Criteria

Display:

Results

Viewing 241 to 270 of 10339
2016-04-05
Technical Paper
2016-01-0621
James Kapinski, Xiaoqing Jin, Jyotirmoy Deshmukh, Alexandre Donze, Tomoya Yamaguchi, Hisahiro Ito, Tomoyuki Kaga, Shunsuke Kobuna, Sanjit Seshia
Abstract Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
2016-04-05
Technical Paper
2016-01-0173
Jeremy Cuddihy, Steven W. Beyerlein, Theron White, Dan Cordon
Abstract There is insufficient time within a single technical elective to learn principles of internal combustion engine operation as well as specialized simulation tools such as GT Suite or Kiva. A number of authors have recognized this constraint, and they have structured their internal combustion engine text around use of programming languages such as FORTRAN, C++, and MATLAB®. This paper reports on how the capabilities of MATLAB® have been synergized with learning activities and homework assignments to set the stage for a successful final engine simulation project. The MATLAB® code involved in this effort can accept basic input parameters such as bore, stroke, compression ratio, spark advance, throttle position, RPM, air/fuel equivalence ratio, and volumetric efficiency. The code returns output power and torque using the Wiebe function and bulk temperature.
2016-04-05
Technical Paper
2016-01-0175
Edward G. Groff
Abstract Spark-ignition direct-injection technology existed since about 1930 for the primary purpose to give multifuel capability over what the compression-ignited diesel engine could provide. In subsequent decades development of multifuel engines continued both as higher-compression-ratio “spark-ignited diesel” and moderate-compressionratio stratified-charge engines. Global events in the 1960-1970’s, namely the oil embargo, oil-supply crises, and the passage of the U.S. Clean Air Act intensified interest in such engines. The military and large commercial fleet operators were particularly focused on efficiency and multifuel capability over concerns for fuel supplies. Automobile manufacturers were focused on gasoline-fueled efficiency and the potential to reduce engine-out legislated NOx emissions with the stratified-charged combustion systems.
2016-04-05
Technical Paper
2016-01-0174
Jun Ni, Jibin Hu, Xueyuan Li, Bin Xu, Junjie Zhou
Abstract In order to discuss the limit handling performance of a FSAE race car, a method to generate the G-G diagram was proposed based on phase plane concept. The simulated G-G diagram was validated by experiments with an electric FSAE race car. In section 1, a nonlinear 7 DOFs dynamic model of a certain electric FSAE race car was built. The tire mechanical properties were described by Magic Formula, and the tire test data was provided by FSAE TTC. In section 2, firstly the steady-state yaw rate response was discussed in different vehicle speed and lateral acceleration based on the simulations. Then the method to generate the G-G diagram based on phase plane concept was proposed, and the simulated G-G diagram of a certain FSAE race car was obtained. In section 3, the testbed FSAE race car was described, including the important apparatuses used in the experiments. Based on the race track experiment, the G-G diagram of the race car was obtained.
2016-04-05
Technical Paper
2016-01-0171
Xunzhe Zhang, Richard Stobart, Ran Bao
Abstract China is the world’s largest automotive producer and has the world’s biggest automobile market. However, in the past decades, the development of China’s automotive industry has depended primarily on the foreign direct investment; domestic automakers have struggled in the lower ranks of car producers. In recent years, China’s automotive industry, supported by government policies, has been improving their Research and Development (R&D) capacity, to compete with their international peers. Against this background, China’s automotive industry requires a large number of R&D professionals who have not only a higher degree but also the applied and practical knowledge and skills of research. For the purpose of meeting the industry’s needs, a new Professional Automotive Engineering Masters Programme was launched in 2009, which aims to deliver the Masters to be the R&D professionals in the future.
2016-04-05
Technical Paper
2016-01-0177
Edward G. Groff
During the late 1980’s and early 1990’s the two-stroke-cycle engine was an extremely popular and highly publicized automotive powertrain technology globally. Active development programs existed at many OEMs during that period, including GM, where the author was involved, and production seemed eminent. Autoweek stated on the cover of its March 12, 1990 issue, “Revolution for the millennium or Wankel of the ‘90s?” This paper covers the new technologies that led to the generation of so much excitement in the industry and press, the advantages and disadvantages of the engine concept, R&D tools developed at that time that are still in use today, and various engine concepts pursued in the industry. The story is not only interesting from engineering and technology perspectives but illustrates how innovations in certain subsystems become enablers to revive a system technology by eliminating issues that prevented it from making it to production in the past.
2016-04-05
Technical Paper
2016-01-0176
Joseph M. Colucci
Abstract This paper summarizes the history and most significant accomplishments of the GMR-GMR&D Fuels and Lubricants Department from its predecessor organization starting about 100 years ago to its demise during a reorganization in the late 1990s. It covers: Combustion research to improve engine efficiency and reduce emissions, Development of chemical, bench, engine, and vehicle tests to improve fuel and lubricant quality, Development of technology to reduce vehicle emissions, Research to understand and reduce air pollution, and Evaluation of alternative fuels and lubricants. In total, the above activities helped not only GM and the worldwide auto industry, but also society. They improved the operation of vehicles and the quality of the air in the United States and around the globe, favorably affecting the lives of hundreds of millions of people. They also created the recognition of and the reputation of the Fuels and Lubricants Department as the best of its kind in the world.
2016-04-05
Technical Paper
2016-01-0164
Jamy Li, Xuan Zhao, Mu-Jung Cho, Wendy Ju, Bertram F. Malle
Abstract Autonomous vehicles represent a new class of transportation that may be qualitatively different from existing cars. Two online experiments assessed lay perceptions of moral norms and responsibility for traffic accidents involving autonomous vehicles. In Experiment 1, 120 US adults read a narrative describing a traffic incident between a pedestrian and a motorist. In different experimental conditions, the pedestrian, the motorist, or both parties were at fault. Participants assigned less responsibility to a self-driving car that was at fault than to a human driver who was at fault. Participants confronted with a self-driving car at fault allocated greater responsibility to the manufacturer and the government than participants who were confronted with a human driver at fault did.
2016-04-05
Technical Paper
2016-01-0161
Valentin Soloiu, Imani Augusma, Deon Lucien, Mary Thomas, Roccio Alba-Flores
Abstract This study presents the design and development of a vehicle platform with intelligent sensors that has the capabilities to drive independently and cooperatively on roads. An integrated active safety system has been designed to optimize the human senses using ultrasonic infrared sensors and transmitter/receiver modules, to increase the human vision, feel and communication for increased road safety, lower congestion rates, and decrease CO2 emissions. Ultrasonic sensors mounted on the platform, emitted longitudinal 40 kHz waves and received echoes of these sound waves when an object was within its direction. The duration was converted to a distance measurement to detect obstacles as well as using distance measurement threshold values to implement adaptive cruise control. Infrared sensors equipped with an IR LED and a bipolar transistor detected a change in light intensity to identify road lanes.
2016-04-05
Technical Paper
2016-01-0346
Patrick Garcia, Jiri Radous, Artur Krol, Jacek Bosek, Caroline Baeten
During the 4 last years, Lean has been successfully implemented in one of the Tenneco’s Business Units: Ride Performance. This paper reflects on the results and more specifically on the third principle of Lean [1] “How to make flow” and on the fifth principle “To strive for perfection” obtained in the fields of “Product Development” related to Processes, Tools and People. Processes and Hard Tools. How to improve the flow in the engineering processes? It will be shown that In general standardized processes supported by some integrated tools and, more specifically Some workload leveling in testing, CAD Departments, Standardization in design processes, testing procedures and prototypes development processes and Standardization and availability of components and parts for prototype building are key enablers to enhance flow in the Product Development.
2016-04-05
Journal Article
2016-01-0337
Ana M. Djuric, R.J. Urbanic, J.L. Rickli
Abstract Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
2016-04-05
Journal Article
2016-01-0344
Mohamed El-Sayed
Abstract Success in lean product realization depends on the ability to specify value from the voice of the customer at the beginning of the process. Value streaming, is therefore essential for assuring that the specified value is being pursued and achieved throughout the process. During lean implementation, however, it is usually assumed that nothing but value will be streamed if wastes are eliminated using value stream mapping. While waste elimination is necessary to make the process leaner and facilitate value streaming it is not sufficient for assuring that specified value is being streamed without structured and formalized participation of customers. With current structure of product realization processes, the voice of the customer is provided during the planning phase at the beginning of the process and customer satisfaction feedback is provided after product launch.
2016-04-05
Technical Paper
2016-01-0341
Jan-Friedrich Brand, Patrick Garcia, Laxman Nalage, Pradip Ithape
Abstract Several factors influence a company working culture including its industry, its geographical region, as well as the cultural and the educational background of its employees. Despite these, Japanese companies have successfully transferred a company’s working culture from Japan to other countries [2], so that only minor regional differences in productivity remain. Such transfer is possible with a strong process oriented mind set and working style. This paper examines the change in a working culture associated with the prototyping of exhaust systems in India. That change required a shift from a reactive “firefighting” mode of working to a structured, projectable and reliable working environment. The goal was to achieve increased in-time delivery, higher quality, greater flexibility, more innovation and reduced cost. The same process approach may be transferred from India to other parts of the world, while allowing for country-specific influences on a company’s working culture.
2016-04-05
Technical Paper
2016-01-0321
Manjil Kale, Rajat Diwan, Fnu Renganathan Dinesh, Mark Benton, Prasanth Muralidharan, Paul Venhovens, Johnell Brooks, ChunKai Liu, Julie Jacobs, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to explain the interior concept that offers a flexible interior utility/activity space for Generation Z (Gen Z) users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish technical specifications, which formed the foundation of the Unique Selling Points (USPs) of the concept.
2016-04-05
Technical Paper
2016-01-0379
Gilles Robert, Olivier Moulinjeune, Benoit Bidaine
Abstract Short glass fiber reinforced polyamides (SFRPs) are a choice material for automotive industry, especially for in the engine compartment. To develop their application field to more and more complex hydrothermal and mechanical environments, reliable or even predictive simulation technologies are necessary. Integrative simulation takes into account the forming process during final Finite Elements Analysis (FEA). For SFRPs, injection molding is taken into account by computing glass fibers orientation. It is further used to compute a specific anisotropic constitutive model on each integration point of FEA model. A wide variety of models is now available. Integrative simulation using Digimat has been proved very efficient for static and dynamic loadings.
2016-04-05
Technical Paper
2016-01-0318
Lev Klyatis
Abstract This paper will discuss the problem of improving engineering culture for development reliability, quality, and testing of the automotive industry product. The basic approach relates to other industries too. The paper will consider why it is so important for engineers and managers, and how it relates to Systems Engineering, which simply stated is , a system which is an integrated composite of people, products, and processes that provides a capability to satisfy a stated need or objective. One of the basic problems of management is strategic thinking. Predicting is inaccurate when it is based on information obtained from using traditional approaches of accelerated life testing (ALT) data where the degradation (failure) processes differ substantially from the product’s degradation processes during service life under real world conditions.
2016-04-05
Technical Paper
2016-01-0320
Tejas Janardan Sarang, Mandar Tendolkar, Sivakumar Balakrishnan, Gurudatta Purandare
Abstract In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
2016-04-05
Technical Paper
2016-01-0051
Hongyu Zheng, Mingxin Zhao
Abstract Electric power steering (EPS), active front wheel steering (AFS) and steer by wire systems (SBW) can enhance the handling stability and safety of the vehicle, even in dangerous working conditions. Now, the development of the electric control steering system (ECS) is mainly based on the way that combines the test of the electric steering hardware-in-loop (HIL) test bench with real vehicle tests. However, the real vehicle tests with higher cost, long cycle and vulnerable to space weather have the potential safety problems at early development. On contrast, electronic control steering HIL test bench can replace real vehicle tests under various working conditions and make previous preparations for real vehicle road tests, so as to reduce the number of real vehicle test, shorten the development cycle, lower development costs, which has gradually become the important link of research and development of electronic steering system.
2016-04-05
Technical Paper
2016-01-0053
Abhishek Sharma
Abstract Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
2016-04-05
Technical Paper
2016-01-0052
Jihas Khan
Abstract HILS is a proven and essential part of the embedded product development life cycle which strives to reduce effort, time and cost spent on automotive validation activities. An efficient HILS system allows to create a precise simulation environment for the ECU which is made to believe that it is sitting inside a real vehicle and there by the intended functionalities implemented in the same could be tested even before the vehicle prototypes or other ECUs or sensors and actuators are available. An inefficient and faulty HILS system provides erroneous test results which could lead to wrong inferences. This paper is proposing a standardized process flow aided by specific documentation and design concepts which validates that the test system designed is robust and caters to the actual requirement. The Design stage starts by a requirement gathering phase where the analysis of the device under test is executed in detail.
2016-04-05
Journal Article
2016-01-0078
Eric DiBiaso, Bert Bergner, Jens Wuelfing, Robert Wuerker, Carlos Almeida
Abstract Ethernet technology using a single unshielded twisted pair (UTP) is considered to have a promising future in the automotive industry. While 100Mbps transmission speeds can be achieved with standard connector platforms, 1Gbps requires specific design rules in order to ensure error free transmissions. This paper explains the specific challenges for high speed UTP solutions applied in automotive environments. Automotive relevant signal integrity (SI) and electromagnetic compatibility (EMC) connector limitations are also discussed in detail. Through simulations and testing, the connector design criteria and rules necessary for meeting all the electrical and mechanical requirements for such automotive applications are evaluated and shown. This is followed by the introduction of a modular and scalable MATEnet Ethernet connection system utilizing an optimized cable termination technology.
2016-04-05
Technical Paper
2016-01-0073
Peter Subke, Muzafar Moshref
Abstract Passenger cars are equipped with an OBD connector according to SAE J1962 / ISO 15031-3. Passenger cars that support ISO UDS on DoIP use the same connector with Ethernet pins according to ISO/DIS 13400-4 (Ethernet diagnostic connector). If external test equipment is connected to the Ethernet diagnostic connector via a 100BASE-TX cable with the RJ45 connector at the tester, a VCI is not necessary anymore. With a device that fits the Ethernet diagnostic connector physically and acts as a converter between the Ethernet signals and WLAN, external test equipment that supports wireless communication, can be connected to the vehicle. Examples for such wireless external test equipment include Android/iOS- based smart phones and tablets with purpose-made applications (APPs). The software components of external test equipment are standardized in ISO 22900 (MVCI). The MVCI D-Server processes data in ODX (ISO 22901) and sequences in OTX (ISO 13209).
2016-04-05
Technical Paper
2016-01-0007
Gopal Athani, Kapil Dongare, Rajesh Balusu, Subhabrata Gupta, Srinivasa Raju Gavarraju
Abstract Micro Hybrid Systems are essentially first step towards the electrification of the powertrains. They are aimed at improving the fuel efficiency of the conventional gasoline and diesel power trains with conventional 12 V electrical system, and thus reduce the CO2 emissions as well. Various technologies like Engine Stop-Start, Intelligent Alternator Control, and Electrical Energy Management Systems are included in the bracket of micro hybrid systems. These system functions demand a totally different approach for managing the SLI battery, which is a total departure from the conventional approach. Particularly, the Alternator Shutdown function of Intelligent Alternator Control maintains a calibrated average level of State of Charge, which is typically around 80%, to ensure that the battery can accept more current, during the energy recuperation, which indirectly improves fuel economy.
2016-04-05
Journal Article
2016-01-0002
Scott Eisele, Masahiro Yamaura, Nikos Arechiga, Shinichi Shiraishi, Joseph Hite, Jason Scott, Sandeep Neema, Theodore Bapty
Abstract Complex systems, such as modern advanced driver assistance systems (ADAS), consist of many interacting components. The number of options promises considerable flexibility for configuring systems with many cost-performance-value tradeoffs; however the potential unique configurations are exponentially many prohibiting a build-test-fix approach. Instead, engineering analysis tools for rapid design-space navigation and analysis can be applied to find feasible options and evaluate their potential for correct system behavior and performance subject to functional requirements. The OpenMETA toolchain is a component-based, design space creation and analysis tool for rapidly defining and analyzing systems with large variability and cross-domain requirements. The tool supports the creation of compositional, multi-domain components, based on a user-defined ontology, which captures the behavior and structure of components and the allowable interfaces.
2016-04-05
Technical Paper
2016-01-0003
Alberto Taraborrelli, Francesco Braghin
Abstract This paper reports the studies, design and developments of an electronic electro-actuated gearshifter installed on the DP7, which is Politecnico di Milano car that took part at Formula SAE 2015 competitions in Hockenheim and Varano dè Melegari. The original idea was born to replace the hydraulic gearshift system used until 2011 because of its high weight and cost. After many evaluations about the kind of technology to use, made by previous team members in the electronic department, the final project was a fully electric shifter. This system has proven its qualities among which are lightness and low cost.
2016-04-05
Technical Paper
2016-01-0005
Nick Smith
Abstract Model Based Systems Engineering (MBSE) [1, 2] has emerged as a solution to the extreme design challenges caused by automotive Electrical/Electronic (EE) complexity [3]. This paper explores how coherency in early design can be applied across the entire EE design cycle. Starting from a functional abstraction, we introduce a new lightweight solution to evaluate and guide optimized implementations integrating software, networks, devices, and connectivity. The pattern used for this and the data created can be directly driven into downstream, domain-specific design flows delivering vehicle lower costs, better design quality, and faster innovation.
2016-04-05
Technical Paper
2016-01-1093
Takao Ohki, Tomoyasu Wada, Tomoyuki Kano, Tomoyoshi Ishimaru, Hideya Osawa
Abstract In recent years, awareness of environmental problems has increased on a global scale, and the development of low fuel consumption technologies has become more and more important in commercial vehicles, as it has been in passenger vehicles. A new 6-speed manual transmission was developed with direct-drive double-overdrive to contribute to the fuel economy performance and engine power of commercial vehicles through gear ratio optimization.
2016-04-05
Technical Paper
2016-01-1097
Satoshi Fukuyama, Tomohide Suzuki, Akira Murata, Hiroshi Mizoguchi, Toshihiko Kamiya
Abstract Aisin AW (AW) and Toyota Motor Corporation (TMC) have developed a new RWD 6 speed automatic transmission, AWR6B45(AC60), suitable for SUV’s and LDT’s in the worldwide market, not only for North America but also for other countries including emerging nations. This 6 speed automatic transmission has achieved low cost, equivalent to AW and TMCs’ current 5 speed automatic transmission, while realizing improvement in both fuel economy and driving performance against current in-house 5-speed automatic transmissions, in addition to satisfying both toughness against various usage and light weight/compactness. They are accomplished by using a compact gear train structure, the latest efficiency improvement technologies, and a high-response, compact hydraulic control system. In addition, the compactness of this 6 speed automatic transmission enables it to replace current 4 speed and 5 speed automatic transmissions for various engine applications.
2016-04-05
Journal Article
2016-01-1083
Kenji Sato, Takeru Hamakawa, Takeyuki Yamasaki, Yoshimichi Ishihara, Hisashi Hashimoto, Chao Shi, Hiroaki Haneda, Shinichi Takahashi, Yoshiyuki Iida
Abstract The independent bearing cap is a cylinder block bearing structure that has high mass reduction effects. In general, this structure has low fastening stiffness compared to the rudder block structure. Furthermore, when using combination of different materials small sliding occurs at the mating surface, and fretting fatigue sometimes occurs at lower area than the material strength limit. Fretting fatigue was previously predicted using CAE, but there were issues with establishing a correlation with the actual engine under complex conditions, and the judgment criteria were not clear, so accurate prediction was a challenge. This paper reports on a new CAE-based prediction method to predict the fretting damage occurring on the bearing cap mating surface in an aluminum material cylinder block. First of all, condition a fretting fatigue test was performed with test pieces, and identification of CAE was performed for the strain and sliding amount.
2016-04-05
Technical Paper
2016-01-1112
Byeong Wook Jeon, Sang-Hwan Kim, Donghoon Jeong, Joseph Young-il Chang
Abstract In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
Viewing 241 to 270 of 10339