Criteria

Display:

Results

Viewing 211 to 240 of 10318
2016-04-05
Technical Paper
2016-01-0295
Sentao Miao, Yan Fu, Margaret Strumolo, Boxiao Chen, Xiuli Chao, Erica Klampfl, Michael Tamor
Abstract With increasing evidence for climate change in response to greenhouse gasses (GHG) emitted by human activities, pressure is growing to reduce fuel consumption via increased vehicle efficiency and to replace fossil fuels with renewable fuels. While real-world experience with bio-ethanol and a growing body of research on many other renewable fuel pathways provide some guidance as to the cost of renewable transportation fuel, there has been little work comparing that cost to alternative means for achieving equivalent GHG reductions. In earlier work, we developed an optimization model that allowed the transportation and electricity generation sectors to work separately or jointly to achieve GHG reduction targets, and showed that cooperation can significantly reduce the society cost of GHG reductions.
2016-04-05
Journal Article
2016-01-0288
Zhenfei Zhan, Junqi Yang, Xueqian Chen, Zhanpeng Shen
Abstract In automobile industry, computational models built to predict the performances of the prototype vehicles are on the rise. To assess the validity or predictive capability of the model for its intended usage, validation activities are conducted to compare computational model outputs with test measurements. Validation becomes difficult when dealing with dynamic systems which often involve multiple functional responses, and the complex characteristics need to be appropriately considered. Many promising data analysis tools and metrics were previously developed to handle data correlation and evaluate the errors in magnitude, phase shift, and shape. However, these methods show their limitations when dealing with nonlinear multivariate dynamic systems. In this paper, kernel function based projection is employed to transform the nonlinear data into linear space, followed by the regular principal component analysis (PCA) based data processing.
2016-04-05
Technical Paper
2016-01-0284
Junqi Yang, Zhenfei Zhan, Kai Zheng, Jie Hu
Abstract Simulation models based design has become the common practice in automotive product development. Before applying these models in practice, model validation needs to be conducted to assess the validity of the models by comparing model predictions with experimental observations. In the validation process, it is vital to develop appropriate validation metrics for intended applications. When dealing with multivariate systems, comparisons between model predictions and test data with multiple responses would lead to conflicting decisions. To address this issue, this paper proposed a Bayesian classifier based validation method. With the consideration of both error rate and confidence in hypothesis testing, Bayesian classifier is developed for decision making. The process of validation is implemented on a real-world vehicle design case. The results show the proposed method’s potential in practical application.
2016-04-05
Technical Paper
2016-01-0571
Guillaume Bernard, Mark Scaife, Amit Bhave, David Ooi, Julian Dizy
Abstract Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
2016-04-05
Technical Paper
2016-01-0621
James Kapinski, Xiaoqing Jin, Jyotirmoy Deshmukh, Alexandre Donze, Tomoya Yamaguchi, Hisahiro Ito, Tomoyuki Kaga, Shunsuke Kobuna, Sanjit Seshia
Abstract Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
2016-04-05
Journal Article
2016-01-0524
Venkat Pisipati, Srikanth Krishnaraj, Amy McGuckin Webb, Pavankumar Reddy Kandukuri
Abstract The Automotive industry’s use of digital technology such as Computer Aided Engineering (CAE) to perform virtual validation has progressed to effectively replace a large percentage of physical validation. This is primarily due to the increased accuracy and cost/time efficiencies that virtual validation offers compared to conventional physical prototyping and testing. With product development (PD) cycles becoming more compressed, CAE has assumed a more significant role in early, advanced design and structural evaluation. One of the areas where CAE is widely employed is in development of the Instrument Panel (IP) commonly referred to as the dashboard. For the purposes of this study, the term IP represents the plastic/polymer structure only, and not the full IP sub-system. The IP sub-system includes the structural member, the Cross Car Beam (CCB) assembly and all the IP mounted modules.
2016-04-05
Technical Paper
2016-01-0904
Michael Martin, Arno Eichberger, Eranda Dragoti-Cela
Abstract A worldwide decrease of legal limits for CO2 emissions and fuel economy led to stronger efforts for achieving the required reductions. The task is to evaluate technologies for CO2 reduction and to define a combination of such measures to ensure the targets. The challenge therefor is to find the optimal combination with respect to minimal costs. Individual vehicles as well as the whole fleet have to be considered in the cost analysis - which raises the complexity. Hereby, the focus of this work is the consideration and improvement of a new model series against the background of a fleet and the selection of measures. The ratio between the costs and the effect of the measures can be different for the each vehicle configuration. Also, the determination of targets depends whether a fleet or an individual vehicle is selected and has impact on the selection and optimization process of those measures.
2016-04-05
Technical Paper
2016-01-1112
Byeong Wook Jeon, Sang-Hwan Kim, Donghoon Jeong, Joseph Young-il Chang
Abstract In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
2016-04-05
Technical Paper
2016-01-1093
Takao Ohki, Tomoyasu Wada, Tomoyuki Kano, Tomoyoshi Ishimaru, Hideya Osawa
Abstract In recent years, awareness of environmental problems has increased on a global scale, and the development of low fuel consumption technologies has become more and more important in commercial vehicles, as it has been in passenger vehicles. A new 6-speed manual transmission was developed with direct-drive double-overdrive to contribute to the fuel economy performance and engine power of commercial vehicles through gear ratio optimization.
2016-04-05
Technical Paper
2016-01-1097
Satoshi Fukuyama, Tomohide Suzuki, Akira Murata, Hiroshi Mizoguchi, Toshihiko Kamiya
Abstract Aisin AW (AW) and Toyota Motor Corporation (TMC) have developed a new RWD 6 speed automatic transmission, AWR6B45(AC60), suitable for SUV’s and LDT’s in the worldwide market, not only for North America but also for other countries including emerging nations. This 6 speed automatic transmission has achieved low cost, equivalent to AW and TMCs’ current 5 speed automatic transmission, while realizing improvement in both fuel economy and driving performance against current in-house 5-speed automatic transmissions, in addition to satisfying both toughness against various usage and light weight/compactness. They are accomplished by using a compact gear train structure, the latest efficiency improvement technologies, and a high-response, compact hydraulic control system. In addition, the compactness of this 6 speed automatic transmission enables it to replace current 4 speed and 5 speed automatic transmissions for various engine applications.
2016-04-05
Journal Article
2016-01-1083
Kenji Sato, Takeru Hamakawa, Takeyuki Yamasaki, Yoshimichi Ishihara, Hisashi Hashimoto, Chao Shi, Hiroaki Haneda, Shinichi Takahashi, Yoshiyuki Iida
Abstract The independent bearing cap is a cylinder block bearing structure that has high mass reduction effects. In general, this structure has low fastening stiffness compared to the rudder block structure. Furthermore, when using combination of different materials small sliding occurs at the mating surface, and fretting fatigue sometimes occurs at lower area than the material strength limit. Fretting fatigue was previously predicted using CAE, but there were issues with establishing a correlation with the actual engine under complex conditions, and the judgment criteria were not clear, so accurate prediction was a challenge. This paper reports on a new CAE-based prediction method to predict the fretting damage occurring on the bearing cap mating surface in an aluminum material cylinder block. First of all, condition a fretting fatigue test was performed with test pieces, and identification of CAE was performed for the strain and sliding amount.
2016-04-05
Journal Article
2016-01-0982
Philip Lawson, John Houldcroft, Andrew Neil, Andrea Balcombe, Richard Osborne, Antonio Ciriello, Wilhelm Graupner
Abstract A recent trend in powertrain development organisations has been to apply processes historically associated with manufacturing. The aim is to capitalise on the resulting productivity gains to contain the increasing test demand necessary to develop current and future product. Significant obstacles to the implementation of manufacturing derived methods include the lack of clarity of the engineering test requirements and existing working practices in the product development environment. The System Optimisation Approach has been presented in previous work as a potential solution [1]. As an extension, this paper introduces a new concept closely related to the established manufacturing principle of Process Capability (Cp). Application of the resulting method quantifies the test facility’s capability to provide a test result subject to a specified statistical confidence within a certain number of test repeats.
2016-04-05
Technical Paper
2016-01-1012
Seiji Furumata, Takashi Kakinuma, Hirokazu Tochiki
Abstract This paper introduces the newly developed super sports car engine mounted in the new model NSX. A super sports car engine was newly developed to satisfy the high power performance required by the body package. Higher power and compactness were simultaneously achieved by selecting an engine displacement of 3.5 L and by using a V6 layout and a turbocharger. This enabled to mount a power train that combines a hybrid motor with a newly developed transmission in the rear of the body. The lubrication system uses a dry sump system capable of maintaining reliable lubrication in all possible super sports car driving scenarios. The combustion system uses high tumble-flow ports, a direct injection and a port injection system that increase power performance and thermal efficiency, emission reduction. To support the increased heat load due to higher power, a 3-piece water jacket is used around the combustion chamber and the exhaust ports.
2016-04-05
Technical Paper
2016-01-1014.01
Shyam K. Menon, Himakar Ganti, Chris Hagen
SAE International has been requested by the author to retract the above referenced paper. The retracted paper has been withdrawn and will no longer be available online or in print.
2016-04-05
Technical Paper
2016-01-1020
Yusuke Wada, Koji Nakano, Kei Mochizuki, Ryuichi Hata
Abstract A 1.5 L downsizing turbocharged engine was developed to achieve both driving and environmental performance. The engine is intended to replace 1.8 - 2.4 L class NA engines. In downsizing turbocharged engines, mixture homogeneity is important for suppressing knocking and emission reduction. Particularly under high load, creating rapid combustion and a homogeneous mixture are key technologies. The authors used a long-stroke direct injection engine, which has outstanding rapid combustion and thermal efficiency, as a base engine meeting these requirements. They combined this with a high-tumble port and shallow-dish piston intended to support tumble flow. The combination enhanced flow within the cylinder. The combustion system was built to include a sodium-filled exhaust valve to reduce knocking and a multi-hole injector (six holes) for mixture homogeneity and to reduce the fuel wall wetting.
2016-04-05
Technical Paper
2016-01-1017
Mitsutaka Jono, Masayuki Taguchi, Toshimitsu Shonohara, Shigeru Narihiro
Abstract It is important to take action regarding environmental issues on a global scale, and automakers are adding downsized turbocharged engines to their line-ups as a means of reducing CO2 emissions, particularly in Europe. Honda has recently announced a next-generation powertrain series that realizes a good balance between environmental performance and driving pleasure. As part of this series, the company has developed a downsized and turbocharged 2.0L gasoline direct injection engine. This is a high-powered sports car engine positioned in the European “hot hatch” category. The development balanced engine power with good environmental performance.
2016-04-05
Technical Paper
2016-01-0936
Anoop Reghunathan Nair, Brett Schubring, Kiran Premchand, Andrew Brocker, Peter Croswell, Craig DiMaggio, Homayoun Ahari, Jeffrey Wuttke, Michael Zammit, Michael Andrew Smith
New Particulate Matter (PM) and Particulate Number (PN) regulations throughout the world have created a need for aftertreatment solutions that include particulate control as an option to comply with the legislation. However, limitations in other criteria emissions cannot be sacrificed to accomplish the reduction of PM/PN. For this work, three-way washcoat catalyzed wall-flow Gasoline Particulate Filters (GPF) and similarly catalyzed flow-through catalysts of common defined volume were tested. Their catalytic performance was determined by measuring NOx, CO and HC conversion efficiencies and CO2 levels over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) cycles. Analysis of the impact on CO2 emissions was also evaluated in relation to backpressure from 1-D modeling analysis. All exhaust systems used the same loading and ratio of Platinum Group Metals (PGM), but employed different cell structures in their substrates.
2016-04-05
Journal Article
2016-01-0961
Satish Narayanan Ramachandran, Gillis Hommen, Paul Mentink, Xander Seykens, Frank Willems, Frank Kupper
Abstract Heavy-duty diesel engines are used in a wide range of applications. For varying operating environments, the engine and aftertreatment system must comply with the real-world emission legislation limits. Simultaneously, minimal fuel consumption and good drivability are crucial for economic competitiveness and usability. Meeting these requirements takes substantial development and calibration effort, and complying with regulations results in a trade-off between emissions and fuel consumption. TNO's Integrated Emission Management (IEM) strategy finds online, the cost-optimal point in this trade-off and is able to deal with variations in operating conditions, while complying with legislation limits. Based on the actual state of the engine and aftertreatment system, an optimal engine operating point is computed using a model-based optimal-control algorithm.
2016-04-05
Journal Article
2016-01-1169
Brendan Conlon, Mindy Barth, Charles Hua, Clifford Lyons, Dan Nguy, Margaret Palardy
Abstract GM has developed an all-new gasoline-electric hybrid powertrain for the model year 2016 Chevrolet Malibu Hybrid vehicle, which was designed to achieve excellent fuel economy, performance, and drive quality. The powertrain shares the transmission architecture with the 2016 Chevrolet Volt extended range electric vehicle, but includes changes to optimize the system for engine driven charge sustaining operation in the range of conditions represented by the US EPA 5 cycle fuel economy tests. In this paper, we describe the Malibu Hybrid propulsion system features and components, including the battery pack, transaxle, electric motors and power electronics, engine, and thermal system. The modifications between the Volt and Malibu Hybrid propulsion systems are discussed and explained as resulting from the differences between the primarily electric and gasoline powered applications.
2016-04-05
Technical Paper
2016-01-1171
Shota Hirose, Akemi Okawa, Kenji Ishida, Takahiro Misu, Takeshi Tojo
Abstract Electrification of the powertrain to improve vehicle fuel economy is a key technology to achieve strict fuel economy legislation. However, only limited numbers of small class vehicles such as a B segment adopt electric powertrain. This is presumed that cost effectiveness for fuel economy is small and mounting space for additional powertrain is limited. In this paper, the optimum solution of a strong hybrid system suitable for the small vehicles was studied. First, from the viewpoint of maximization of energy efficiency, we compared contributions of engine efficiency and transmission efficiency during mode cycle driving and selected automated manual transmission as a suitable transmission for small vehicles. In comparing the hybrid system function, we determined a motor generator connecting shaft and a necessary motor generator output power for attaining both fuel economy and drivability.
2016-04-05
Technical Paper
2016-01-1182
Andrej Ivanco, Balan Mariappan Selvaraj, Kawshik Murali, Arjun Narayanan, Avik Sarkar, Aviral Singh, Akshay Soni, Mark Benton, Prasanth Muralidharan, Johnell Brooks, Paul Venhovens, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the sixth generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development and implementation of a dual-purpose powertrain system enabling vehicle propulsion as well as stationary activities of the Deep Orange 6 vehicle concept. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish vehicle target and subsystem requirement, which formed the foundation of the Unique Selling Points (USPs) of the concept.
2016-04-05
Technical Paper
2016-01-1180
Trevor Crain, Thomas Gorgia, R. Jesse Alley
Abstract EcoCAR is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The EcoCAR Advanced Vehicle Technology Competition series is organized by Argonne National Laboratory, headline sponsored by the U.S. Department of Energy and General Motors, and sponsored by more than 30 industry and government leaders. In the last competition series, EcoCAR 2, fifteen university teams from across North America were challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. This paper examines the results of the EcoCAR 2 competition’s emissions and energy consumption (E&EC) on-road test results for several prototype plug-in hybrid electric vehicles (PHEVs). The official results for each vehicle are presented along with brief descriptions of the hybrid architectures.
2016-04-05
Technical Paper
2016-01-1160
Jonathan Hall, Michael Bassett, Stephen Borman, Tom Lucas, Andrew Whitehead
Abstract Present automobile development is keenly focused on measures to reduce the CO2 output of vehicles. Plug-in hybrid electric vehicles (PHEVs) enable grid electricity, which is clean in tail-pipe emissions terms, to be utilised whilst the on-board electrical storage has sufficient charge. MAHLE Powertrain and Protean have jointly developed a plug-in hybrid demonstrator vehicle based on a C-segment passenger car. The vehicle features Protean’s compact direct drive in-wheel motors with integrated inverters on the rear axle and retains the standard gasoline engine, and manual transmission, on the front axle. To support this one-off prototype, a flexible vehicle control unit has been developed, which is easily re-configurable and adaptable to any hybrid vehicle architecture.
2016-04-05
Technical Paper
2016-01-1159
Amanullah Khan, Timothy Grewe, Jinming Liu, Mohammad Anwar, Alan Holmes, Richard Balsley
Abstract This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
2016-04-05
Journal Article
2016-01-1164
Oguz H. Dagci, Huei Peng
Abstract The goal of this paper is to explore the complete set of single mode hybrid electric powertrain designs that can be generated with one and two planetary gearsets (PGs). Contrary to an automated design exploration approach, an analytically-based manual method is developed to identify all unique design modes for each hybrid electric powertrain architecture (parallel, series, power-split) that can be created with two planetary gearsets, one engine, one vehicle output shaft, two electric machines, and at most two brake clutches. Feasible design modes are generated according to a procedure that provably covers the entire design space.
2016-04-05
Technical Paper
2016-01-1150
Alan Holmes, Jinming Liu, David Ames, Vijay Neelakantan, Khwaja Rahman, Timothy Grewe
Abstract An all-new electric variable transmission (EVT) developed by General Motors for rear-wheel-drive products is at the center of the plug-in hybrid electric vehicle (PHEV) propulsion system for the Cadillac CT6. This transmission includes two integrated electric motors, planetary gearing, and hydraulic clutches. It is capable of power-split-hybrid operation in continuously variable transmission (CVT) ratio ranges, parallel-hybrid operation in fixed gear ratios, and all-electric propulsion in different ratio combinations. Transmission operation, mechanical design, controls design, motor design, and output capability are explained, and simulation results used as the benchmark for final development are included. All-electric launch and driving, selectable regeneration, and power blending with the turbocharged engine provide smooth and seamless propulsion through the entire driving range.
2016-04-05
Journal Article
2016-01-1334
Christopher Flegel, Parth Bhivate, Liang Li, Yash Mathur, Sanket Phalgaonkar, Mark Benton, Prasanth Muralidharan, Johnell Brooks, Srikanth Pilla, Paul Venhovens, David Lewis, Garrett DeBry, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development of a multimaterial lightweight Body-in-White (BiW) structure to support an all-electric powertrain combined with an interior package that maximizes volume to enable a variety of interior configurations and activities for Generation Z users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics.
2016-04-05
Technical Paper
2016-01-1333
Edward C. Fontana
Abstract Individuals in the United States consume twice as much energy as those in any other region. Solitary workday commutes in light vehicles are the leading reason for this difference. An electric vehicle design is proposed to help catalyze more social, higher occupancy, commuting habits - through application of existing technology. Performance criteria are: 1) attract passengers to the suburban front yard at 6:30 AM, 2) match market leading crash test performance, cargo capability, and sense of freedom, and 3) deliver easier parking, better acoustics and better passenger mile efficiency. A vehicle as a rolling event venue determines a large windscreen, side-by-side upright seating arrangements, and acoustic excellence -an experience where there are only good seats. These requirements force a decision to close the wake along a vertical line to form a narrow wake. The chassis is platform batteries with dual motor electric rear drive and undetermined front drive.
2016-04-05
Technical Paper
2016-01-1685
Sayaka Tamura, Tsutomu Yoshinari
Abstract A three-motor hybrid system suitable for a super sports car was developed. This system features high power, light weight and high response, and has high cooling performance for high-load operation such as circuit driving. The power plant drives the rear wheels using the combination of a midship-mounted V6 twin-turbo engine, the direct drive motor of a hybrid system mounted directly on the engine, and a 9-speed dual-clutch transmission (DCT). The front wheels are driven by a twin-motor unit (TMU), and the size and weight of the Intelligent Power Unit (IPU) that supplies electric power to the TMU has been reduced to enable mounting behind the seats inside the cabin. In addition, the IPU uses air-conditioner cooperative cooling to enhance the cooling performance. As a result, assist is performed even during high-load operation.
2016-04-05
Technical Paper
2016-01-1682
Pratap Dinkar Thorat, Shailesh Newase, Keyur Gupte, Pushkaraj Kaulgud
Abstract Electrical Power and Signal Distributions System in a vehicle is the most important among the Automotive Electrical and Electronic systems. In fact any electrical or electronic systems are realized and are physically formed by the Electrical Wiring Harness. This is a system in itself with the set of wires and connectors connecting various devices to feed the power and act as physical channels for signal transmission and serial data communication. Thus, the Electrical Wiring Harness becomes huge complicated systems in a vehicle. Because of the number of wires, cables and the specific connectivity requirement the design and development will become very difficult. Further, the complexity is manifold due to number of harnesses in a vehicle and different operating conditions in different zones of the vehicle. The design and development of an Electrical Wiring Harness involves primarily the design of the electrical circuit. This is based on the vehicle architecture.
Viewing 211 to 240 of 10318