Criteria

Display:

Results

Viewing 241 to 270 of 10348
2016-04-05
Journal Article
2016-01-0337
Ana M. Djuric, R.J. Urbanic, J.L. Rickli
Abstract Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
2016-04-05
Journal Article
2016-01-0344
Mohamed El-Sayed
Abstract Success in lean product realization depends on the ability to specify value from the voice of the customer at the beginning of the process. Value streaming, is therefore essential for assuring that the specified value is being pursued and achieved throughout the process. During lean implementation, however, it is usually assumed that nothing but value will be streamed if wastes are eliminated using value stream mapping. While waste elimination is necessary to make the process leaner and facilitate value streaming it is not sufficient for assuring that specified value is being streamed without structured and formalized participation of customers. With current structure of product realization processes, the voice of the customer is provided during the planning phase at the beginning of the process and customer satisfaction feedback is provided after product launch.
2016-04-05
Technical Paper
2016-01-0341
Jan-Friedrich Brand, Patrick Garcia, Laxman Nalage, Pradip Ithape
Abstract Several factors influence a company working culture including its industry, its geographical region, as well as the cultural and the educational background of its employees. Despite these, Japanese companies have successfully transferred a company’s working culture from Japan to other countries [2], so that only minor regional differences in productivity remain. Such transfer is possible with a strong process oriented mind set and working style. This paper examines the change in a working culture associated with the prototyping of exhaust systems in India. That change required a shift from a reactive “firefighting” mode of working to a structured, projectable and reliable working environment. The goal was to achieve increased in-time delivery, higher quality, greater flexibility, more innovation and reduced cost. The same process approach may be transferred from India to other parts of the world, while allowing for country-specific influences on a company’s working culture.
2016-04-05
Technical Paper
2016-01-0321
Manjil Kale, Rajat Diwan, Fnu Renganathan Dinesh, Mark Benton, Prasanth Muralidharan, Paul Venhovens, Johnell Brooks, ChunKai Liu, Julie Jacobs, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to explain the interior concept that offers a flexible interior utility/activity space for Generation Z (Gen Z) users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish technical specifications, which formed the foundation of the Unique Selling Points (USPs) of the concept.
2016-04-05
Technical Paper
2016-01-0318
Lev Klyatis
Abstract This paper will discuss the problem of improving engineering culture for development reliability, quality, and testing of the automotive industry product. The basic approach relates to other industries too. The paper will consider why it is so important for engineers and managers, and how it relates to Systems Engineering, which simply stated is , a system which is an integrated composite of people, products, and processes that provides a capability to satisfy a stated need or objective. One of the basic problems of management is strategic thinking. Predicting is inaccurate when it is based on information obtained from using traditional approaches of accelerated life testing (ALT) data where the degradation (failure) processes differ substantially from the product’s degradation processes during service life under real world conditions.
2016-04-05
Technical Paper
2016-01-0320
Tejas Janardan Sarang, Mandar Tendolkar, Sivakumar Balakrishnan, Gurudatta Purandare
Abstract In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
2016-04-05
Technical Paper
2016-01-0051
Hongyu Zheng, Mingxin Zhao
Abstract Electric power steering (EPS), active front wheel steering (AFS) and steer by wire systems (SBW) can enhance the handling stability and safety of the vehicle, even in dangerous working conditions. Now, the development of the electric control steering system (ECS) is mainly based on the way that combines the test of the electric steering hardware-in-loop (HIL) test bench with real vehicle tests. However, the real vehicle tests with higher cost, long cycle and vulnerable to space weather have the potential safety problems at early development. On contrast, electronic control steering HIL test bench can replace real vehicle tests under various working conditions and make previous preparations for real vehicle road tests, so as to reduce the number of real vehicle test, shorten the development cycle, lower development costs, which has gradually become the important link of research and development of electronic steering system.
2016-04-05
Technical Paper
2016-01-0053
Abhishek Sharma
Abstract Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
2016-04-05
Technical Paper
2016-01-0052
Jihas Khan
Abstract HILS is a proven and essential part of the embedded product development life cycle which strives to reduce effort, time and cost spent on automotive validation activities. An efficient HILS system allows to create a precise simulation environment for the ECU which is made to believe that it is sitting inside a real vehicle and there by the intended functionalities implemented in the same could be tested even before the vehicle prototypes or other ECUs or sensors and actuators are available. An inefficient and faulty HILS system provides erroneous test results which could lead to wrong inferences. This paper is proposing a standardized process flow aided by specific documentation and design concepts which validates that the test system designed is robust and caters to the actual requirement. The Design stage starts by a requirement gathering phase where the analysis of the device under test is executed in detail.
2016-04-05
Technical Paper
2016-01-0073
Peter Subke, Muzafar Moshref
Abstract Passenger cars are equipped with an OBD connector according to SAE J1962 / ISO 15031-3. Passenger cars that support ISO UDS on DoIP use the same connector with Ethernet pins according to ISO/DIS 13400-4 (Ethernet diagnostic connector). If external test equipment is connected to the Ethernet diagnostic connector via a 100BASE-TX cable with the RJ45 connector at the tester, a VCI is not necessary anymore. With a device that fits the Ethernet diagnostic connector physically and acts as a converter between the Ethernet signals and WLAN, external test equipment that supports wireless communication, can be connected to the vehicle. Examples for such wireless external test equipment include Android/iOS- based smart phones and tablets with purpose-made applications (APPs). The software components of external test equipment are standardized in ISO 22900 (MVCI). The MVCI D-Server processes data in ODX (ISO 22901) and sequences in OTX (ISO 13209).
2016-04-05
Technical Paper
2016-01-1093
Takao Ohki, Tomoyasu Wada, Tomoyuki Kano, Tomoyoshi Ishimaru, Hideya Osawa
Abstract In recent years, awareness of environmental problems has increased on a global scale, and the development of low fuel consumption technologies has become more and more important in commercial vehicles, as it has been in passenger vehicles. A new 6-speed manual transmission was developed with direct-drive double-overdrive to contribute to the fuel economy performance and engine power of commercial vehicles through gear ratio optimization.
2016-04-05
Technical Paper
2016-01-1097
Satoshi Fukuyama, Tomohide Suzuki, Akira Murata, Hiroshi Mizoguchi, Toshihiko Kamiya
Abstract Aisin AW (AW) and Toyota Motor Corporation (TMC) have developed a new RWD 6 speed automatic transmission, AWR6B45(AC60), suitable for SUV’s and LDT’s in the worldwide market, not only for North America but also for other countries including emerging nations. This 6 speed automatic transmission has achieved low cost, equivalent to AW and TMCs’ current 5 speed automatic transmission, while realizing improvement in both fuel economy and driving performance against current in-house 5-speed automatic transmissions, in addition to satisfying both toughness against various usage and light weight/compactness. They are accomplished by using a compact gear train structure, the latest efficiency improvement technologies, and a high-response, compact hydraulic control system. In addition, the compactness of this 6 speed automatic transmission enables it to replace current 4 speed and 5 speed automatic transmissions for various engine applications.
2016-04-05
Journal Article
2016-01-1083
Kenji Sato, Takeru Hamakawa, Takeyuki Yamasaki, Yoshimichi Ishihara, Hisashi Hashimoto, Chao Shi, Hiroaki Haneda, Shinichi Takahashi, Yoshiyuki Iida
Abstract The independent bearing cap is a cylinder block bearing structure that has high mass reduction effects. In general, this structure has low fastening stiffness compared to the rudder block structure. Furthermore, when using combination of different materials small sliding occurs at the mating surface, and fretting fatigue sometimes occurs at lower area than the material strength limit. Fretting fatigue was previously predicted using CAE, but there were issues with establishing a correlation with the actual engine under complex conditions, and the judgment criteria were not clear, so accurate prediction was a challenge. This paper reports on a new CAE-based prediction method to predict the fretting damage occurring on the bearing cap mating surface in an aluminum material cylinder block. First of all, condition a fretting fatigue test was performed with test pieces, and identification of CAE was performed for the strain and sliding amount.
2016-04-05
Technical Paper
2016-01-1112
Byeong Wook Jeon, Sang-Hwan Kim, Donghoon Jeong, Joseph Young-il Chang
Abstract In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
2016-04-05
Technical Paper
2016-01-1257
Sam Yacinthe, Arjun Khanna, Jason Ward, M.J. Yatsko, Shawn Midlam-Mohler
The design of a performance hybrid electric vehicle includes a wide range of architecture possibilities. A large part of the design process is identifying reasonable vehicle architectures and vehicle performance capabilities. The Ohio State University EcoCAR 3 team designed a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed with a 44-mile all-electric range. It also features an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak electric machine. This report details the design and modeling process followed by the Ohio State team during Year 1 of the competition. The process included researching the customer needs of the vehicle, determining team design goals, initial modeling, and selecting a vehicle architecture.
2016-04-05
Technical Paper
2016-01-1255
David Mackanic, Eduardo D. Marquez, James Dennington, Jacob McClean, Kaitlyn Wheeler, Douglas Nelson
Abstract The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is currently going through several modeling and testing stages to develop models that represent the P3 PHEV powertrain the team is building as part the EcoCAR 3 competition. The model development process consists of several major steps. First, Model-in-the-Loop (MIL) testing is conducted to validate a conventional vehicle model, down-select a desired powertrain configuration, and generate initial vehicle technical specifications. HEVT is pursuing a performance powertrain that balances high performance with minimal energy consumption. Initial MIL modeling results yield an IVM-60 mph time of 4.9 seconds and an overall UF-weighted 4-cycle energy consumption of 560 Wh/km. MIL modeling provides an initial reference to compare subsequent vehicle modeling.
2016-04-05
Technical Paper
2016-01-1256
Miriam Di Russo, Zhuoran Zhang, Hao Wu, Kathryn della Porta, Jerry C. Ku
Abstract This paper details the first year of modeling and simulation, and powertrain control development for the Wayne State University EcoCAR 3 vehicle. Included in this paper are the processes for developing simulation platforms, plant models and electronic control units to support the supervisory control system development. The EcoCAR 3 competition challenges sixteen North American universities to re-engineer the 2016 Chevrolet Camaro to reduce its environmental impact without compromising its performance and consumer acceptability. The team is in the final stages of competition Year One, which, as the “non-vehicle year,” focuses on the preliminary design, simulation, and hybrid modes selection for the team’s selected vehicle architecture.
2016-04-05
Technical Paper
2016-01-1253
Patrick Ellsworth, Roydon Fraser, Michael Fowler, Daniel VanLanen, Ben Gaffney, Caixia Wang, Trong Shen, Wenhao Wu, Paul McInnis
Abstract The drive to improve and optimize hybrid vehicle performance is increasing with the growth of the market. With this market growth, the automotive industry has recognized a need to train and educate the next generation of engineers in hybrid vehicle design. The University of Waterloo Alternative Fuels Team (UWAFT), as part of the EcoCAR 3 competition, has developed a control strategy for a novel parallel-split hybrid architecture. This architecture features an engine, transmission and two electric motors; one pre-transmission motor and one post-transmission motor. The control strategy operates these powertrain components in a series, parallel, and all electric power flow, switching between these strategies to optimize the energy efficiency of the vehicle. Control strategies for these three power flows are compared through optimization of efficiencies within the powertrain.
2016-04-05
Technical Paper
2016-01-1254
Eric Jambor, Thomas Bradley
Abstract EcoCAR 3 is a university based competition with the goal of hybridizing a 2016 Chevrolet Camaro to increase fuel economy, decrease environmental impact, and maintain user acceptability. To achieve this goal, university teams across North America must design, test, and implement automotive systems. The Colorado State University (CSU) team has designed a parallel pretransmission plug in hybrid electric design. This design will add torque from the engine and motor onto a single shaft to drive the vehicle. Since both the torque generating devices are pre-transmission the torque will be multiplied by both the transmission and final drive. To handle the large amount of torque generated by the entire powertrain system the vehicle's rear half-shafts require a more robust design. Taking advantage of this, the CSU team has decided to pursue the use of composites to increase the shaft's robustness while decreasing component weight.
2016-04-05
Technical Paper
2016-01-1248
Brian Magnuson, Michael Ryan Mallory, Brian Fabien, Ajay Gowda
Abstract This study investigates using driver prediction to anticipate energy usage over a 160-meter look-ahead distance for a series, plug-in, hybrid-electric vehicle to improve conventional thermostatic powertrain control. Driver prediction algorithms utilize a hidden Markov model to predict route and a regression tree to predict speed over the route. Anticipated energy consumption is calculated by integrating force vectors over the look-ahead distance using the predicted incline slope and vehicle speed. Thermostatic powertrain control is improved by supplementing energy produced by the series generator with regenerative braking during events where anticipated energy consumption is negative, typically associated with declines or decelerations.
2016-04-05
Technical Paper
2016-01-1245
Jonathan D. Cox, Michael Leamy
Abstract The Georgia Tech EcoCAR 3 team’s selection of a parallel hybrid electric vehicle (HEV) architecture for the EcoCAR 3 competition is presented in detail, with a focus on the team’s modeling and simulation efforts and how they informed the team’s architecture selection and subsequent component decisions. EcoCAR 3, sponsored by the United States Department of Energy and General Motors, is the latest in a series of Advanced Vehicle Technology Competitions (AVTCs) and features 16 universities from the United States and Canada competing to transform the 2016 Chevrolet Camaro into a hybrid electric American performance vehicle. Team vehicles will be scored on performance, emissions, fuel economy, consumer acceptability, and more over the course of the four-year competition. During the first year, the Georgia Tech team considered numerous component combinations and HEV architectures, including series RWD and AWD, parallel, and power-split.
2016-04-05
Technical Paper
2016-01-1247
Kevin L. Snyder, Jerry Ku
Abstract The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
2016-04-05
Technical Paper
2016-01-1285
Xiang Cheng, Han Hao, Zongwei Liu, Fuquan Zhao
Abstract Compared with conventional vehicles, electric vehicles (EVs) offer the benefits of replacing petroleum consumption and reducing air pollutions. However, there have been controversies over greenhouse gas (GHG) emissions of EVs from the life-cycle perspective in China’s coal-dominated power generation context. Besides, it is in doubt whether the cost-effectiveness of EVs in China exceeds other fuel-efficient vehicles considering the high prices. In this study, we compared the life-cycle GHG emissions of existing vehicle models in the market. Afterwards, a cost model is established to compare the total costs of vehicles. Finally, the cost-effectiveness of different vehicle types are compared. It is concluded that the GHG emission intensity of EVs is lower than reference and hybrid vehicles currently and is expected to decrease with the improvement of the power grid.
2016-04-05
Technical Paper
2016-01-1333
Edward C. Fontana
Abstract Individuals in the United States consume twice as much energy as those in any other region. Solitary workday commutes in light vehicles are the leading reason for this difference. An electric vehicle design is proposed to help catalyze more social, higher occupancy, commuting habits - through application of existing technology. Performance criteria are: 1) attract passengers to the suburban front yard at 6:30 AM, 2) match market leading crash test performance, cargo capability, and sense of freedom, and 3) deliver easier parking, better acoustics and better passenger mile efficiency. A vehicle as a rolling event venue determines a large windscreen, side-by-side upright seating arrangements, and acoustic excellence -an experience where there are only good seats. These requirements force a decision to close the wake along a vertical line to form a narrow wake. The chassis is platform batteries with dual motor electric rear drive and undetermined front drive.
2016-04-05
Journal Article
2016-01-0693
Daishi Takahashi, Koichi Nakata, Yasushi Yoshihara, Tetsuo Omura
Abstract Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society, and an effective way of accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid vehicles and conventional vehicles in recent years. Cooled EGR has the potential to achieve further lower fuel consumption if the EGR ratio can be increased. Fast combustion is an important and effective way for expanding the EGR ratio. The engine combustion enhancement can be categorized into measures to improve ignition characteristics and methods to promote flame propagation.
2016-04-05
Technical Paper
2016-01-0028
Ali Shahrokni, Peter Gergely, Jan Söderberg, Patrizio Pelliccione
Abstract In areas such as Active Safety, new technologies, designs (e.g. AUTOSAR) and methods are introduced at a rapid pace. To address the new demands, and also requirements on Functional Safety imposed by ISO 26262, the support for engineering methods, including tools and data management, needs to evolve as well. Generic and file-based data management tools, like spreadsheet tools, are popular in the industry due to their flexibility and legacy in the industry but provide poor control and traceability, while rigid and special-purpose tools provide structure and control of data but with limited evolvability. As organizations become agile, the need for flexible data management increases. Since products become more complex and developed in larger and distributed teams, the need for more unified, controlled, and consistent data increases.
2016-04-05
Technical Paper
2016-01-0016
Jörg Schäuffele
Abstract The functions provided by the E/E system of modern vehicles can be assigned to the classical domains of powertrain, chassis, body and multimedia. Upcoming functions are forming new domains for advanced driver assistance and cloud integration. Therefore networking of functions is not limited to the vehicle but includes also the cloud. These trends imply major changes like the introduction of Ethernet as onboard networking technology or increasing safety and security needs. To design the best E/E architecture three groups of optimization targets are most relevant: Global vehicle targets, E/E targets derived from the implemented vehicle functions and product line targets for an E/E architecture. The PREEvision approach for E/E architecture design and optimization is a model based approach - inspired by the relevant and widely accepted automotive standards. Import and export filters allow the easy integration with PREEvision and complementation of existing tool chains.
2016-04-05
Technical Paper
2016-01-0046
Markus Ernst, Mario Hirz, Jurgen Fabian
Abstract A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
2016-04-05
Technical Paper
2016-01-0040
Ming Meng, Wilson Khoo
The modern vehicle development is highly dependent on software. The software development plays an extremely important role in vehicle safety and security. In order to ensure software high quality and safety standards, we have investigated the secure software development process and analyzed the works in this area. Based on our analysis, we have identified the similarities and differences between the secure software development process and the existing vehicle development process. We then made suggestions on how to adopt the secure software development process in the overall vehicle development process.
2016-04-05
Journal Article
2016-01-0032
Siddartha Khastgir, Gunwant Dhadyalla, Paul Jennings
Abstract The introduction of ISO 26262 concepts has brought important changes in the software development process for automotive software. While making the process more robust by introducing various additional methods of verification and validation, there has been a substantial increase in the development time. Thus, test automation and front loading approaches have become important to meet product timelines and quality. This paper proposes automated testing methods using formal analysis tools like Simulink Design Verifier™ (SLDV) for boundary value testing and interface testing to address the demands of ISO 26262 concepts at unit and component level. In addition, the method of automated boundary value testing proposed differs from the traditional methods and the authors offer an argument as to why the traditional boundary value testing is not required at unit (function) level.
Viewing 241 to 270 of 10348