Criteria

Display:

Results

Viewing 61 to 90 of 10318
2017-03-28
Journal Article
2017-01-1598
Koichi Go, Takahiro Hirano, Tatsuya Miyoshi, Daisuke Sato
Abstract Fuel consumption and CO2 emission regulations for vehicles, such as the Zero Emission Vehicle (ZEV) Regulation, motivate renewable energy technologies in the automotive industry. Therefore, the automotive industry is focused on adopting solar charging systems. Some vehicles have adopted solar energy to power the ventilation system, but these vehicles do not use solar energy to power the drivetrain. One important issue facing the design of solar charging systems is the low power generated by solar panels. Compared to solar panels for residential use, solar panels for vehicles can’t generate as much power because of size and weight limitations. Also, the power generated by solar panels can be extremely affected depending on differences in solar radiation among the cells. Therefore, Toyota has developed a solar charging system that can use solar energy for driving the Prius PHV.
2017-03-28
Technical Paper
2017-01-1651
Douglas Thornburg, John Schmotzer, MJ Throop
Abstract Onboard, embedded cellular modems are enabling a range of new connectivity features in vehicles and rich, real-time data set transmissions from a vehicle’s internal network up to a cloud database are of particular interest. However, there is far too much information in a vehicle’s electrical state for every vehicle to upload all of its data in real-time. We are thus concerned with which data is uploaded and how that data is processed, structured, stored, and reported. Existing onboard data processing algorithms (e.g. for DTC detection) are hardcoded into critical vehicle firmware, limited in scope and cannot be reconfigured on the fly. Since many use cases for vehicle data analytics are still unknown, we require a system which is capable of efficiently processing and reporting vehicle deep data in real-time, such that data reporting can be switched on/off during normal vehicle operation, and that processing/reporting can be reconfigured remotely.
2017-03-28
Journal Article
2017-01-1621
Andre Kohn, Karsten Schmidt, Jochen Decker, Maurice Sebastian, Alexander Züpke, Andreas Herkersdorf
Abstract The increasing complexity of automotive functions which are necessary for improved driving assistance systems and automated driving require a change of common vehicle architectures. This includes new concepts for E/E architectures such as a domain-oriented vehicle network based on powerful Domain Control Units (DCUs). These highly integrated controllers consolidate several applications on different safety levels on the same ECU. Hence, the functions depend on a strictly separated and isolated implementation to guarantee a correct behavior. This requires middleware layers which guarantee task isolation and Quality of Service (QoS) communication have to provide several new features, depending on the domain the corresponding control unit is used for. In a first step we identify requirements for a middleware in automotive DCUs. Our goal is to reuse legacy AUTOSAR based code in a multicore domain controller.
2017-03-28
Technical Paper
2017-01-1622
Ronald Brombach, Anup Gadkari
Abstract The Body Control Module (BCM) is a very large integration site for vehicle features and functions (e.g., Locking, Alarms, interior lighting, exterior lighting, etc…). Every few years the demand to add more feature/functions and integrate more vehicle content increases. The expectation of the 2013 MY (model year) BCM, was to double the feature content and use it globally. The growth in 3 years of feature/function content was huge number that grew from 150 to over 300. This posed a major challenge to the software development team based on the methods and process that were deployed at the time. This paper cites the cultural and technology changes that were overcome when Ford Motor Company partnered with Tata Consultancy Services to help manage and define this new software engineering development methodology. The process of getting from a vague description of a new body module feature to a saleable product, presents several very challenging problems.
2017-03-28
Technical Paper
2017-01-1625
Rajeev Kalamdani, Chandra Jalluri, Stephen Hermiller, Robert Clifton
Abstract Use of sensors to monitor dynamic performance of machine tools at Ford’s powertrain machining plants has proven to be effective. The traditional approach to convert sensor data to actionable intelligence consists of identifying single features from cycle based signatures and setting thresholds above acceptable performance limits based on trials. The thresholds are used to discriminate between acceptable and unacceptable performance during each cycle and raise alarms if necessary. This approach requires a significant amount of resource & time intensive set up work up-front and considerable trial and error adjustments. The current state does not leverage patterns that might be discernible using multiple features simultaneously. This paper describes enhanced methods for processing the data using supervised and unsupervised machine learning methods. The objective of using these methods is to improve the prediction accuracy and reduce up-front set up.
2017-03-28
Technical Paper
2017-01-1484
Giampiero Mastinu, Mario Pennati, Massimiliano Gobbi, Giorgio Previati, Federico Ballo
Abstract The ride comfort of three Alfa Romeo cars, namely Giulietta (1955), Alfetta (1972) and 159 (2005) has been assessed both objectively and subjectively. The three cars belong to the same market segment. The aim is to let young engineers or graduate students understand how technology has evolved and eventually learn a lesson from the assessed trend. A number of cleats have been fixed at the ground and the three cars have traversed such uneven surface. The objective assessment of the ride comfort has been performed by means of accelerometers fixed at the seat rails, additionally a special dummy developed at Politecnico di Milano has been employed. The subjective assessment has been performed by a panel of passengers. The match between objective and subjective ratings is very good. Simple mathematical models have been employed to establish a (successful) comparison between experimental and computational results. The ride comfort differs substantially among the cars.
2017-03-28
Technical Paper
2017-01-1029
Mitsuhiro Shibata, Masashi kawamata, Hirotaka Komatsu, Kazuki Maeyama, Masaru Asari, Naoki Hotta, Kazutaka Nakada, Hisashi Daicho
Abstract To comply with the environmental demands for CO2 reduction without compromising driving performance, a new 1.0 liter I3 turbocharged gasoline direct injection engine has been developed. This engine is the smallest product in the new Honda VTEC TURBO engine series (1), and it is intended to be used in small to medium-sized passenger car category vehicles, enhancing both fuel economy through downsizing, state-of-the-art friction reduction technologies such as electrically controlled variable displacement oil pump and timing belt in oil system, and also driving performance through turbocharging with an electrically controlled waste gate. This developed engine has many features in common with other VTEC TURBO engines such as the 1.5 liter I4 turbocharged engine (2) (3), which has been introduced already into the market.
2017-03-28
Technical Paper
2017-01-0894
Nishant Singh
Abstract Improving fuel economy has been a key focus across the automotive industry for several years if not decades. For heavy duty commercial vehicles, the benefits from minor gains in fuel economy can lead to significant savings for fleets as well as owners and operators. Additionally, the regulations require vehicles to meet certain GHG standards which closely translate to vehicle fuel economy. For current state of the art fuel economy technologies, incremental gains are so miniscule that measurements on the vehicle are inadequate to quantify the benefits. Engineers are challenged with high level of variability to make informed decisions. In such cases, highly controlled tests on Engine and Powertrain dynamometers are used, however, there is an associated variability even with these tests due to factors such as part to part differences, deterioration, fuel blends and quality, dyno control capabilities and so on.
2017-03-28
Technical Paper
2017-01-1209
Zhichao Luo, Xuezhe Wei
Abstract Nowadays, wireless power transfer (WPT) gradually prevails and many researchers have devoted themselves to it because it is a safe, convenient and reliable way for recharging electric vehicles comparing to the conventional plug-in contact-based methods. Square coils are commonly used in WPT systems. However, there is few theoretical analysis of self- and mutual inductance of square coils between two magnetic shielding materials. In this paper, in order to study the spatial magnetic field distribution, the analytical model of n-turn square planar spiral coils between two semi-infinite multilayer media is developed based on the Maxwell equations and the Dual Fourier transformation. And then, by means of surface integrals, the self- and mutual inductance can be carried out, with respect to the main parameters of the WPT systems such as the operating frequency, the geometry feature of the coupling coils and the properties of the multilayer media.
2017-03-28
Journal Article
2017-01-1221
Shingo Soma, Haruhiko shimizu, Eiji Shirado, Satoshi Fujishiro
Abstract As heavy rare earth elements are become less prevalent, because one-tenth as often in ore deposits as light rare earth elements. Future usage of need to be reduces heavy rare earth, because of resource risks and costs. As such, a method was developed to recover reductions in coercive force and prevent demagnetization temperature from reducing without adding any heavy rare earth elements. First, a heavy rare-earth-free magnet was developed by hot deformation, which limits growth of crystal grain size, and relationships were clarified between coercive force and optimal deforming temperatures, speed, and total rare earth amounts for heavy rare-earth-free magnets. Second, it was made clear that the permeance coefficient can be increased by reshaping the flux barriers, and that the developed hot deformed magnet can be adopted.
2017-03-28
Technical Paper
2017-01-1232
Tsubasa Yamazakii, Hidekazu Uchiyama, Kazuaki Nakazawa, Tsubasa Isomura, Hisashi Ogata
Abstract Solar car races are held worldwide, aiming to promote vehicles that help reduce environmental loads on the roads. In order to gain superiority in solar car racing, it is essential to develop a high efficiency brushless direct drive motor that optimizes the energy use to the fullest and allows high speed driving when needed. To achieve these goals, two development approaches of solar car motors are proposed: the high efficiency motor which improves electrical characteristics and significantly reduces energy loss; and the variable field magnet motor that offers instant speed boost for a temporary period of time for overtaking opponents. We have developed a high efficiency motor through the application of an amorphous core and laminated magnets. Instead of the standard method of the W-EDM (Wire-Electric Discharge Machining) for amorphous cores, we utilized water jet cutting, through which we succeeded in achieving insulation between laminated cores.
2017-03-28
Technical Paper
2017-01-1245
Takamitsu Tajima, Hideki Tanaka, Takeo Fukuda, Yoshimi Nakasato, Wataru Noguchi, Yoshikazu Katsumasa, Tomohisa Aruga
Abstract The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
2017-03-28
Technical Paper
2017-01-1263
Dennis Kibalama, Andrew Huster, Arjun Khanna, Aditya Modak, Margaret Yatsko, Gregory Jankord, Shawn Midlam-Mohler
Abstract The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
2017-03-28
Technical Paper
2017-01-1262
David Baker, Zachary Asher, Thomas Bradley
Abstract The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
2017-03-28
Journal Article
2017-01-1273
Qiang Dai, Jarod C. Kelly, Amgad Elgowainy
Abstract Vehicle lightweighting has been a focus of the automotive industry, as car manufacturers seek to comply with corporate average fuel economy (CAFE) and greenhouse gas (GHG) emissions standards for model year (MY) 2017-2025 vehicles. However, when developing a lightweight vehicle design, the automotive industry typically targets maximum vehicle weight reduction at minimal cost increase. In this paper, we consider the environmental impacts of the lightweighting technology options. The materials used for vehicle lightweighting include high-strength steel (HSS), aluminum, magnesium and carbon fiber reinforced plastic (CFRP). Except for HSS, the production of these light materials is more GHG-intensive (on a kg-to-kg basis) compared with the conventional automotive materials they substitute. Lightweighting with these materials, therefore, may partially offset the GHG emission reductions achieved through improved fuel economy.
2017-03-28
Journal Article
2017-01-1278
Keisuke Isomura
Abstract In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions.
2017-03-28
Technical Paper
2017-01-1274
Jason M. Luk, Hyung Chul Kim, Robert De Kleine, Timothy J. Wallington, Heather L. MacLean
Abstract This study investigates the life cycle greenhouse gas (GHG) emissions of a set of vehicles using two real-world gliders (vehicles without powertrains or batteries); a steel-intensive 2013 Ford Fusion glider and a multi material lightweight vehicle (MMLV) glider that utilizes significantly more aluminum and carbon fiber. These gliders are used to develop lightweight and conventional models of internal combustion engine vehicles (ICV), hybrid electric vehicles (HEV), and battery electric vehicles (BEV). Our results show that the MMLV glider can reduce life cycle GHG emissions despite its use of lightweight materials, which can be carbon intensive to produce, because the glider enables a decrease in fuel (production and use) cycle emissions. However, the fuel savings, and thus life cycle GHG emission reductions, differ substantially depending on powertrain type. Compared to ICVs, the high efficiency of HEVs decreases the potential fuel savings.
2017-03-28
Technical Paper
2017-01-1275
David Hobbs, Charles Ossenkop, Andy Latham
Abstract Global sales of electric and hybrid vehicles continue to grow as emission legislation forces vehicle manufacturers to build cleaner vehicles, with some 8 million already in service. Hybrid and Electric vehicles contain some of the most complex systems ever used in the automotive field, sophisticated and unique electric hybrid systems are added to modern motor vehicles which are already quite complex. As these vehicles reach the end of their lives they will be processed by the global vehicle recycling industry and the high voltage components will be reused, recycled or re-purposed. This paper explores safe working practices for businesses involved in a global marketplace who are completing battery disabling, removal, disassembly, storage and shipping; includes the various technologies and safe working practices along with some of the legal restrictions on dismantling, storage and shipping of high voltage batteries around the world.
2017-03-28
Journal Article
2017-01-1276
Aditi Moorthy, Robert De Kleine, Gregory Keoleian, Jeremy Good, Geoff Lewis
Abstract The problem of accessibility to public transit is well-documented in transportation theory and network literature, and is known as the last mile problem. A lack of first and last mile transit services impairs access to public transit causing commuters to opt for private modes of transit over public modes. This paper analyzes the implications of a shared autonomous vehicle (AV) taxi system providing last mile transit services in terms of environmental, cost, and performance metrics. Conventional public transit options and a hypothetical last-mile shared autonomous vehicle (SAV) system are analyzed for transit between Ann Arbor and Detroit Wayne County Airport for life cycle energy, emissions, total travel time, and travel costs. In the case study, energy savings from using public transit options with AV last mile service were as high as 37% when compared to a personal vehicle option.
2017-03-28
Journal Article
2017-01-1277
Jakobus Groenewald, Thomas Grandjean, James Marco, Widanalage Widanage
Abstract Increasingly international academic and industrial communities desire to better understand, implement and improve the sustainability of vehicles that contain embedded electrochemical energy storage. Underpinning a number of studies that evaluate different circular economy strategies for the electric vehicle (EV) battery system are implicit assumptions about the retained capacity or State-of-Health (SoH) of the battery. International standards and best-practice guides exist that address the performance evaluation of both EV and HEV battery systems. However, a common theme in performance testing is that the test duration can be excessive and last for a number of hours. The aim of this research is to assess whether energy capacity and internal resistance measurements of Li-ion based modules can be optimized, reducing the test duration to a value that may facilitate further End-of-Life (EoL) options.
2017-03-28
Technical Paper
2017-01-1291
Ashraya Gupta, Harshil Kathpalia, Harshit Aggarwal, Naveen Kumar
Abstract The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
2017-03-28
Journal Article
2017-01-1295
Andres Toledo, Rodrigo Felix
Abstract Political and social trends in the automotive industry production and consumption have changed in the last decade, driving a demand for more efficient, low-fuel consuming, clean vehicles in most markets nowadays. Recently the demand for such vehicles has been increasing and emerging markets are no exception; automakers all around the world have invested heavily in developing new electrification technologies that would comply with the newer and stricter regulations and environmental policies, being Start-Stop systems one of the preferred approaches due to their lower complexity and cost compared to full and mild hybrids. Mexico stands out as a challenge for the implementation of this technology due to its wide range of altitudes, temperatures, traffic jams, and some other contributing factors that can hinder this type of application – especially in its bigger and more populated cities.
2017-03-28
Technical Paper
2017-01-0455
Harshad Hatekar, Baskar Anthonysamy, V. Saishanker, Lakshmi Pavuluri, Gurdeep Singh Pahwa
Abstract Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
2017-03-28
Journal Article
2017-01-0622
Sury Janarthanam, Sarav Paramasivam, Patrick Maguire, James Gebbie, Douglas Hughes
Abstract Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
2017-03-28
Journal Article
2017-01-0642
Richard Osborne, Trevor Downes, Simon O'Brien, Ken Pendlebury, Mark Christie
Abstract The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
2017-03-28
Technical Paper
2017-01-0632
Chen Yang, Haiyuan Cheng, Zizhu fan, Jiandong Yin, Yuan Shen
Abstract In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of engine systems, especially for combustion system.
2017-03-28
Technical Paper
2017-01-0835
Hitoshi Shibata, Takeshi Mizobuchi, Makoto Iwamuro, Akinori Koda, Hidekazu Omura
Abstract Gasoline direct injection (GDI) systems are a main development focus for global environment issues and energy security. At the same time, it is also important to challenge further development of Multi point injection (MPI) systems for a simple and robust combustion system responding to global fuels ,required for the growing automotive markets in emerging countries, especially in the A, B vehicle segments. This paper focuses on reducing wall wetting in cold conditions and maximizing mixture cooling by fuel vaporization (preventing knocking) in high load conditions as key development points of MPI systems. We propose a dual MPI system enhancing direct flow of spray into the combustion chamber to gain part of the benefit of GDI in addition to the homogeneity advantage of an MPI system. This dual MPI system requires finer atomization with at the same time robustness against intake airflow.
2017-03-28
Journal Article
2017-01-1297
Robert Peckham, Sumit Basu, Marcelo Ribeiro, Sandra Walker
Abstract This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
2017-03-28
Technical Paper
2017-01-1118
Isamu Hachisuwa, Naoki Kato, Daisuke Kusamoto, Hideki Miyata, Takuya Okada, Hitoshi matsunaga, Takamitsu Kuroyanagi, Makoto nakazuru
Abstract Increasingly stringent environmental regulations requiring lower CO2 emissions and higher fuel economy have made it essential to develop vehicles with superior fuel efficiency and cleaner emissions. At the same time, there is growing demand for even more powerful and quieter vehicles. To help satisfy these requirements, Toyota Motor Corporation has developed a new 8-speed automatic transmission for front wheel drive vehicles, incorporating its first compact torque converter with a multiple disk lock-up mechanism. This newly developed compact torque converter with a multiple disk lock-up mechanism was designed under the Toyota New Global Architecture (TNGA) development concept to achieve an excellent balance between higher efficiency through the commonization of components and stronger product appeal through installation on a whole family of transmissions. This compact torque converter is compatible with a variety of engines from inline 4-cylinder to V6 configurations.
2017-03-28
Technical Paper
2017-01-1130
Shinya Takamatsu, Nobuharu Imai, Koji Tsurumura, Seiji Yamashita, Hiroaki Tashiro
Abstract The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Viewing 61 to 90 of 10318