Criteria

Display:

Results

Viewing 211 to 240 of 10366
2016-09-27
Journal Article
2016-01-8118
QingHui Yuan
Emission, fuel economy and productivity in non-road mobile machinery (NRMM) depend largely on drive cycles. Understanding drive cycles can provide the in-depth information and knowledge that help the system integrator better optimize the vehicle management system. Some non-road engine test cycles already exist nowadays. However, these cycles are mainly for engine emission regulation purpose, and not closely tied to real world applications. Therefore, from both industries and academia, it has been the common practice to instrument and retrofit a vehicle, assign a professional driver operate the retrofitted vehicle for real testing, and compare the results to the baseline vehicle under the similar operating conditions. Obviously this approach is time consuming and resource intensive. In this paper, we attempt to address this issue by introducing a method of constructing standard drive cycles from in-field operation data.
2016-09-27
Journal Article
2016-01-8106
Sameer Kolte, Ananth Kumar Srinivasan, Akilla Srikrishna
Abstract As we move towards the world of autonomous vehicles it becomes increasingly important to integrate several chassis control systems to provide the desired vehicle stability without mutual interference. The principles for integration proposed in existing technical literature are majorly centralized which are not only computationally expensive but does not fit the current supplier based OEM business model. An Automotive OEM brings multiple suppliers on-board for developing the Active Safety systems considering several factors such as cost, quality, time, ease of business etc. When these systems are put together in the vehicle they may interfere with each other’s function. Decoupling their function results in a need of heavy calibration causing performance trade-offs and loss in development time.
2016-09-27
Journal Article
2016-01-8007
Chris Mentzer, Ryan D. Lamm, Jerry Towler
Abstract Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
2016-09-27
Technical Paper
2016-01-2091
Raul Cano, Oscar Ibanez de Garayo, Miguel Angel Castillo, Ricardo Marin, Hector Ascorbe, Jose Ramon de los Santos
Abstract The aim of this paper is to present a robust and low-cost automatic system for drilling aluminum stacks, as well as an integral methodology for the design of tool trajectories and the control of the drilling process itself. The proposed system employs a high accuracy robotic arm, a commercial spindle head and a specially developed SCADA, which enables it to load tool trajectories designed by using any software application. Furthermore, this SCADA is useful to monitor the main parameters of the drilling process for anticipating problems related to the unexpected tool wear or for a quick response in case of tool collision. A special jig for positioning the stack to be drilled is designed to increase the robot accessibility. In this work, tests are performed for optimizing the cutting parameters of the robotic system in order to maximize the accuracy and the surface finishing of the holes.
2016-09-27
Technical Paper
2016-01-2107
Rainer Mueller, Matthias Vette, Matthias Scholer, Jan Ball
Abstract The global competition challenges aircraft manufactures in high wage countries. The assembly of large components is very difficult and distinguished by fixed position assembly. Many complex assembly processes such as aircraft assembly are manually done by highly skilled workers. The aircraft manufactures deal with a varying number of items, increasing number of product variants and strict product requirements. During the assembly process hundreds of clips, ties and stringers as well as thousands of rivets must be assembled. To remain competitive in global competition, companies in high wage countries like Germany must insure a continuously high productivity and quality level. To achieve a reduction of cycle times with a simultaneous increase in quality, supportive assistance systems for visual support, documentation and organization within the assembly are required. One example for visual assistance systems are laser projection systems.
2016-09-20
Journal Article
2016-01-1976
Kiran Thupakula, Adishesha Sivaramasastry, Srikanth Gampa
Abstract Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
2016-09-20
Technical Paper
2016-01-1979
William D. Bertelsen
Abstract Technology to create a VTOL for general aviation that is fast, efficient, easy to fly, and affordable, has proven elusive. Bertelsen Design LLC has built a large research model to investigate the potential of the arc wing VTOL to fulfill these attributes. The aircraft that is the subject of this paper weighs approximately 145 kg (320 lbs) and features coaxial, dual-rotating propellers, diameter 1.91 m (75 inches). Power is from an MZ 202 two-cycle, two-cylinder engine. Wingspan is 1.82 m (72 inches). The arc wing differentiates this aircraft from previous deflected-slipstream prototypes, which suffered from pitch-trim issues during transition. This paper will present configuration details of the Bertelsen model, showing how it is possible to generate high lift from a short-span wing system. The Bertelsen model can hover out of ground effect using just two arc-wing elements: a main wing and a “slat”.
2016-09-20
Technical Paper
2016-01-1984
Michael Krenz
Abstract This paper proposes a method of optimizing aircraft system architectures by considering the efficiencies of each energy conversion step necessary to fulfill the intended function. In addition, these conversion efficiencies need to be evaluated at all critical operating points for the systems involved (e.g. engine, generator, loads, etc.). The methodology starts with examining the energy sources on the aircraft, the energy loads and the energy transfer efficiencies between the sources and the loads. Modern aircraft architecture trends are broadly addressed along with a framework for applying this methodology, but specific aircraft are not analyzed due to the proprietary nature of some of the conversion efficiency data.
2016-09-20
Technical Paper
2016-01-2055
Koji Muraoka, Daisuke Hirabayashi, Masayuki Sato, Yoshihisa Aoki
Abstract JAXA (Japan Aerospace Exploration Agency) has been conducting a research on a future commercial tilt wing VTOL (Vertical TakeOff and Landing) transport under JAXA's "Sky Frontier" Program aiming to develop technologies for aircraft innovation. The research focuses on QTW (Quad Tilt Wing) civil VTOL transport, which features tandem tilt wings with propellers mounted at the mid-span of each wing. The goals of the research in the present phase are to propose a concept of a QTW business VTOL transport system and to pursue the essential technologies development such as OEI (One-Engine-Inoperative) safe recovery, transition flight control and cruise efficient aerodynamic design. Nine passengers business QTW concept was designed and trade-off analysis of the propulsion system architecture for OEI safety was conducted.
2016-09-20
Technical Paper
2016-01-2052
Virgilio Valdivia-Guerrero, Ray Foley, Stefano Riverso, Parithi Govindaraju, Atiyah Elsheikh, Leonardo Mangeruca, Gilberto Burgio, Alberto Ferrari, Marcel Gottschall, Torsten Blochwitz, Serge Bloch, Danielle Taylor, Declan Hayes-McCoy, Andreas Himmler
Abstract This paper presents an overview of a project called “Modelling and Simulation Tools for Systems Integration on Aircraft (MISSION)”. This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modeling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the Aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multi-physics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
2016-09-20
Technical Paper
2016-01-2047
K. Suresh, Rajkumar Dhande, Udupi Ananthakrishna Acharya
Abstract Reducing the amount of physical testing is of importance in the aeronautical industry, where each physical test represents a significant cost. Apart from the cost aspect, it may also be difficult or hazardous to carry out physical testing. Specific to the aeronautic industry are also the relatively long development cycles, implying long periods of uncertainty during product development. In any industry a common viewpoint is that of verification, validation, and uncertainty quantification using simulation models are critical activities for a successful development of a product. In Aeronautical application, the design of store's structural equipments needs to be certified in accordance with MIL-T-7743F [1]. This paper focuses on a case study for shock analysis, whereby an attempt has been made to reduce the cost of certification by way of replacing the actual physical testing by a reliable high fidelity FE simulation.
2016-09-20
Technical Paper
2016-01-2069
Zied Aloui, Nawfal Ahamada, Julien Denoulet, Martin Rayrole, Francine Pierre, Marc Gatti
Abstract Avionics is one kind of domain where prevention prevails. Nonetheless failures occur, sometimes due to pilot misreacting, flooded in information. Sometimes information itself would be better verified than trusted. To avoid some kind of failure, it has been thought to add,in midst of the ARINC664 aircraft data network, a new kind of monitoring.
2016-09-20
Technical Paper
2016-01-2017
Devesh Kumar, Konrad Juethner, Yves Fournier
Abstract In modern complex engine design, it is a common challenge to keep simulation in step with changes to component geometry, environmental conditions, and mission data - and this applies to both actual designs and those that belong to the hypothetical design space as explored in design of experiments (DOE). In this paper, an effective simulation process and data management (SPDM) approach is presented that hinges on a focus on components, their generalized connections and programmatic templating. This simulation approach improves the fidelity of engine analysis, engineering productivity, quality, scalability across the gas turbine engine organization, and HPC utilization. In addition to this new analysis machinery, gas turbine engine modeling fidelity is elevated by surpassing commonly used one-dimensional (1D) models of rotors.
2016-09-20
Technical Paper
2016-01-2018
Syed J. Khalid
Abstract The key commercial aircraft propulsion requirements toward ensuring flight safety, operational efficiency, reduced CO2 footprint, and community acceptability include high installed thrust, low specific fuel consumption, and reduced noise. The objective of this paper is to highlight the various ways turbofan performance can be enhanced. First the advantage of high bypass ratio (BPR) configurations will be explained with the help of clean sheet cycle designs with the corresponding off-design performance. The achievement of hot day performance and improved durability with high BPR designs, and the benefit from core supercharging has been presented. Next, the use of on-line control effector modulations, including variable bypass exhaust nozzle, for further improvement in cruise SFC (up to an indicated 2.6%) is shown. This is followed by a discussion of medium BPR mixed exhaust designs which have a performance advantage compared to the same BPR separate exhaust configurations.
2016-09-20
Technical Paper
2016-01-2039
Prashant S. Vadgaonkar, Ullas Janardhan
Avionics industry is moving towards fly-by wire aircrafts with less reliance on mechanical systems leading to increase in the complexity of in-flight hardware elements. RTCA/DO-254 and EUROCAE ED-80 plays a vital role in the design assurance of airborne electronic hardware. RTCA/ DO-254 and EUROCAE ED-80 are the industry standards for Design Assurance Guidance for Airborne Electronic Hardware. The two different agencies FAA and EU regulate and apply this design assurance guidance to the regulatory law in CFR and EASA CS respectively. This paper discusses the need for DO-254 /ED-80 certification in Aerospace industry, the advantages and benefits to the avionics manufacturers. The paper presents the study made on similarities and differences between DO-254/ED-80.
2016-09-20
Technical Paper
2016-01-2027
Brett Robbins, Kevin J. Yost, Jon Zumberge
Abstract Detailed machine models are, and will continue to be, a critical component of both the design and validation processes for engineering future aircraft, which will undoubtedly continue to push the boundaries for the demand of electric power. This paper presents a survey of experimental testing procedures for typical synchronous machines that are applied to brushless synchronous machines with rotating rectifiers to characterize their operational impedances. The relevance and limitations of these procedures are discussed, which include steady-state drive stand tests, sudden short-circuit transient (SSC) tests, and standstill frequency response (SSFR) tests. Then, results captured in laboratory of the aforementioned tests are presented.
2016-09-20
Journal Article
2016-01-2024
Allan J. Volponi, Liang Tang
Abstract Engine module performance trending and engine system anomaly detection and identification are core capabilities for any engine Condition Based Maintenance system. The genesis of on-condition monitoring can be traced back nearly 4 decades, and a methodology known as Gas Path Analysis (GPA) has played a pivotal role in its evolution. GPA is a general method that assesses and quantifies changes in the underlying performance of the major modules of the engine (compressors and turbines) which directly affect performance changes of interest such as fuel consumption, power availability, compressor surge margins, and the like. This approach has the added benefit in that it enables anomaly detection and identification of many engine system accessory faults (e.g., variable stator vanes, handling and customer bleeds, sensor biases and drift).
2016-09-20
Technical Paper
2016-01-2020
Constanza Ahumada Sanhueza, Andrea Bristot, Shubham Kumar, Nicolas Schneider, Seamus Garvey, Herve Morvan
Abstract This paper proposes an integrated system’s approach towards design of aero-engine subsystems - seals, bearing chamber, generator and power system. In a conventional design approach, the design of the overall system is typically broken-down into subsystems. Therefore, the focus is not on the mutual interaction between different components or subsystems, resulting in a lack of characterization of the overall system performance at the design phase. A systems design approach adopts a much broader outlook, focusing on the overall optimization of the system performance. This paper is divided into two parts. The first part presents an integrated approach for modelling the electrical, mechanical and hydraulic subsystems of aero engines, in order to analyze the fluid dynamics interactions and reduce the transversal shaft vibrations. For this, an in-line starter/generator and an air-riding seal are studied.
2016-09-18
Technical Paper
2016-01-1937
Taylor Erva, Adam Loukus, Luke Luskin
Abstract Aluminum metal matrix composite brake rotors with a selective ceramic function reinforcement gradient (FRG) have been developed for automotive applications. This paper will highlight the design, manufacturing, and testing of the rotors. Weight saving of an aluminum composite rotor in comparison to an industry standard cast iron rotor is 50-60%. With this material change comes design considerations to manage rotor temperature, rotor surface integrity, and friction. Manufacturing methods to meet these design constraints were needed to develop a viable high performance aluminum composite rotor. High pressure squeeze casting with soluble coring techniques were developed to incorporate the selective FRG MMC rotors. Dynamometer testing was performed, concentrating on brake friction and temperature to evaluate the macro and micro interfaces in the rotors.
2016-09-14
Technical Paper
2016-01-1872
Bin Wu, Xichan Zhu, Lin li
Abstract Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
2016-04-05
Journal Article
2016-01-0961
Satish Narayanan Ramachandran, Gillis Hommen, Paul Mentink, Xander Seykens, Frank Willems, Frank Kupper
Abstract Heavy-duty diesel engines are used in a wide range of applications. For varying operating environments, the engine and aftertreatment system must comply with the real-world emission legislation limits. Simultaneously, minimal fuel consumption and good drivability are crucial for economic competitiveness and usability. Meeting these requirements takes substantial development and calibration effort, and complying with regulations results in a trade-off between emissions and fuel consumption. TNO's Integrated Emission Management (IEM) strategy finds online, the cost-optimal point in this trade-off and is able to deal with variations in operating conditions, while complying with legislation limits. Based on the actual state of the engine and aftertreatment system, an optimal engine operating point is computed using a model-based optimal-control algorithm.
2016-04-05
Technical Paper
2016-01-0936
Anoop Reghunathan Nair, Brett Schubring, Kiran Premchand, Andrew Brocker, Peter Croswell, Craig DiMaggio, Homayoun Ahari, Jeffrey Wuttke, Michael Zammit, Michael Andrew Smith
New Particulate Matter (PM) and Particulate Number (PN) regulations throughout the world have created a need for aftertreatment solutions that include particulate control as an option to comply with the legislation. However, limitations in other criteria emissions cannot be sacrificed to accomplish the reduction of PM/PN. For this work, three-way washcoat catalyzed wall-flow Gasoline Particulate Filters (GPF) and similarly catalyzed flow-through catalysts of common defined volume were tested. Their catalytic performance was determined by measuring NOx, CO and HC conversion efficiencies and CO2 levels over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) cycles. Analysis of the impact on CO2 emissions was also evaluated in relation to backpressure from 1-D modeling analysis. All exhaust systems used the same loading and ratio of Platinum Group Metals (PGM), but employed different cell structures in their substrates.
2016-04-05
Journal Article
2016-01-0982
Philip Lawson, John Houldcroft, Andrew Neil, Andrea Balcombe, Richard Osborne, Antonio Ciriello, Wilhelm Graupner
Abstract A recent trend in powertrain development organisations has been to apply processes historically associated with manufacturing. The aim is to capitalise on the resulting productivity gains to contain the increasing test demand necessary to develop current and future product. Significant obstacles to the implementation of manufacturing derived methods include the lack of clarity of the engineering test requirements and existing working practices in the product development environment. The System Optimisation Approach has been presented in previous work as a potential solution [1]. As an extension, this paper introduces a new concept closely related to the established manufacturing principle of Process Capability (Cp). Application of the resulting method quantifies the test facility’s capability to provide a test result subject to a specified statistical confidence within a certain number of test repeats.
2016-04-05
Technical Paper
2016-01-1020
Yusuke Wada, Koji Nakano, Kei Mochizuki, Ryuichi Hata
Abstract A 1.5 L downsizing turbocharged engine was developed to achieve both driving and environmental performance. The engine is intended to replace 1.8 - 2.4 L class NA engines. In downsizing turbocharged engines, mixture homogeneity is important for suppressing knocking and emission reduction. Particularly under high load, creating rapid combustion and a homogeneous mixture are key technologies. The authors used a long-stroke direct injection engine, which has outstanding rapid combustion and thermal efficiency, as a base engine meeting these requirements. They combined this with a high-tumble port and shallow-dish piston intended to support tumble flow. The combination enhanced flow within the cylinder. The combustion system was built to include a sodium-filled exhaust valve to reduce knocking and a multi-hole injector (six holes) for mixture homogeneity and to reduce the fuel wall wetting.
2016-04-05
Technical Paper
2016-01-0904
Michael Martin, Arno Eichberger, Eranda Dragoti-Cela
Abstract A worldwide decrease of legal limits for CO2 emissions and fuel economy led to stronger efforts for achieving the required reductions. The task is to evaluate technologies for CO2 reduction and to define a combination of such measures to ensure the targets. The challenge therefor is to find the optimal combination with respect to minimal costs. Individual vehicles as well as the whole fleet have to be considered in the cost analysis - which raises the complexity. Hereby, the focus of this work is the consideration and improvement of a new model series against the background of a fleet and the selection of measures. The ratio between the costs and the effect of the measures can be different for the each vehicle configuration. Also, the determination of targets depends whether a fleet or an individual vehicle is selected and has impact on the selection and optimization process of those measures.
2016-04-05
Technical Paper
2016-01-0883
Walter Mirabella, Francesco Avella, Marco Di Girolamo, Tim Abbott, Oliver Busch
Abstract A thorough bibliographic survey was carried out to collect literature-available information about blending octane numbers (BONs) of most widely used ethers by the refining industry (mainly MTBE and ETBE). The intention was to review the publicly reported BONs values, to suggest the most appropriate figures for future reference, while also understanding the causes of the differences. Summary tables feature all BON values, either explicitly reported in literature or calculated based on experimental results. Due to synergistic intermolecular interactions with hydrocarbons, BONs typically depend on base stock composition. The octane gain tends to grow as the paraffin content in the base stock increases. Moreover BONs tend to decrease as the octane numbers (ON) of the base stock increase.
2016-04-05
Technical Paper
2016-01-0880
Carlos Alberto Romero, Ricardo Acosta, Juan Lopez
Abstract It is the aim of the present paper to communicate some preliminary results of the research in progress related to the introduction of LPG as a supplementing fuel for the Colombian power grid supply. Most of the power units operating in Colombian oil wells are running on Diesel fuel and natural gas. Other fuels like LPG, heavy and dual fuel have received attention in recent years, due partially to the necessity to relieve the national overall petroleum dependency problem, and also because of the availability of a sizable amount of LPG derived from natural gas purification. In an effort to assess the use of LPG as a fuel alternative to Diesel and natural gas in oil wells, a field study has been carried out.
2016-04-05
Technical Paper
2016-01-1682
Pratap Dinkar Thorat, Shailesh Newase, Keyur Gupte, Pushkaraj Kaulgud
Abstract Electrical Power and Signal Distributions System in a vehicle is the most important among the Automotive Electrical and Electronic systems. In fact any electrical or electronic systems are realized and are physically formed by the Electrical Wiring Harness. This is a system in itself with the set of wires and connectors connecting various devices to feed the power and act as physical channels for signal transmission and serial data communication. Thus, the Electrical Wiring Harness becomes huge complicated systems in a vehicle. Because of the number of wires, cables and the specific connectivity requirement the design and development will become very difficult. Further, the complexity is manifold due to number of harnesses in a vehicle and different operating conditions in different zones of the vehicle. The design and development of an Electrical Wiring Harness involves primarily the design of the electrical circuit. This is based on the vehicle architecture.
2016-04-05
Technical Paper
2016-01-1685
Sayaka Tamura, Tsutomu Yoshinari
Abstract A three-motor hybrid system suitable for a super sports car was developed. This system features high power, light weight and high response, and has high cooling performance for high-load operation such as circuit driving. The power plant drives the rear wheels using the combination of a midship-mounted V6 twin-turbo engine, the direct drive motor of a hybrid system mounted directly on the engine, and a 9-speed dual-clutch transmission (DCT). The front wheels are driven by a twin-motor unit (TMU), and the size and weight of the Intelligent Power Unit (IPU) that supplies electric power to the TMU has been reduced to enable mounting behind the seats inside the cabin. In addition, the IPU uses air-conditioner cooperative cooling to enhance the cooling performance. As a result, assist is performed even during high-load operation.
2016-04-05
Technical Paper
2016-01-1012
Seiji Furumata, Takashi Kakinuma, Hirokazu Tochiki
Abstract This paper introduces the newly developed super sports car engine mounted in the new model NSX. A super sports car engine was newly developed to satisfy the high power performance required by the body package. Higher power and compactness were simultaneously achieved by selecting an engine displacement of 3.5 L and by using a V6 layout and a turbocharger. This enabled to mount a power train that combines a hybrid motor with a newly developed transmission in the rear of the body. The lubrication system uses a dry sump system capable of maintaining reliable lubrication in all possible super sports car driving scenarios. The combustion system uses high tumble-flow ports, a direct injection and a port injection system that increase power performance and thermal efficiency, emission reduction. To support the increased heat load due to higher power, a 3-piece water jacket is used around the combustion chamber and the exhaust ports.
Viewing 211 to 240 of 10366