Criteria

Display:

Results

Viewing 121 to 150 of 10339
2017-03-28
Journal Article
2017-01-1099
Seiji Masunaga, Terufumi Miyazaki, Yohei Habata, Kazuhiko Yamada, Yoshio Hasegawa, Takahiro Kondo, Ichiro Kitaori, Akira Takeichi
Abstract Toyota Motor Corporation has developed an innovative 10-speed longitudinal automatic transmission called the Direct Shift-10AT. The Direct Shift-10AT is a significant contributor to the excellent dynamic performance of the Lexus LC500. A wide gear spread with close gear ratios allows for rhythmical shifting, smooth and powerful acceleration from a standing start, along with quiet and relaxed high- speed driving due to low engine speeds. The lock-up area is expanded to a wider range of vehicle speeds (excluding low-speed regions such as when starting off), by the adoption of a multi-plate lock-up clutch, a newly developed torque converter, and a high-precision controller. As a result, the shift control can match the driver's intended operation more directly because the main cause of the response delay (transient changes in engine speed (flare)) is eliminated. Furthermore, fuel economy is improved due to the adoption of low friction clutches.
2017-03-28
Journal Article
2017-01-0322
Samer Abbas, John Joyce
Abstract When analyzing the failure rate (or occurrence) of a system failure cause, the typical approach is to obtain an occurrence rating from the results of testing. However, in many cases, the occurrence of a system failure cause can be derived from a combination of occurrences of failure causes of the element (sub-system) failure mode coinciding with the system failure cause being assessed. This paper explores a few approaches for deriving occurrences from element FMEAs over a majority of cases before settling on a probabilistic approach that converts occurrences to worst-case failure rates to achieve the most fine-tuned combined occurrence rating. Finally, a “complex analysis” worksheet, where the logical combination of occurrences and failure rates is custom defined by the engineer, is introduced for handling special cases.
2017-03-28
Journal Article
2017-01-0325
Samer Abbas, John Joyce
Abstract Severity-mitigating mechanisms (typically software-based) detect failures in a system and perform functions in order to reduce the severities of failures. Various approaches to FMEA analysis of severity-mitigating mechanisms exist within the industry. Three are compared and contrasted. Each method is compared against its ability to capture the three fundamental failures of a system that has severity-mitigating mechanisms: 1 a failure occurs and mitigating action is taken,2 a failure occurs and mitigating action is not taken,3 no failure occurs but mitigating action is taken. One method is advocated over the others because it: uses existing FMEA formatting; addresses all three cases; supports consistent linkage between FMEAs in a hierarchy of systems with any number of layers.
2017-03-28
Journal Article
2017-01-0551
Alessandro D'Adamo, Sebastiano Breda, Salvatore Iaccarino, Fabio Berni, Stefano Fontanesi, Barbara Zardin, Massimo Borghi, Adrian Irimescu, Simona Merola
Abstract Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities. To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
2017-03-28
Journal Article
2017-01-0622
Sury Janarthanam, Sarav Paramasivam, Patrick Maguire, James Gebbie, Douglas Hughes
Abstract Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
2017-03-28
Journal Article
2017-01-0642
Richard Osborne, Trevor Downes, Simon O'Brien, Ken Pendlebury, Mark Christie
Abstract The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
2017-03-28
Journal Article
2017-01-1297
Robert Peckham, Sumit Basu, Marcelo Ribeiro, Sandra Walker
Abstract This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
2017-03-28
Journal Article
2017-01-1522
Thomas Blacha, Moni Islam
Abstract The aerodynamic development of the new Audi Q5 (released in 2017) is described. In the course of the optimization process a number of different tools has been applied depending on the chronological progress in the project. During the early design phase, wind tunnel experiments at 1:4 scale were performed accompanied by transient DES and stationary adjoint simulations. At this stage the model contained a detailed underbody but no detailed engine bay for underhood flow. Later, a full scale Q5 model was built up for the aerodynamic optimization in the 1:1 wind tunnel at Audi AG. The model featured a detailed underbody and engine bay including original parts for radiators, engine, axles and brakes from similar vehicles. Also the 1:1 experiments were accompanied by transient DES and stationary adjoint simulations in order to predict optimization potential and to better understand the governing flow.
2017-03-28
Technical Paper
2017-01-1021
Masashi hakariya, Tadashi Toda, Mitsuto Sakai
Abstract In order to adapt to energy security and the changes of global-scale environment, further improvement of fuel economy and adaptation to each country’s severer exhaust gas emission regulation are required in an automotive engine. To achieve higher power performance with lower fuel consumption, the engine’s basic internal design such as an engine block and cylinder head were changed and the combustion speed was dramatically increased. Consequently, stroke-bore ratio and valve layout were optimized. Also, both flow coefficient and intake tumble ratio port were improved by adopting a laser cladded valve seat. In addition, several new technologies were adopted. The Atkinson cycle using a new Electrical VVT (Variable Valve Timing) and new combustion technology adopting new multi-hole type Direct fuel Injector (DI) improved engine power and fuel economy and reduced exhaust emissions.
2017-03-14
Journal Article
2016-01-9114
Hoon Lee, Delbert Tesar, Pradeepkumar Ashok
Abstract In order to design the in-wheel motor (IWM) for Electric Vehicles (EV), it is necessary to analyze the desired (expected) duty cycle at a higher performance level in order that the IWM becomes commercially relevant. The duty cycle may be representative of different segments of the customer base. Or, the individual customer may wish to have a set of IWMs that uniquely meet his/her measured “demand” cycle for a balance of drivability and efficiency. Questions then arise: How to measure the demand cycle of an individual? What 2 or 3 standard duty cycles should be offered as customer choices for their vehicle? Should the IWM represent multiple speed domains to enhance efficiency and drivability? Can the vehicle be updated rapidly 2 to 3 years after purchase? Etc. In this paper, we lay the groundwork to answer these types of customer questions for an EV with four independent IWMs.
2017-01-10
Technical Paper
2017-26-0257
Mandar Bhatkhande, Rahul Mahajan, Amol Joshi
Abstract Front windscreen wiping test is legal requirement for all motor vehicles as per standards like IS15802:2008 [1], IS15804:2008 [2] in India. This test requires windscreen mock-up/actual vehicle to be tested along with all wiping mechanisms such that minimum percentage areas to be wiped should meet the requirements specified in the IS standard. From manufacturer’s perspective this involves investment of lot of time and cost to arrive at the final design solution in order to meet the wiping requirements. The work scope in this paper is limited to bus category of vehicles. The methodology presented in this paper would enable quick design solutions for bus body builders or manufacturers to meet the wiping requirements specified in IS standard. The methodology presented in this paper was developed to carry out windscreen wiping test through commercially available simulation software.
2017-01-10
Technical Paper
2017-26-0268
Ashit Kumar, Amarjeet Singh, Dinesh S Dhankhar, Felix Regin
Abstract Recent automotive trend shows that customer demand is moving towards bigger size vehicle with more comfort, space, safety, feature and technology. Global market of SUV is projected to surpass 21 million units by 2020. Despite economic slowdown and weak new car sales worldwide, India and China will continue to be primary market for SUV due to sheer size of population, urban expanding middle class and larger untapped rural market. However, stricter emission norms push for clean and green technology and unfavorable policy towards use of diesel vehicle has made the SUV design very challenging due to conflicting needs. Due to bigger size of vehicle, aerodynamic design plays an important role in achieving emission targets and higher fuel efficiency. This paper highlights the aerodynamic development of Maruti Suzuki Vitara Brezza, which is an entry level SUV vehicle with high ground clearance of 198 mm and best in class fuel economy of 24.3 kmpl.
2017-01-10
Technical Paper
2017-26-0267
Durga Prasad Mohapatra, Suhas Kangde, Abhijit Londhe, N N Srikanth, Pravin Singh
Abstract Exhaust system is one of the complex automotive systems in terms of performance and strength prediction due to combination of transient mechanical and thermal loads acting on it simultaneously. Traditionally, most of automotive vehicles have exhaust systems with hot end mounted on engine and cold end mounted on chassis or BIW through hangers. A new powertrain mounted exhaust system was developed in-house. This exhaust system underwent validation and evaluation during development phase. Durability concerns were observed on exhaust system in Track test and gear shift durability test. This paper focuses on identifying the root cause of these concerns based on the failures observed during evaluation in Accelerated Durability (ADT) and gear shift durability (GSD) tests. Based on the architecture and packaging space challenges in vehicle, engine is mounted on two mounts and a roll restrictor.
2017-01-10
Technical Paper
2017-26-0179
Murugesan Venkatesan, VE Annamalai
Abstract The Indian Economy is becoming significant in the late years. There will be more middle class individuals in the coming years having higher purchasing power, bringing about sharp increment in the ownership of vehicles. The quantity of End-of-Life Vehicles (ELVs) in 2015 is evaluated at 8.7 million and by 2025, this figure is assessed to ascend to 21.8 million. Car breaking yards' ELV recycling practices result in inadequate resource recovery and various forms of pollution. 75-80% of the ELV constitutes of metal and recycled due to its economic benefits. The rest of the 25-30% comprises of plastics, rubber, glass and operating fluids which are mostly disposed off in land or water. Existing international literature has analyzed ELV recycling and remanufacturing practices in India as separate topics.
2017-01-10
Technical Paper
2017-26-0225
Yakov lobachevskii, Zahid Godzhaev, Vladimir Shevtsov, Alexandr Lavrov, Aleksandr Merzlyakov, Oleg Sizov
Abstract The present article addresses issues related to the development of a scientifically-based classification of agricultural tractors with consideration of problems associated with international harmonization of testing requirements and classification parameters; it describes the disadvantages of classification of tractors by maximum towing power achieved on a concrete surface, which is used abroad. The authors state the requirements for towing and power classification of agricultural tractors, which should act as a framework for energy harmonization of sets of tractors with sets of machines independently from developers and manufacturers; and demonstrate the need for harmonization of typical size classification series of towing and power parameters with series of preferred numbers recommended by International Organization for Standardization (ISO).
2017-01-10
Technical Paper
2017-26-0088
Christoph Danzer, Jens Liebold, Erik Schreiterer, Jörg Mueller
Abstract Currently known hybrid systems are technically complex, cost-intensive and referring to this for many end-customers not available. Under this boundaries IAV has developed a cost-optimal concept of an efficient and modular powertrain platform for electric and hybrid vehicles. The system is based on one unity gear-set for up to three speeds, which enables seamless shifting with only one friction based clutch. With this platform powertrains can be realized by using a maximum number of carry over parts (COP) for electric vehicles as well as for hybrids. The derivable hybrid powertrains of the platform system are designed for 48V electric motors (EM) which enables the maximum cost potential in combination with the realized gear set and transmission technology. The real simple powertrain platform concept is furthermore scalable for different vehicle segments optionally with or without a hybrid option.
2017-01-10
Technical Paper
2017-26-0078
Nandagopalan Chidambaram, Sridhar Prasad Chandrasekar, VM Maheshwar, Prabaharan Palanivelu, Aravapalli Sriniwas
Abstract In the past few decades, improvement on fuel efficient technologies have progressed rapidly, whereas little emphasis is being made on how the vehicle should be driven. Driving habits significantly influences fuel consumption and poor driving habits leads to increased fuel consumption. In this paper a new system called “Green Drive” is being presented wherein driving habits are closely monitored, evaluated and details are systematically presented to the user. Green Drive system monitors key driving parameters like speed, gear selection, acceleration, unwanted engine idling periods, aggressive braking and clutch override and presents an ecoscore on the infotainment system which is reflection of users driving behavior. The system also offers guidance on the scope for improving driving habits to achieve better ecoscore and hence reduced fuel consumption.
2017-01-10
Technical Paper
2017-26-0079
Soumyo Das, Prashantkumar B. Vora
Abstract The tracking of objects for an autonomous vehicle requires sufficiently reliable data processing and association. In this paper, the signal data processing of sensed LIDAR and the multiple target track management algorithm of a maneuvering vehicle are presented. The algorithm is employed for 2D LIDAR sensor mounted in a moving vehicle and navigating in a high-way. The adaptive segmentation, feature creation from point cloud, data association and prediction modelling are the key features of track management. Initialization of the track has been developed based on constant velocity model hypothesis in order to facilitate target management in a high-way crowded environment. The multiple target tracking are associated with feature identification of the targets and also prediction modelling of moving occluded object. The prediction model of moving vehicles and pedestrians are the focus area of this research.
2017-01-10
Technical Paper
2017-26-0036
Ingo Steinberg, Dan Freiholtz, Gereon Hellenbroich
Abstract The reduction of CO2 emissions at vehicle level through the improvement of transmission efficiency represents the essential goal of transmission development engineers. New requirements, such as the recovery of the kinetic energy of the vehicle while coasting, the hybridization of drivetrains and autonomous driving, are challenges that can best be overcome with automatic transmissions. Dual clutch transmissions (DCT) with power-on-demand actuation systems offer a particularly efficient method of meeting the new requirements. However, many markets show vehicle applications with production volumes of less than 100.000 units per year. FEV’s new DCT family is conceived especially for customers in these markets. The re-use of proven subsystems which are already in series production results in a "business case" for applications with lower volumes also. This article introduces this transmission family.
2017-01-10
Technical Paper
2017-26-0017
Celine Adalian, Alba Fornells, Núria Parera
Abstract In the 70’s, to reduce vehicle crash fatalities, NHTSA launched a Program, called NCAP, to compare the safety of cars. This Program was copied in Europe and around the world. It has been demonstrated that this kind of public assessment has forced OEM’s to invest in safety and to develop safer vehicles. Nowadays, NCAPs exist for nearly all regions around the world; all of them with the aim of improving vehicle safety. They apply the philosophy of an “overall rating”. In that way the information aims to be clearer and more general and will help to compare cars. Nevertheless, even though in every NCAP the overall assessment is given by a unique star rating, the specifications and requirements in each protocol are different. Each NCAP has been adapted to each region’s conditions, accidentology and traffic and therefore assessment criteria have their own peculiarities.
2017-01-10
Technical Paper
2017-26-0018
Douglas Eddy, Shreyas Patil, Sundar Krishnamurty, Ian Grosse, Chandrashekhar Thorbole
Abstract Prevention of passenger ejection from motor coach seats in the case of rollover and frontal crashes is critical for minimizing fatalities and injuries. This paper proposes a novel concept of affordably retrofitting 3-point seatbelts to protect passengers during these significant crash scenarios. Currently, the available options involve replacement of either the entire fleet, which takes time to avoid extremely high costs, or all seats with new seats that have seatbelts which is still expensive. Alternatively, this paper presents the development of an innovative product that can be installed in seat belt-ready bus structures at a fraction of the cost. The efficacy of the design is studied using finite element analysis (FEA) to meet Federal Motor Vehicle Safety Standards (FMVSS) 210 standards for conditions involved in frontal and side impacts.
2017-01-10
Technical Paper
2017-26-0001
Kuldeep Singh, Anoop Chawla, Sudipto Mukherjee, Pradeep Agrawal
Abstract The importance of on-site, in-depth accident research studies has been recognized internationally especially in developed countries. In order to address problems related to road safety, it is important to understand the epidemiology and causation of crashes. For this an in-depth investigation of the crash site, vehicles involved and injury details is required. Detailed crash information helps in analysing the events leading to crash and developing safety measures and/or intervention to reduce crashes. In order to pilot such an activity in India, an in-depth accident data collection activity had been carried out on national highway connecting Delhi to Jaipur (NH-8) for a duration of over a year by a joint team of IIT-Delhi and NATRiP. A total of 1220 road traffic accidents (RTA) notifications were received by the team, of which 186 cases were attended and detailed data was collected in a pre-decided format.
2017-01-10
Technical Paper
2017-26-0137
Marco Schöggl, Ernst-Georg Lorinser
Abstract With the official publication of the “RDE package 1” on 31st March 2016 the long awaited start of RDE testing is now fixed. This event marks a milestone in the emission legislation for passenger cars and is the first of a series of four RDE packages to fade-in real world testing of passenger cars in Europe. During the same time India announced in the Gazette of India on 19th February, 2016 - G.S.R. 187(E). - the draft of introduction of Bharat VI by April 1st 2020 [5] which also should include the Real Driving Emissions (RDE) on-road certification as per procedure laid down in AIS137 and as amended from time to time. As European RDE legislation will be the baseline for Indian RDE legislation rules this paper will highlight the differences and challenges expected between the requirements in Europe compared to India during the first tests done by AVL Technical Center Private Limited located in Gurgaon.
2017-01-10
Technical Paper
2017-26-0144
Dominik Lamotte, Peter Neumann, Klaus Schrewe
Abstract Emissions of diesel engine are considered to be harmful to health especially particulate emissions. Therefore, the introduction of diesel particulate filters (DPF) were successively forced by government due to reducing the emission limits to a level where inner engine measures are not sufficient anymore. To limit additional fuel consumption by increasing backpressure over the DPF, the collected soot has to be regenerated continuously or discrete by active regeneration. Active regeneration is usually realized by injecting additional fuel either due to the engines injection system into the combustion chamber (late post injection) or via an additional fuel injection device in the exhaust line. This enables increasing exhaust temperature and / or an exothermic reaction in the diesel oxidation catalyst (DOC) of the aftertreatment system.
2017-01-10
Technical Paper
2017-26-0145
Benjamin Rodriguez Sharpe, Oscar Delgado, Mehul Garg
Abstract This analysis is a comprehensive assessment of the fuel-saving technologies and technology packages for three representative diesel HDV types in India: a 40-tonne Gross Vehicle Weight (GVW) tractor-trailer, 25-tonne rigid truck, and a 16-tonne transit bus. These representative vehicle types are modeled after top-selling models in the Indian market based on sales data from fiscal year 2013-14. To model these vehicle types are accurately as possible, the study team acquired detailed engine maps that match the engine models in the respective vehicles and sought input on other vehicle systems from some of the leading Indian HDV manufacturers and suppliers. Using Autonomie as the vehicle simulation platform, the authors investigate the fuel consumption impacts of both individual technologies and combinations of technologies in the following areas: engine, transmission, driveline, aerodynamics, tires, material substitution (i.e., curb weight reduction), and hybridization.
2017-01-10
Journal Article
2017-26-0256
Roman Liessner, Ansgar Dietermann, Bernard Bäker, Klaus Lüpkes
Abstract The reduction of fuel consumption as well as the rising demands of customers regarding a vehicle’s driving dynamic and the legislator’s continually rising demands are a current issue in vehicle development. Hybrid vehicles offer a possibility to rise to this challenge. Realistic driving cycles are of utmost importance for the calibration of a hybrid vehicle’s operational strategy. Deriving replacement speed cycles from extensive customer data sets seems to be an approach for solving these problems. The contribution at hand describes the derivation of replacement cycles by using stochastic models, probabilistic (weighted) drawings and a combinatorial optimisation. The novelty value is that the characteristic influences of all drivers are being considered in the generation due to the stochastic modelling.
2017-01-10
Journal Article
2017-26-0275
Prashant Pawar, Omkar Joshi, Mangesh Saraf
Abstract Design of vehicle for targeted customer usage is one of the key steps during vehicle development process. Due to globalization, most of vehicles, aggregates, components are being designed for global market considering worldwide load spectrum. Generally for doing this the vehicle response is being measured for different markets but this process is very time consuming. Also for getting these vehicle dependent parameters, exercises need to be repeated on each type/class of vehicle. So there is a need to have a robust procedure, tools which will helps OEM’s to predict the loads, vehicle response for different market segments at an early stage of vehicle development program using the inputs which are vehicle independent. The solution for this could be to use vehicle independent input such as digitized road profiles (2D or 3D) of target customer markets in combination with proper MBD simulation tools.
2017-01-10
Journal Article
2017-26-0026
Sameer Inamdar, M Ravisankar, Anupam Panwar, S Sridhar, Viswanatha Hosur, K Chandru
Abstract In the emerging technology trend, there is continuous demand for increase in engine performance in terms of power & torque while providing competitive fuel efficiency. Understanding and fulfillment of complex customer requirements with affordable technology is extremely challenging. In order to meet potential conflicting needs and offer ‘fun to drive’ experience to customers, Tata Motors has developed first in segment turbocharged gasoline MPFI engine. Further in order to create market differentiator, multi drive modes were introduced as segment first feature. The boosted compact 1200 cc engine while developing 90 Ps power, delivers 140 N-m torque over a wide range of 1500-4000 rpm, best suited for Indian drive conditions. This performance boost is nearly 40% over and above performance of comparable NA engine without any compromise on vehicle level fuel efficiency.
2017-01-10
Journal Article
2017-26-0119
Ragupathi Soundara Rajan, Vijay Sharma, Ashraf Emran, Devising Rathod, John Henry Kwee, Thorsten Michaelis-Hauswaldt, Thomas Körfer
Abstract The emission legislations are becoming increasingly strict all over the world and India too has taken a big leap in this direction by signaling the migration from Bharat Stage 4 (BS 4) to BS 6 in the year 2020. This decision by the Indian government has provided the Indian automotive industry a new challenge to find the most optimal solution for this migration, with the existing BS 4 engines available in their portfolio. Indian market for the LCV segment is highly competitive and cost sensitive where the overall vehicle operation cost (vehicle cost + fluid consumption cost) is the most critical factor. The engine and after-treatment technology for BS 6 emission levels should consider the factors of minimizing the additional hardware cost as well as improving the fuel efficiency. Often both of which are inversely proportional. The presented study involves the optimization of after treatment component size, layout and various systems for NOx and PM reduction.
2016-12-21
Journal Article
2016-01-9082
Bradley Michael, Rani Sullivan, Dulip Samaratunga, Ratneshwar Jha
Abstract Polymer matrix composites are increasingly adopted in aerospace and automotive industries due to their many attributes, such as their high strength to weight ratio, tailorability, and high fatigue and durability performance. However, these materials also have complex damage and failure mechanisms, such as delaminations, which can severely degrade their strength and fatigue performance. To effectively and safely use composite materials in primary structures, it is essential to assess composite damage response for development of accurate predictive models. Therefore, this study focuses on determining the response of damaged and undamaged carbon epoxy beams subjected to vibration loadings at elevated temperatures. The Hilbert-Huang Transform (HHT) technique is used to analyze the beams’ modal response. The HHT shows potential in identifying the nonlinear damaged response of the beams.
Viewing 121 to 150 of 10339