollution. Refurbishing the old and scrap vehicles with replacement of IC engines doesn’t mean that they will be kept as a scrap and be thrown away, our idea is to utilize maximum of all the available resources. The IC engines taken out of these vehicles will be re-used appropriately.
2017-09-23
Technical Paper
2017-01-2009
Kuiyuan Guo, Yan Yan, Juan Shi, Runqing Guo, Yuguang Liu
In order to speed up the development of vehicle active safety technology in China, C-NCAP plans to add AEB and AEB VRU system as assessment items in 2018. With the purpose of studying the assessment protocol of AEB system, we have carried out 400,000 km road information collection and then we acquired the statistics of the operation conditions of dangerous situations.
2017-09-17
Technical Paper
2017-01-2498
David B. Antanaitis, E Lloyd
This paper describes the development work that went into the creation of the J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications of it. The J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command).
2017-09-04
Technical Paper
2017-24-0135
Shuxia Miao, Lin Luo, Yan Liu, Zhangsong Zhan
New emissions regulations of light-duty vehicles (China 6) will be implemented in China from July 1, 2020. This standard includes two stages, China 6a and China 6b, in which the PM limits of 4.5 mg/km and 3.0 mg/km are introduced respectively, the PN limit is set to be 6×10e11 #/km for both stages. The WLTC testing cycle will be implemented in China 6 regulation as well. In this study a light-duty vehicle satisfying China 6(b) emission standards was developed by improving the engine raw emissions, optimizing the calibration and adding a coated GPF to the after-treatment system. The impacts of ash content and consumption of engine oil and the fast ash accumulation to vehicle emissions and backpressure were analyzed through dynamometer testing. The vehicle after-treatment system was then designed and developed to meet China 6(b) emission standards. The characteristics of soot accumulated through mimicking routine driving under cold environments were tested.
2017-09-04
Journal Article
2017-24-0147
Marco Chiodi, Andreas Kaechele, Michael Bargende, Donatus Wichelhaus, Christian Poetsch
In the competition for the powertrain of the future the internal combustion engine faces tough challenges. Reduced environmental impact, higher mileage, low cost and new technologies are required to maintain its global position in public and private mobility. For decades researchers have been investigating the Homogeneous Charge Compression Ignition (HCCI) promising higher efficiency due to the rapid combustion and therefore low exhaust gas temperatures. Consequently there is no need for a rich mixture to cool the turbocharger under high load. As the combustion does not have a distinguished flame front it is able to burn very lean mixtures, reducing HC and CO emissions. However, until recently, HCCI was considered to be only applicable as a part load process. The 3D engine development tool QuickSim which has been developed at the FKFS in Stuttgart is able to simulate the entire flow path of the engine, including conventional and HCCI combustion.
2017-09-04
Journal Article
2017-24-0152
Mirko Baratta, Daniela Misul, Jiajie Xu, Alois Fuerhapter, Rene Heindl, Cesare Peletto, Jean Preuhs, Patrick Salemi
The present paper is the outcome of the research activity carried out by Centro Ricerche Fiat, Politecnico di Torino, Delphi and AVL within the Gason research project of the EC (H2020 program). The overall goal of the research project is to develop CNG-only SI engines which are able to comply with post-EuroVI emission regulations and 2020+ CO2 emission targets, with reference to the new homologation cycle and real driving conditions. The work presented in this paper aimed at developing a small displacement turbocharged engine, which combines the advanced VVA MultiAir system for the air metering with the direct injection of natural gas. The activity focused on the development and fluid-dynamic characterization of the gaseous-fuel injector. Moreover, the combined use of CFD analysis and optical-access PLIF experimental techniques allowed the design of the combustion chamber to be optimized from the mixture formation point of view.
2017-09-04
Journal Article
2017-24-0151
Matteo De Cesare, Nicolo Cavina, Luigi Paiano
New gasoline engine design is highly influenced by CO2 and emission limits defined by legislations, the demand for real-conditions fuel economy, higher torque, higher specific power and lower costs. Downsizing concepts, including turbocharging in combination with direct injection, have contributed significantly to the recent improvement of gasoline engines. However, other technologies are under evaluation to allow further steps of enhancement for the even more challenging requirements. The main issues of gasoline engines in terms of efficiency and performance are knocking, part-load losses, and thermal stress at high power conditions. This work presents a comparison at concept level between the main technologies that are currently being developed, considering not only the technical benefits, but also their cost-effectiveness.
2017-09-04
Journal Article
2017-24-0159
Davide Di Battista, Marco Di Bartolomeo, Carlo Villante, Roberto Cipollone
Internal combustion engines is actually one of the most important source of pollutants and greenhouse gases emissions. In particular, on-the-road transportation sector has taken this environmental challenge and worldwide governments set up regulations in order to limit the emissions and fuel consumption from vehicles. Among the several technologies under development, an ORC unit bottomed exhaust gas seems to be very promising, but it still has several complications when it is applied on board of a vehicle (weight, encumbrances, backpressure effect on the engine, safety, reliability). In this paper, a comprehensive mathematical model of an ORC unit bottomed a heavy duty engine, used for commercial vehicle, has been developed. The model is completed with the sizing of the two exchangers involved in the ORC plant: the heat recovery vapor generator (HRVG) and the condenser.
2017-09-04
Technical Paper
2017-24-0174
Laura Tribioli, Paolo Iora, Raffaello Cozzolino, Daniele Chiappini
Road transportation is proved to be one of the main contributor to pollutant and global greenhouse gas emissions. This, together with the rising of fuel price, is striving the automotive sector research towards innovative solutions. Promising solutions fuel cell vehicles, which generally make use of polymer electrolyte membrane fuel cells with the possibility of further reducing pollutant emissions, giving a satisfactory range without the need of an internal combustion engine. Nonetheless, even being a relatively mature technology, there are still some disadvantages related to the use of fuel cells for vehicles, such as high costs, low power density, and lack of hydrogen infrastructures. The latter issue could be solved by using an on-board fuel processor for hydrogen production.
2017-09-04
Technical Paper
2017-24-0120
Matthew Keenan
Abstract The earliest public domain reference regarding full engine testing of an automotive catalyst was from January 1959, written by GM and presented at the annual SAE meeting in Detroit. This current publication will review the first public domain paper referencing different aftertreatment technologies (such as TWC, LNT, DPF and SCR, but not limited to these technologies) and compare the technologies to the current state of the art in aftertreatment technology. This historical review using a range of databases, will show how exhaust aftertreatment technologies have significantly enhanced emissions control over the last 60 years for both gasoline and diesel applications. A timeline will be given showing when various technologies were first presented into the public domain. This will indicate how long it has taken certain emissions control technologies to enter the market.
2017-09-04
Technical Paper
2017-24-0044
Jeremy Rochussen, Jeff Son, Jeff Yeo, Mahdiar Khosravi, Patrick Kirchen, Gordon McTaggart-Cowan
Abstract Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared absorption, and 2-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The purpose of this research-oriented cylinder head is to improve the connection between thermodynamic and optical engine studies for a wide variety of combustion strategies by facilitating the application of multiple in-cylinder diagnostics.
2017-07-10
Technical Paper
2017-28-1930
Anil Kumar Jaswal, Pradeep Chandrasekaran, Surendran Ramadoss
Abstract Indian Automobile Industry has started using Six Sigma for Vehicle Design and process improvement to compete with Global competition. This Paper describes how the Tools of Six Sigma shall be used as an Effective Tool for both redefining the Design and the Process Improvement. This Paper talks on the evolution of DMADV approach in Indian Automobile Industry compared to the related Trends in Other Manufacturing Sectors. The Author describes how the warranty failures in Commercial Segment Vehicle Category which was the selling talk for the Competition was addressed in Leading Indian Automobile OEM. As this Failure was adversely impacting customer satisfaction and no solution seemed forthcoming, top Management indicated to use a radically different approach to solve the problem within a years’ time.
2017-07-10
Technical Paper
2017-28-1933
Alberto Boretti
Abstract The paper captures the recent events in relation with the Volkswagen (VW) Emissions Scandal and addresses the impact of this event on the future of power train development. The paper analyses the impact on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based technology. The operation of the United States Environmental Protection Agency (EPA), VW and the United States prosecutor, sparked by the action of the International Council on Clean Transportation (ICCT) is forcing the Original Equipment Manufacturers (OEM) towards everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) technology, and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
2017-07-10
Technical Paper
2017-28-1959
Abhishek Taluja, Simson T. Wilson, Santosh Lalasure, K. Rajakumar
The Ride Comfort has always been an important attribute of a vehicle that gets trade-off with handling characteristics of a vehicle. However, to cater the growing customer requirements for better ride comfort in a vehicle without compromising on other attributes, evaluating and achieving optimal ride comfort has become a significant process in the vehicle development. In the current engineering capability and virtual engineering simulations, creating an accurate and real time model to predict ride comfort of a vehicle is a challenging task. The qualitative evaluation of ride attributes has always been the proven conventional method to finalize the requirements of a vehicle. However, quantitative evaluation of vehicle ride characteristics benefits in terms of target setting during vehicle development process and in robust validation of the final intended product against its specifications.
2017-06-05
Technical Paper
2017-01-1753
Jack Hall Riddle, Ya-Juan Bemman, Tom Frei, Sihui Wu, Ishang Padalkar
Abstract Demands for engines to operate at low-frequency firing order are increasing in the automotive market. This requirement is driven by consumer and regulatory demand for vehicles which are more efficient in the use of fuel. As a result, engine and transmission technologies have been developed which permit operation of engines with fewer cylinders at increasingly low RPM’s. The resulting low frequency exhaust noise is more difficult to attenuate than in vehicles in years past. At the same time, vehicles often have less packaging space for mufflers, when larger volume would otherwise be needed to attenuate at lower frequencies. A further challenge is the demand for increasingly refined performance sounds from the exhaust systems of premium cars despite the technical obstacles involved in even maintaining sound quality. Finally, legally permissible sound levels are decreasing in some markets. These market and regulatory demands require new solutions.
2017-06-05
Technical Paper
2017-01-1869
Glenn Pietila, Gang Yin, Branton Dennis IV
Abstract During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
2017-06-05
Journal Article
2017-01-1777
Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
Abstract The automotive industry continues to develop new technologies aimed at reducing overall vehicle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of technologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital towards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is imperative that these NVH challenges be understood and solved.
2017-05-18
Journal Article
2017-01-9680
Husain Kanchwala, Pablo Luque Rodriguez, Daniel Alvarez Mantaras, Johan Wideberg, Sagar Bendre
Abstract In recent times, electric vehicles (EV) are gaining a lot of attention as they run clean and are environment friendly. Recent advances in the applications of integrating control systems in automotive vehicles have made it practicable to accomplish improvement in vehicle's longitudinal and lateral dynamics. This paper deals with a brief overview of current state of art vehicle technologies like direct yaw moment control, traction control and side slip control of EV. There are various controller algorithms available in literature with different torque vectoring strategies. As EV can be precisely controlled because of quick in hub wheel motor response times, therefore various torque vectoring strategies can be comfortably used for enhancing vehicle dynamics. Moreover, by using four independent in-wheel motors, several types of motion controls can be performed.
2017-05-10
Technical Paper
2017-01-1926
Tobias Winter, Simon Thierfelder
Hatz is a medium sized engine manufacturer with a production volume of currently ~58000 engines per year and a rather diversified product portfolio. To be cost and time efficient in new and further developments of our engines a deep system knowledge is indispensable. In order to achieve this we use a strongly simulation based developing approach in combination with component and specially suited engine testing. This combines to a state-of-the art R&D process which helps us to overcome an increasingly cost challenging competition.
2017-04-11
Journal Article
2017-01-9076
Ioannis Karakitsios, Evangelos Karfopoulos, Nikolay Madjarov, Aitor Bustillo, Marc Ponsar, Dionisio Del Pozo, Luca Marengo
Abstract The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
2017-03-28
Technical Paper
2017-01-1701
Sagar Mody, Thomas Steffen
Abstract The goal of grid friendly charging is to avoid putting additional load on the electricity grid when it is heavily loaded already, and to reduce the cost of charging to the consumer. In a smart metering system, Day Ahead tariff (DA) prices are announced in advance for the next day. This information can be used for a simple optimization control, to select to charge at cheapest times. However, the balance of supply and demand is not fully known in advance and the Real-Time Prices (RTP) are therefore likely to be different at times. There is always a risk of a sudden price change, hence adding a stochastic element to the optimization in turn requiring dynamic control to achieve optimal time selection. A stochastic dynamic program (SDP) controller which takes this problem into account has been made and proven by simulation in a previous paper.
2017-03-28
Technical Paper
2017-01-1732
Payodh Dwivedi
Abstract The conventional hybrid engine faces one major problem i.e. high cost of production. Although hybrid engines, in many sense proved to be highly efficient and environmental friendly, but high cost of production makes them less feasible and limits their applications. This problem is overcome by a new design in which instead of having Internal Combustion(IC) engine and electric motor separately, these two are incorporated under same housing. This involves a different working mechanism of electric motor which is as described below- This mechanism is applied to a normal engine which has two or more than two cylinders in any configuration or orientation. Taking example of In-line four cylinder engines as it is most widely used. In this the two cylinders work on conventional internal combustion mechanism, but the other two cylinders are electric cylinder and works on electricity.
2017-03-28
Technical Paper
2017-01-1531
Keiichi Taniguchi, Akiyoshi Shibata, Mikako Murakami, Munehiko Oshima
Abstract This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
2017-03-28
Technical Paper
2017-01-1383
Satheesh Kumar Chandran, James Forbes, Carrie Bittick, Kathleen Allanson, Fnu Brinda
Abstract There is a strong business case for automotive interfaces to undergo usability testing throughout their product development lifecycle. System Usability Scale (SUS) is a simple and standard measure of usability. To meet the timing needs for product development, usability testing needs to be performed in a quick, cost effective manner. Hence the required sample size of participants for a usability study is one of the critical factors. To determine an acceptable sample size, a Monte Carlo simulation using SUS scores from eleven different in-vehicle automotive interface usability studies was used to create 500,000 subsamples of different sample sizes. The percentage of subsamples with mean scores within the confidence interval of the population mean was calculated. At a subsample size of thirty-five, 95% of the subsamples have a mean SUS score within the 95% confidence interval of the population mean.
2017-03-28
Technical Paper
2017-01-0650
Xinyu Li, Xinyu Ge, Ying Wang
Abstract The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
2017-03-28
Technical Paper
2017-01-0326
Samuel J. Tomlinson, Martin J D Fisher, Thomas Smith, Kevin Pascal
Abstract When sealing an application with a radial O-ring system design there is a balance that must be struck between O-ring function and the ease of assembly. If design parameters are not properly controlled or considered it is possible to design an O-ring seal that would require assembly insertion forces that exceed acceptable ergonomic practices from a manufacturing standpoint. If designs are released into production with these high insertion forces manufacturing operators will struggle to assemble parts, creating opportunity for potential operator injury due to repetitive strain or CTD. In this study several variables impacting O-ring system insertion forces were tested to quantify the effects. Results were analyzed to identify design controls that could be implemented from an early design phase to optimize both functionality and ease of assembly.
2017-03-28
Technical Paper
2017-01-0348
Mani Shankar, I V N Sri Harsha, K V Sunil, Ramsai Ramachandran
Abstract In an automobile, road loads due to tire-road interaction are transferred to vehicle body through suspension. This makes suspension a critical component from the body durability perspective. During vehicle design and development, optimization of suspension parameters to suit ride and handling performance is a continuous and iterative process. These changes on suspension can affect vehicle body durability performance. This paper tries to establish a process to evaluate the effect of changes in suspension parameters on body durability, thus helping in understanding the impact of these changes. The process starts with virtual model building in Multi Body Dynamics software. The base line model is correlated with testing using fatigue at some critical locations on Body in White (BIW).
2017-03-28
Technical Paper
2017-01-0064
Agish George, Jody Nelson
Abstract The ISO 26262 standard for functional safety was first released in 2011 and has been widely incorporated by most OEMs and Tier1 suppliers. The design and conformance of the product to functional safety standards is strongly intertwined with the product development cycle and needs to be carefully managed. The consideration for functional safety needs to begin right from the product’s concept phase through engineering and production and finally decommissioning. The application of the standard in a project can bring significant challenges especially to managers who are relatively new to the standard. This paper provides some guidelines on the key tasks involved in managing ISO26262 in projects and some ways to approach them. The paper is expected to help managers manage ISO26262 compliant projects. The paper also tries to come up with a metric that can be used for resource estimation for implementing ISO26262 in projects.
Viewing 1 to 30 of 6263