Criteria

Display:

Results

Viewing 181 to 210 of 10339
2016-09-27
Technical Paper
2016-01-8078
He Changming, Xu Sichuan
Currently the downsizing of IC Engine has become the mainstream to meet fuel economy and emission regulations. It is required that higher power output while with lighter weight that is actually a daunting challenge for a common four-stroke IC engine, because it needs lots of new technologies and high manufacturing cost. For recent years the two-stroke opposed piston engine has drawn much attention in many developed countries for fundamental advantages itself. Double firing frequency means the increased power density brings about smaller engine size and lighter weight. However, the low scavenge efficiency has been assumed the main disadvantage for a two-stroke engine for a long period, and adverse to combustion efficiency. The uniflow scavenging process was investigated by the transient CFD simulation for multiple Cases. The influence of port timing and exhaust back pressure on scavenging was analyzed for two different intake port layouts.
2016-09-27
Technical Paper
2016-01-8074
Gaurav Kumar, Pavan Sindgikar, Narayan Jadhav, Sandip Gaidhane, Sarfaraj Shaikh
Abstract With the advent of most advanced diesel engines the demand for upgraded engine cooling modules capable of handling more heat rejection in a smaller space is surging. Moreover, the variance in the operating conditions, i.e., the simultaneous cooling demands for peak load as well as partial load in different ambient conditions of the vehicle operation, broadens the scope of development of a cooling system. Also, the cooling system needs to be configured judiciously so as to cater effective cooling at peak loads and efficient cooling at partial loads. This research paper deals with a cooling system developed using modularity approach in order to have a control over tuning of subsystems for varying operating conditions and also to achieve the performance targets with a compact design adhering to packaging constraints. Kuli simulation of different designed configurations were carried out for identification of best concept.
2016-09-27
Technical Paper
2016-01-8062
Jham Kunwar Tikoliya, Ram Krishna Kumar Singh, Ramesh Kumar, Suresh Kumar Kandreegula
Abstract The existing head cover is having external oil and blow by separation unit, which is not only costlier but also complex and leads to increase in overall height of engine which was difficult to integrate in new variants of vehicles. A new head cover has been designed with internal baffle type oil and blow by separation system to ensure efficient separation and proper packaging of the system in new variants. The new system has been finalized after 26 DOE’s of different wire mesh sizes and different baffle plate size and positions. The final system has two bowl shaped separation unit with wire mesh, two cup type oil separation passages and one baffle plate for separating blow by. The system works on condensation and gravity method. The blow by is guided through a well-defined passage integrated in aluminum cylinder head cover itself. The passage angle is maintained to ensure minimum oil flow with blow by.
2016-09-27
Technical Paper
2016-01-8128
Vladimir G. Shevtsov, Alexandr Lavrov, Zahid A. Godzhaev, Valentin M. Kryazhkov, Gennagy S. Gurulev
Abstract The objective of this study is to identify the most popular agricultural tractor models in Russia by their engine ratings and countries of origin. This review presents an analysis of changes in the composition of engine-ratings and sales volume of agricultural tractors in the Russian market between 2008 and 2014. Including knock-down kits, the countries of origin are Russia, the CIS-countries and non-CIS Countries. The variety of manufacturers, highlight the leading international companies which have supplied up to 200 units is discussed. The papers shows that CIS-manufactured tractors represent the greatest number in the market - up to 57 per cent, tractors from non-CIS countries occupy up to 12 per cent of the market, and the number of Russian models is quite limited - 3.0 per cent in 2012 and 3.4 per cent in 2014.
2016-09-27
Journal Article
2016-01-8106
Sameer Kolte, Ananth Kumar Srinivasan, Akilla Srikrishna
Abstract As we move towards the world of autonomous vehicles it becomes increasingly important to integrate several chassis control systems to provide the desired vehicle stability without mutual interference. The principles for integration proposed in existing technical literature are majorly centralized which are not only computationally expensive but does not fit the current supplier based OEM business model. An Automotive OEM brings multiple suppliers on-board for developing the Active Safety systems considering several factors such as cost, quality, time, ease of business etc. When these systems are put together in the vehicle they may interfere with each other’s function. Decoupling their function results in a need of heavy calibration causing performance trade-offs and loss in development time.
2016-09-27
Journal Article
2016-01-8007
Chris Mentzer, Ryan D. Lamm, Jerry Towler
Abstract Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
2016-09-27
Journal Article
2016-01-8118
QingHui Yuan
Emission, fuel economy and productivity in non-road mobile machinery (NRMM) depend largely on drive cycles. Understanding drive cycles can provide the in-depth information and knowledge that help the system integrator better optimize the vehicle management system. Some non-road engine test cycles already exist nowadays. However, these cycles are mainly for engine emission regulation purpose, and not closely tied to real world applications. Therefore, from both industries and academia, it has been the common practice to instrument and retrofit a vehicle, assign a professional driver operate the retrofitted vehicle for real testing, and compare the results to the baseline vehicle under the similar operating conditions. Obviously this approach is time consuming and resource intensive. In this paper, we attempt to address this issue by introducing a method of constructing standard drive cycles from in-field operation data.
2016-09-27
Journal Article
2016-01-8055
Rohit Saha, Long-Kung Hwang, Mahesh Madurai Kumar, Yunfeng Zhao, Chen Yu, Bob Ransijn
Abstract Wheel loader subsystems are multi-domain in nature, including controls, mechanisms, hydraulics, and thermal. This paper describes the process of developing a multi-domain simulation of a wheel loader. Working hydraulics, kinematics of the working tool, driveline, engine, and cooling system are modeled in LMS Imagine.Lab Amesim. Contacts between boom/bucket and bucket/ground are defined to constrain the movement of the bucket and boom. The wheel loader has four heat exchangers: charge air cooler, radiator, transmission oil cooler, and hydraulic oil cooler. Heat rejection from engine, energy losses from driveline, and hydraulic subsystem are inputs to the heat exchangers. 3D CFD modeling was done to calibrate airflows through heat exchangers in LMS Amesim. CFD modeling was done in ANSYS FLUENT® using a standard k - ε model with detailed fan and underhood geometry.
2016-09-20
Technical Paper
2016-01-2027
Brett Robbins, Kevin J. Yost, Jon Zumberge
Abstract Detailed machine models are, and will continue to be, a critical component of both the design and validation processes for engineering future aircraft, which will undoubtedly continue to push the boundaries for the demand of electric power. This paper presents a survey of experimental testing procedures for typical synchronous machines that are applied to brushless synchronous machines with rotating rectifiers to characterize their operational impedances. The relevance and limitations of these procedures are discussed, which include steady-state drive stand tests, sudden short-circuit transient (SSC) tests, and standstill frequency response (SSFR) tests. Then, results captured in laboratory of the aforementioned tests are presented.
2016-09-20
Technical Paper
2016-01-2055
Koji Muraoka, Daisuke Hirabayashi, Masayuki Sato, Yoshihisa Aoki
Abstract JAXA (Japan Aerospace Exploration Agency) has been conducting a research on a future commercial tilt wing VTOL (Vertical TakeOff and Landing) transport under JAXA's "Sky Frontier" Program aiming to develop technologies for aircraft innovation. The research focuses on QTW (Quad Tilt Wing) civil VTOL transport, which features tandem tilt wings with propellers mounted at the mid-span of each wing. The goals of the research in the present phase are to propose a concept of a QTW business VTOL transport system and to pursue the essential technologies development such as OEI (One-Engine-Inoperative) safe recovery, transition flight control and cruise efficient aerodynamic design. Nine passengers business QTW concept was designed and trade-off analysis of the propulsion system architecture for OEI safety was conducted.
2016-09-20
Technical Paper
2016-01-2047
K. Suresh, Rajkumar Dhande, Udupi Ananthakrishna Acharya
Abstract Reducing the amount of physical testing is of importance in the aeronautical industry, where each physical test represents a significant cost. Apart from the cost aspect, it may also be difficult or hazardous to carry out physical testing. Specific to the aeronautic industry are also the relatively long development cycles, implying long periods of uncertainty during product development. In any industry a common viewpoint is that of verification, validation, and uncertainty quantification using simulation models are critical activities for a successful development of a product. In Aeronautical application, the design of store's structural equipments needs to be certified in accordance with MIL-T-7743F [1]. This paper focuses on a case study for shock analysis, whereby an attempt has been made to reduce the cost of certification by way of replacing the actual physical testing by a reliable high fidelity FE simulation.
2016-09-20
Technical Paper
2016-01-1979
William D. Bertelsen
Abstract Technology to create a VTOL for general aviation that is fast, efficient, easy to fly, and affordable, has proven elusive. Bertelsen Design LLC has built a large research model to investigate the potential of the arc wing VTOL to fulfill these attributes. The aircraft that is the subject of this paper weighs approximately 145 kg (320 lbs) and features coaxial, dual-rotating propellers, diameter 1.91 m (75 inches). Power is from an MZ 202 two-cycle, two-cylinder engine. Wingspan is 1.82 m (72 inches). The arc wing differentiates this aircraft from previous deflected-slipstream prototypes, which suffered from pitch-trim issues during transition. This paper will present configuration details of the Bertelsen model, showing how it is possible to generate high lift from a short-span wing system. The Bertelsen model can hover out of ground effect using just two arc-wing elements: a main wing and a “slat”.
2016-09-20
Technical Paper
2016-01-1984
Michael Krenz
Abstract This paper proposes a method of optimizing aircraft system architectures by considering the efficiencies of each energy conversion step necessary to fulfill the intended function. In addition, these conversion efficiencies need to be evaluated at all critical operating points for the systems involved (e.g. engine, generator, loads, etc.). The methodology starts with examining the energy sources on the aircraft, the energy loads and the energy transfer efficiencies between the sources and the loads. Modern aircraft architecture trends are broadly addressed along with a framework for applying this methodology, but specific aircraft are not analyzed due to the proprietary nature of some of the conversion efficiency data.
2016-09-20
Technical Paper
2016-01-2017
Devesh Kumar, Konrad Juethner, Yves Fournier
Abstract In modern complex engine design, it is a common challenge to keep simulation in step with changes to component geometry, environmental conditions, and mission data - and this applies to both actual designs and those that belong to the hypothetical design space as explored in design of experiments (DOE). In this paper, an effective simulation process and data management (SPDM) approach is presented that hinges on a focus on components, their generalized connections and programmatic templating. This simulation approach improves the fidelity of engine analysis, engineering productivity, quality, scalability across the gas turbine engine organization, and HPC utilization. In addition to this new analysis machinery, gas turbine engine modeling fidelity is elevated by surpassing commonly used one-dimensional (1D) models of rotors.
2016-09-20
Technical Paper
2016-01-2020
Constanza Ahumada Sanhueza, Andrea Bristot, Shubham Kumar, Nicolas Schneider, Seamus Garvey, Herve Morvan
Abstract This paper proposes an integrated system’s approach towards design of aero-engine subsystems - seals, bearing chamber, generator and power system. In a conventional design approach, the design of the overall system is typically broken-down into subsystems. Therefore, the focus is not on the mutual interaction between different components or subsystems, resulting in a lack of characterization of the overall system performance at the design phase. A systems design approach adopts a much broader outlook, focusing on the overall optimization of the system performance. This paper is divided into two parts. The first part presents an integrated approach for modelling the electrical, mechanical and hydraulic subsystems of aero engines, in order to analyze the fluid dynamics interactions and reduce the transversal shaft vibrations. For this, an in-line starter/generator and an air-riding seal are studied.
2016-09-20
Technical Paper
2016-01-2069
Zied Aloui, Nawfal Ahamada, Julien Denoulet, Martin Rayrole, Francine Pierre, Marc Gatti
Abstract Avionics is one kind of domain where prevention prevails. Nonetheless failures occur, sometimes due to pilot misreacting, flooded in information. Sometimes information itself would be better verified than trusted. To avoid some kind of failure, it has been thought to add,in midst of the ARINC664 aircraft data network, a new kind of monitoring.
2016-09-20
Technical Paper
2016-01-2018
Syed J. Khalid
Abstract The key commercial aircraft propulsion requirements toward ensuring flight safety, operational efficiency, reduced CO2 footprint, and community acceptability include high installed thrust, low specific fuel consumption, and reduced noise. The objective of this paper is to highlight the various ways turbofan performance can be enhanced. First the advantage of high bypass ratio (BPR) configurations will be explained with the help of clean sheet cycle designs with the corresponding off-design performance. The achievement of hot day performance and improved durability with high BPR designs, and the benefit from core supercharging has been presented. Next, the use of on-line control effector modulations, including variable bypass exhaust nozzle, for further improvement in cruise SFC (up to an indicated 2.6%) is shown. This is followed by a discussion of medium BPR mixed exhaust designs which have a performance advantage compared to the same BPR separate exhaust configurations.
2016-09-20
Technical Paper
2016-01-2052
Virgilio Valdivia-Guerrero, Ray Foley, Stefano Riverso, Parithi Govindaraju, Atiyah Elsheikh, Leonardo Mangeruca, Gilberto Burgio, Alberto Ferrari, Marcel Gottschall, Torsten Blochwitz, Serge Bloch, Danielle Taylor, Declan Hayes-McCoy, Andreas Himmler
Abstract This paper presents an overview of a project called “Modelling and Simulation Tools for Systems Integration on Aircraft (MISSION)”. This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modeling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the Aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multi-physics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
2016-09-20
Technical Paper
2016-01-2039
Prashant S. Vadgaonkar, Ullas Janardhan
Avionics industry is moving towards fly-by wire aircrafts with less reliance on mechanical systems leading to increase in the complexity of in-flight hardware elements. RTCA/DO-254 and EUROCAE ED-80 plays a vital role in the design assurance of airborne electronic hardware. RTCA/ DO-254 and EUROCAE ED-80 are the industry standards for Design Assurance Guidance for Airborne Electronic Hardware. The two different agencies FAA and EU regulate and apply this design assurance guidance to the regulatory law in CFR and EASA CS respectively. This paper discusses the need for DO-254 /ED-80 certification in Aerospace industry, the advantages and benefits to the avionics manufacturers. The paper presents the study made on similarities and differences between DO-254/ED-80.
2016-09-20
Journal Article
2016-01-1976
Kiran Thupakula, Adishesha Sivaramasastry, Srikanth Gampa
Abstract Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
2016-09-20
Journal Article
2016-01-2024
Allan J. Volponi, Liang Tang
Abstract Engine module performance trending and engine system anomaly detection and identification are core capabilities for any engine Condition Based Maintenance system. The genesis of on-condition monitoring can be traced back nearly 4 decades, and a methodology known as Gas Path Analysis (GPA) has played a pivotal role in its evolution. GPA is a general method that assesses and quantifies changes in the underlying performance of the major modules of the engine (compressors and turbines) which directly affect performance changes of interest such as fuel consumption, power availability, compressor surge margins, and the like. This approach has the added benefit in that it enables anomaly detection and identification of many engine system accessory faults (e.g., variable stator vanes, handling and customer bleeds, sensor biases and drift).
2016-09-18
Technical Paper
2016-01-1937
Taylor Erva, Adam Loukus, Luke Luskin
Abstract Aluminum metal matrix composite brake rotors with a selective ceramic function reinforcement gradient (FRG) have been developed for automotive applications. This paper will highlight the design, manufacturing, and testing of the rotors. Weight saving of an aluminum composite rotor in comparison to an industry standard cast iron rotor is 50-60%. With this material change comes design considerations to manage rotor temperature, rotor surface integrity, and friction. Manufacturing methods to meet these design constraints were needed to develop a viable high performance aluminum composite rotor. High pressure squeeze casting with soluble coring techniques were developed to incorporate the selective FRG MMC rotors. Dynamometer testing was performed, concentrating on brake friction and temperature to evaluate the macro and micro interfaces in the rotors.
2016-09-14
Technical Paper
2016-01-1872
Bin Wu, Xichan Zhu, Lin li
Abstract Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
2016-04-05
Technical Paper
2016-01-0571
Guillaume Bernard, Mark Scaife, Amit Bhave, David Ooi, Julian Dizy
Abstract Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
2016-04-05
Journal Article
2016-01-0540
Minoru Akahori, Tatsuya Kano, Takayoshi Takahira, Tetsuo Goto, Katsuhiro Kajikawa, Nobuyo Kondo
Abstract A highly anti-corrosive organic-inorganic hybrid paint for automotive steel parts has been developed. The inorganic component included in the paint is silicon dioxide (SiO2), which has the capability to passivate zinc. By application of the paint on a trivalent chromatetreated zinc-plated steel sheet or a trivalent chromate-treated zinc-nickel-plated steel sheet, high anti-corrosion protection can be provided to steel materials. Particularly in the case of application over a zinc-nickel-plated steel sheet, 0 mm corrosion depth after a cyclic corrosion test (CCT) of 450 cycles was demonstrated.
2016-04-05
Journal Article
2016-01-0687
Weiyong Tang, Bob Chen, Kevin Hallstrom, Ansgar Wille
Nowadays the Chinese legislative development and the implementation of advanced technologies to curb HDD emissions have been a subject of worldwide attention. Currently China is warping its efforts to deploy and enforce the launch of nationwide Stage IV and is also preparing for the setup and implementation of future regulation standards. Focus discussion here is on the aftertreatment pathways to meet China current and future emissions standards, based on market uniqueness. This paper seeks to provide retrospectives of the adoption of V-SCR on China stage IV HDD vehicles, through presenting findings from two separate postmortem analyses of field returned catalyst parts and also through comparative study with local catalyst products. The paper also discusses the challenges and possible solutions meeting the WHTC requirement for Stage IV and V city vehicles.
2016-04-05
Technical Paper
2016-01-1584
Kenichi Ando, Naoshi Kuratani, Hideo Fukuda
Abstract An aerodynamic styling evaluation system employed at an early automotive development stage was constructed. The system based on CFD consists of exterior model morphing, computational mesh generation, flow calculation and result analysis, and the process is automatically and successively executed by process automation software. Response surfaces and a parallel coordinates chart output by the system allow users to find a well-balanced exterior form, in terms of aerodynamics and exterior styling, in a wide design space which are often arduous to be obtained by a conventional CAE manner and scale model wind tunnel testing. The system was designed so that 5-parameter study is completed within approximately two days, and consequently, has been widely applied to actual exterior styling development. An application for a hatchback vehicle is also introduced as an actual example.
2016-04-05
Technical Paper
2016-01-1573
Ken Archibald, Kyle Archibald, Donald Neubauer
Abstract This paper will document a rationale for wheel straightening based on the rise of declining roads, increased consumer preference for lower profile tires, unintended consequences of wheel customization and the reduction in energy consumption. A recommended patented procedure detailing how A356-T6 wheels can be straightened will be presented. To validate the recommended procedure a sample of wheels was uniformly deformed and straightened and subsequently tested per SAE J328 and SAE J175. Test results are provided that indicate straightened wheels should be fully serviceable in their intended service. A laboratory protocol to replicate the wheel flange cracks is described. The protocol is used to demonstrate that wheels without deformations do not result in flange cracks. Conversely wheels with deformations in excess of 1.5mm do result in cracks at less than 750,000 cycles.
2016-04-05
Technical Paper
2016-01-1537
Anindya Deb, Gunti R. Srinivas, Clifford C. Chou
Abstract The present work is concerned with the objective of developing a process for practical multi-disciplinary design optimization (MDO). The main goal adopted here is to minimize the weight of a vehicle body structure meeting NVH (Noise, Vibration and Harshness), durability, and crash safety targets. Initially, for simplicity a square tube is taken for the study. The design variables considered in the study are width, thickness and yield strength of the tube. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value. The optimum solution is then obtained by using traditional gradient-based search algorithm functionality “fmincon” in commercial Matlab package.
2016-04-05
Technical Paper
2016-01-1419
Helen S. Loeb, Sam Chamberlain, Yi-Ching Lee
Abstract Motor vehicles crashes are the leading cause of injury and death of US teens. Driving simulators offer a way to safely expose drivers to specific events in a controlled and repeatable manner. They empower researchers by enabling them to compare different groups and driving behaviors and assess the cognitive and attention skills that are essential to safe driving. Classically, assessment of eye glances and gaze duration relies largely on time-consuming data reduction and video coding. In addition, the synchronization of eye tracker and simulator data is essential to a valid analysis of the eye glances patterns in relation to the driving scenario. To better understand and quantify eye glances in relation to a driving scene, Eyesync was developed as a synchronization bridge between an eye tracker and a driving simulator. It allows the real time synchronization and logging of eye tracking and simulator data. The design of the software is presented in this paper.
Viewing 181 to 210 of 10339