Criteria

Display:

Results

Viewing 61 to 90 of 10324
2017-03-28
Journal Article
2017-01-0245
Kanna Akella, N. Venkatachalam, K. Gokul, Keunho Choi, Ramachandraprabhu Tyakal
Abstract Voice of customer is typically captured through multiple connect points like surveys, warranty claims, social media, and so on. Customer verbatim is collected through these connect points to encourage free expression of opinion by customers. Such verbatim data is generally of high value and is typically analyzed using Natural Language Processing (NLP) techniques for translating into influencing actions in manufacturing, customer service, marketing, and product development departments. One of the challenges in analyzing unstructured verbatim data is to map that data onto appropriate concern codes (CCCs), which are typically used in automotive firms for tracking quality and satisfaction metrics. These concern codes map to a hierarchy of function areas in the organization aimed at improving product, service and hence the customer’s overall experience.
2017-03-28
Journal Article
2017-01-0237
Jonas Biteus, Tony Lindgren
Abstract Maintenance planning of trucks at Scania have previously been done using static cyclic plans with fixed sets of maintenance tasks, determined by mileage, calendar time, and some data driven physical models. Flexible maintenance have improved the maintenance program with the addition of general data driven expert rules and the ability to move sub-sets of maintenance tasks between maintenance occasions. Meanwhile, successful modelling with machine learning on big data, automatic planning using constraint programming, and route optimization are hinting on the ability to achieve even higher fleet utilization by further improvements of the flexible maintenance. The maintenance program have therefore been partitioned into its smallest parts and formulated as individual constraint rules. The overall goal is to maximize the utilization of a fleet, i.e. maximize the ability to perform transport assignments, with respect to maintenance.
2017-03-28
Journal Article
2017-01-0241
Thiago B. Murari, Paulo Ungaretti, Marcelo A. Moret
Abstract Geometric Dimensioning and Tolerancing is used to describe the allowed feature variations regarding the product design. Tolerance specification is important in many stages of all phases on product development. The product development engineering need to define the symbols to use on the Feature Control Frame of every component. Since the component function has an increment on its complexity year over year, it is not trivial to define those symbols anymore. The determination of dimensional tolerance shall be preceded by careful specification of the types of tolerance and symbols that will be applied in controlled features. Poor tolerance specifications can increase the production cost, require late product changes or lead to legal issues.
2017-03-28
Journal Article
2017-01-0247
N. Khalid Ahmed, Jimmy Kapadia
Abstract Electrified vehicles including Battery Electric Vehicles (BEVs) and Plug-In Hybrid Vehicles (PHEVs) made by Ford Motor Company are fitted with a telematics modem to provide customers with the means to communicate with their vehicles and, at the same time, receive insight on their vehicle usage. These services are provided through the “MyFordMobile” website and phone applications, simultaneously collecting information from the vehicle for different event triggers. In this work, we study this data by using Big Data Methodologies including a Hadoop Database for storing data and HiveQL, Pig Latin and Python scripts to perform analytics. We present electrified vehicle customer behaviors including geographical distribution, trip distances, and daily distances and compare these to the Atlanta Regional Survey data. We discuss customer behaviors pertinent to electrified vehicles including charger types used, charging occurrence, charger plug-in times etc.
2017-03-28
Journal Article
2017-01-0322
Samer Abbas, John Joyce
Abstract When analyzing the failure rate (or occurrence) of a system failure cause, the typical approach is to obtain an occurrence rating from the results of testing. However, in many cases, the occurrence of a system failure cause can be derived from a combination of occurrences of failure causes of the element (sub-system) failure mode coinciding with the system failure cause being assessed. This paper explores a few approaches for deriving occurrences from element FMEAs over a majority of cases before settling on a probabilistic approach that converts occurrences to worst-case failure rates to achieve the most fine-tuned combined occurrence rating. Finally, a “complex analysis” worksheet, where the logical combination of occurrences and failure rates is custom defined by the engineer, is introduced for handling special cases.
2017-03-28
Journal Article
2017-01-0325
Samer Abbas, John Joyce
Abstract Severity-mitigating mechanisms (typically software-based) detect failures in a system and perform functions in order to reduce the severities of failures. Various approaches to FMEA analysis of severity-mitigating mechanisms exist within the industry. Three are compared and contrasted. Each method is compared against its ability to capture the three fundamental failures of a system that has severity-mitigating mechanisms: 1 a failure occurs and mitigating action is taken,2 a failure occurs and mitigating action is not taken,3 no failure occurs but mitigating action is taken. One method is advocated over the others because it: uses existing FMEA formatting; addresses all three cases; supports consistent linkage between FMEAs in a hierarchy of systems with any number of layers.
2017-03-28
Journal Article
2017-01-0551
Alessandro D'Adamo, Sebastiano Breda, Salvatore Iaccarino, Fabio Berni, Stefano Fontanesi, Barbara Zardin, Massimo Borghi, Adrian Irimescu, Simona Merola
Abstract Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities. To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
2017-03-28
Journal Article
2017-01-0642
Richard Osborne, Trevor Downes, Simon O'Brien, Ken Pendlebury, Mark Christie
Abstract The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
2017-03-28
Journal Article
2017-01-0651
Yaodong Hu, Siyuan Feng, Changsheng Yao, Wenbo Shao, Lubing Xu, Xieyuan Zhang, Li Lin, Jinyu Zhang, Fuyuan Yang, Rusheng Yan
Abstract This paper conducts an investigation on the operating cycle of Bus No. 306, which is equipped with wireless charging system, in Changsha, Hunan Province, China. The wireless charging system and electric buses are manufactured by ZTE Corporation (Zhongxing Telecommunication Equipment Corporation) and BYD Company Limited, respectively. In this paper, the operating cycle is quantified and modeled based on experimental data. The real-time bus route and SOC (state of charge) during daytime operation are recorded with the help of GPS (global position system) and BMS (battery management system). The wireless charging process is tested with a power analyzer and its charging efficiency is compared with a plug-in system. Besides, the radiation level while charging is also taken into consideration. Currently, the buses are designed to operate in daytime and get charged at night.
2017-03-28
Journal Article
2017-01-1277
Jakobus Groenewald, Thomas Grandjean, James Marco, Widanalage Widanage
Abstract Increasingly international academic and industrial communities desire to better understand, implement and improve the sustainability of vehicles that contain embedded electrochemical energy storage. Underpinning a number of studies that evaluate different circular economy strategies for the electric vehicle (EV) battery system are implicit assumptions about the retained capacity or State-of-Health (SoH) of the battery. International standards and best-practice guides exist that address the performance evaluation of both EV and HEV battery systems. However, a common theme in performance testing is that the test duration can be excessive and last for a number of hours. The aim of this research is to assess whether energy capacity and internal resistance measurements of Li-ion based modules can be optimized, reducing the test duration to a value that may facilitate further End-of-Life (EoL) options.
2017-03-28
Journal Article
2017-01-1273
Qiang Dai, Jarod C. Kelly, Amgad Elgowainy
Abstract Vehicle lightweighting has been a focus of the automotive industry, as car manufacturers seek to comply with corporate average fuel economy (CAFE) and greenhouse gas (GHG) emissions standards for model year (MY) 2017-2025 vehicles. However, when developing a lightweight vehicle design, the automotive industry typically targets maximum vehicle weight reduction at minimal cost increase. In this paper, we consider the environmental impacts of the lightweighting technology options. The materials used for vehicle lightweighting include high-strength steel (HSS), aluminum, magnesium and carbon fiber reinforced plastic (CFRP). Except for HSS, the production of these light materials is more GHG-intensive (on a kg-to-kg basis) compared with the conventional automotive materials they substitute. Lightweighting with these materials, therefore, may partially offset the GHG emission reductions achieved through improved fuel economy.
2017-03-28
Journal Article
2017-01-1099
Seiji Masunaga, Terufumi Miyazaki, Yohei Habata, Kazuhiko Yamada, Yoshio Hasegawa, Takahiro Kondo, Ichiro Kitaori, Akira Takeichi
Abstract Toyota Motor Corporation has developed an innovative 10-speed longitudinal automatic transmission called the Direct Shift-10AT. The Direct Shift-10AT is a significant contributor to the excellent dynamic performance of the Lexus LC500. A wide gear spread with close gear ratios allows for rhythmical shifting, smooth and powerful acceleration from a standing start, along with quiet and relaxed high- speed driving due to low engine speeds. The lock-up area is expanded to a wider range of vehicle speeds (excluding low-speed regions such as when starting off), by the adoption of a multi-plate lock-up clutch, a newly developed torque converter, and a high-precision controller. As a result, the shift control can match the driver's intended operation more directly because the main cause of the response delay (transient changes in engine speed (flare)) is eliminated. Furthermore, fuel economy is improved due to the adoption of low friction clutches.
2017-03-28
Journal Article
2017-01-1295
Andres Toledo, Rodrigo Felix
Abstract Political and social trends in the automotive industry production and consumption have changed in the last decade, driving a demand for more efficient, low-fuel consuming, clean vehicles in most markets nowadays. Recently the demand for such vehicles has been increasing and emerging markets are no exception; automakers all around the world have invested heavily in developing new electrification technologies that would comply with the newer and stricter regulations and environmental policies, being Start-Stop systems one of the preferred approaches due to their lower complexity and cost compared to full and mild hybrids. Mexico stands out as a challenge for the implementation of this technology due to its wide range of altitudes, temperatures, traffic jams, and some other contributing factors that can hinder this type of application – especially in its bigger and more populated cities.
2017-03-28
Journal Article
2017-01-1278
Keisuke Isomura
Abstract In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions.
2017-03-28
Technical Paper
2017-01-0632
Chen Yang, Haiyuan Cheng, Zizhu fan, Jiandong Yin, Yuan Shen
Abstract In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of engine systems, especially for combustion system.
2017-03-28
Technical Paper
2017-01-1678
Joseph Antony John Selvaraj, Sivapalan Balanayagam
Modern Instrument Panel Clusters (IPC) are equipped with thin film transistor (TFT) based displays. Contrary to conventional IPCs with hard gauges and liquid crystal diode (LCD) displays, TFT displays offer versatile usage of display area with soft gauges, reconfigurable menus, tell tales, graphics and warning messages etc., At the same time, the number of possible screen combinations, multicolor images validation and different screen arbitration become significantly complex. Thereby display validation turns out to be a complex and time consuming task in IPC validation. The task becomes even more complex when change requests are to be incorporated during final phases of development stage. This paper provides a novel solution that helps to validate any graphical and behavioral changes with minimum effort and maximum accuracy.
2017-03-28
Journal Article
2017-01-1297
Robert Peckham, Sumit Basu, Marcelo Ribeiro, Sandra Walker
Abstract This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
2017-03-28
Journal Article
2017-01-1522
Thomas Blacha, Moni Islam
Abstract The aerodynamic development of the new Audi Q5 (released in 2017) is described. In the course of the optimization process a number of different tools has been applied depending on the chronological progress in the project. During the early design phase, wind tunnel experiments at 1:4 scale were performed accompanied by transient DES and stationary adjoint simulations. At this stage the model contained a detailed underbody but no detailed engine bay for underhood flow. Later, a full scale Q5 model was built up for the aerodynamic optimization in the 1:1 wind tunnel at Audi AG. The model featured a detailed underbody and engine bay including original parts for radiators, engine, axles and brakes from similar vehicles. Also the 1:1 experiments were accompanied by transient DES and stationary adjoint simulations in order to predict optimization potential and to better understand the governing flow.
2017-03-28
Technical Paper
2017-01-0199
Harpreet Grewal, Anthony D'Amato, Kathleen Rossie
Abstract Designing a durability test for an automatic transmission that appropriately reflects customer usage during the lifetime of the vehicle is a formidable task; while the transmission and its components must survive severe usage, overdesigning components leads to unnecessary weight, increased fuel consumption and increased emissions. Damage to transmission components is a function of many parameters including customer driving habits and vehicle and transmission characteristics such as weight, powertrain calibration, and gear ratios. Additionally, in some cases durability tests are required to verify only a subset of the total parameter space, for example, verifying only component modifications. Lastly, the ideal durability test is designed to impose the worst case loading conditions for the maximum number of internal components, be as short as practicable to reduce testing time, with minimal variability between tests in order to optimize test equipment and personnel resources.
2017-03-28
Technical Paper
2017-01-0201
Tejas Janardan Sarang, Amar Phatak, Jay Bendkhale
Abstract In the recent years, the timeline of releasing a new vehicle has decreased drastically due to rapidly changing trends in the automotive industry. Therefore, it is very important to constantly optimize the development phases, starting from concept initiation to the final testing of production ready vehicle. The real world tests conducted on vehicles take huge amount of time, since these tests are carried out for large kilometers to periodically analyze tire wear, clutch wear and brake failure. Collecting large kilometers of CAN data is also tedious and time consuming due to various unwanted variables which add up during real world tests. In this paper, a technique known as Rescaled Range Analysis is adapted to abridge the collection of kilometers data from testing by nearly ten times. This analysis estimates a Hurst coefficient to correlate the entire data with its divided parts. The division factor of the entire data is very crucial for the analysis.
2017-03-28
Technical Paper
2017-01-0202
Zhigang Wei, Raghuram Mandapati, Ranjith Nayaki, Jason Hamilton
Life testing or test-to-failure method and binomial testing method are the two most commonly used methods in product validation and reliability demonstration. The two-parameter Weibull distribution function is often used in the life testing and almost exclusively used in the extended time testing, which can be considered as an accelerated testing method by appropriately extending the testing time but with significantly reduced testing samples. However, the fatigue data from a wide variety of sources indicate that the three-parameter Weibull distribution function with a threshold parameter at the left tail is more appropriate for fatigue life data with large sample sizes. The uncertainties introduced from the assumptions about the underlying probabilistic distribution would significantly affect the interpretation of the test data and the assessment of the performance of the accelerated binomial testing methods, therefore, the selection of a probabilistic model is critically important.
2017-03-28
Technical Paper
2017-01-0232
Nizar Khemri, Hao Ying, Joseph Supina, Fazal Syed
Abstract Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
2017-03-28
Journal Article
2017-01-0236
Zhigang Wei, Kamran Nikbin
In the Big Data era, the capability in statistical and probabilistic data characterization, data pattern identification, data modeling and analysis is critical to understand the data, to find the trends in the data, and to make better use of the data. In this paper the fundamental probability concepts and several commonly used probabilistic distribution functions, such as the Weibull for spectrum events and the Pareto for extreme/rare events, are described first. An event quadrant is subsequently established based on the commonality/rarity and impact/effect of the probabilistic events. Level of measurement, which is the key for quantitative measurement of the data, is also discussed based on the framework of probability. The damage density function, which is a measure of the relative damage contribution of each constituent is proposed. The new measure demonstrates its capability in distinguishing between the extreme/rare events and the spectrum events.
2017-03-28
Technical Paper
2017-01-0235
Qiuming Gong, Jimmy Kapadia
Abstract Plug-in hybrid electric vehicles (PHEV) have an EV mode driving range which can cover a portion of customer daily driving. This EV mode range affects the refuel frequency substantially compared with conventional vehicle. For a conventional vehicle, daily driving pattern, tank size and fuel economy are the factors affecting the refuel frequency. While for a PHEV, EV range is another factor would affect the results substantially. Traditional method of label range can’t represent real world driving range between fill-ups for PHEV well. How to accurately predict the PHEV refuel distance taking into account real world customer driving patterns and PHEV parameters become critical for PHEV system design and optimization. This paper presents real world big customer data based PHEV refuel distance estimation modeling. The target is to estimate PHEV refuel distance given several specific parameters such as EV range, hybrid mode fuel economy, tank size etc.
2017-03-28
Technical Paper
2017-01-0238
Velappan Shalini, Sridharan Krishnamurthy, Srinivasan Narasimhan
Abstract This study compares the model efficacy of Neural Network and Vector Auto Regression. Further it also analyses the impact of predictors controlling for total industry volume. Understanding both the methodologies has their distinctive advantages and disadvantages. Our empirical findings indicate that based on the characteristics of data such as non-stationary, non-linearity and non-normality paves the way for use of machine learning algorithm relative to econometrics technique. Our results suggest that data type and its characteristics are more important in determining the methodology than the methodology itself. In industry, econometrics methodologies are widely used due to their usage simplicity and its ability to explain the relationships in simple terms.
2017-03-28
Journal Article
2017-01-0243
Zhenghui Sha, Veronica Saeger, Mingxian Wang, Yan Fu, Wei Chen
Abstract For achieving viable mass customization of products, product configuration is often performed that requires deep understanding on the impact of product features and feature combinations on customers’ purchasing behaviors. Existing literature has been traditionally focused on analyzing the impact of common customer demographics and engineering attributes with discrete choice modeling approaches. This paper aims to expand discrete choice modeling through the incorporation of optional product features, such as customers’ positive or negative comments and their satisfaction ratings of their purchased products, beyond those commonly used attributes. The paper utilizes vehicle as an example to highlight the range of optional features currently underutilized in existing models. First, data analysis techniques are used to identify areas of particular consumer interest in regards to vehicle selection.
2017-03-28
Technical Paper
2017-01-0173
Stephen Andersen, Sourav Chowdhury, Timothy Craig, Sangeet Kapoor, Jagvendra Meena, Prasanna Nagarhalli, Melinda Soffer, Lindsey Leitzel, James Baker
Abstract This paper quantifies and compares the cooling performance and refrigerant and fuel cost savings to automobile manufacturers and owners of secondary-loop mobile air conditioners (SL-MACs) using refrigerants hydrofluorocarbon (HFC)-134a and the available alternatives HFC-152a and HFO-1234yf. HFC-152a and HFO-1234yf are approved for use by the United States Environmental Protection Agency (US EPA) and satisfy the requirements of the European Union (EU) F-Gas Regulations. HFC-152a is inherently more energy efficient than HFC-134a and HFO-1234yf and in SL-MAC systems can generate cooling during deceleration, prolong comfort during idle stop (stop/start), and allow powered cooling at times when the engine can supply additional power with the lowest incremental fuel use. SL-MAC systems can also reduce the refrigerant charge, emissions, and service costs of HFO-1234yf.
2017-03-28
Journal Article
2017-01-0197
Vasiliki Tsianika, Vasileios Geroulas, Zissimos Mourelatos, Igor Baseski
Abstract Fatigue life estimation, reliability and durability are important in acquisition, maintenance and operation of vehicle systems. Fatigue life is random because of the stochastic load, the inherent variability of material properties, and the uncertainty in the definition of the S-N curve. The commonly used fatigue life estimation methods calculate the mean (not the distribution) of fatigue life under Gaussian loads using the potentially restrictive narrow-band assumption. In this paper, a general methodology is presented to calculate the statistics of fatigue life for a linear vibratory system under stationary, non-Gaussian loads considering the effects of skewness and kurtosis. The input loads are first characterized using their first four moments (mean, standard deviation, skewness and kurtosis) and a correlation structure equivalent to a given Power Spectral Density (PSD).
2017-03-28
Technical Paper
2017-01-0198
Jiliang Zhang, Carolyn Wozniak
Component failures in electrical vehicle (EV) charge stations may lead to a complete loss or reduction of charging power available to the vehicles. The multistate coherent structure is employed to model the system reliability and availability of the charging cabinet and station. The number of vehicles and the customer behavior in choosing charge port is considered in the analysis. The methodology is illustrated with a simplified charging cabinet example. The usefulness of the methodology presented in this paper to EV charge station design and service is further discussed. In summary, the framework of a multistate system reliability modeling is developed for EV charge station, which can be used for further studies. The authors believe it can find many engineering applications in EV charge station and beyond.
2017-03-28
Technical Paper
2017-01-0200
Hongwei Zhang, Liangjin Gui, Zijie Fan
Abstract Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Viewing 61 to 90 of 10324