Criteria

Display:

Results

Viewing 271 to 300 of 10339
2016-04-05
Journal Article
2016-01-1164
Oguz H. Dagci, Huei Peng
Abstract The goal of this paper is to explore the complete set of single mode hybrid electric powertrain designs that can be generated with one and two planetary gearsets (PGs). Contrary to an automated design exploration approach, an analytically-based manual method is developed to identify all unique design modes for each hybrid electric powertrain architecture (parallel, series, power-split) that can be created with two planetary gearsets, one engine, one vehicle output shaft, two electric machines, and at most two brake clutches. Feasible design modes are generated according to a procedure that provably covers the entire design space.
2016-04-05
Technical Paper
2016-01-1159
Amanullah Khan, Timothy Grewe, Jinming Liu, Mohammad Anwar, Alan Holmes, Richard Balsley
Abstract This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
2016-04-05
Technical Paper
2016-01-1160
Jonathan Hall, Michael Bassett, Stephen Borman, Tom Lucas, Andrew Whitehead
Abstract Present automobile development is keenly focused on measures to reduce the CO2 output of vehicles. Plug-in hybrid electric vehicles (PHEVs) enable grid electricity, which is clean in tail-pipe emissions terms, to be utilised whilst the on-board electrical storage has sufficient charge. MAHLE Powertrain and Protean have jointly developed a plug-in hybrid demonstrator vehicle based on a C-segment passenger car. The vehicle features Protean’s compact direct drive in-wheel motors with integrated inverters on the rear axle and retains the standard gasoline engine, and manual transmission, on the front axle. To support this one-off prototype, a flexible vehicle control unit has been developed, which is easily re-configurable and adaptable to any hybrid vehicle architecture.
2016-04-05
Technical Paper
2016-01-1171
Shota Hirose, Akemi Okawa, Kenji Ishida, Takahiro Misu, Takeshi Tojo
Abstract Electrification of the powertrain to improve vehicle fuel economy is a key technology to achieve strict fuel economy legislation. However, only limited numbers of small class vehicles such as a B segment adopt electric powertrain. This is presumed that cost effectiveness for fuel economy is small and mounting space for additional powertrain is limited. In this paper, the optimum solution of a strong hybrid system suitable for the small vehicles was studied. First, from the viewpoint of maximization of energy efficiency, we compared contributions of engine efficiency and transmission efficiency during mode cycle driving and selected automated manual transmission as a suitable transmission for small vehicles. In comparing the hybrid system function, we determined a motor generator connecting shaft and a necessary motor generator output power for attaining both fuel economy and drivability.
2016-04-05
Technical Paper
2016-01-1150
Alan Holmes, Jinming Liu, David Ames, Vijay Neelakantan, Khwaja Rahman, Timothy Grewe
Abstract An all-new electric variable transmission (EVT) developed by General Motors for rear-wheel-drive products is at the center of the plug-in hybrid electric vehicle (PHEV) propulsion system for the Cadillac CT6. This transmission includes two integrated electric motors, planetary gearing, and hydraulic clutches. It is capable of power-split-hybrid operation in continuously variable transmission (CVT) ratio ranges, parallel-hybrid operation in fixed gear ratios, and all-electric propulsion in different ratio combinations. Transmission operation, mechanical design, controls design, motor design, and output capability are explained, and simulation results used as the benchmark for final development are included. All-electric launch and driving, selectable regeneration, and power blending with the turbocharged engine provide smooth and seamless propulsion through the entire driving range.
2016-04-05
Technical Paper
2016-01-1180
Trevor Crain, Thomas Gorgia, R. Jesse Alley
Abstract EcoCAR is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The EcoCAR Advanced Vehicle Technology Competition series is organized by Argonne National Laboratory, headline sponsored by the U.S. Department of Energy and General Motors, and sponsored by more than 30 industry and government leaders. In the last competition series, EcoCAR 2, fifteen university teams from across North America were challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. This paper examines the results of the EcoCAR 2 competition’s emissions and energy consumption (E&EC) on-road test results for several prototype plug-in hybrid electric vehicles (PHEVs). The official results for each vehicle are presented along with brief descriptions of the hybrid architectures.
2016-04-05
Technical Paper
2016-01-1182
Andrej Ivanco, Balan Mariappan Selvaraj, Kawshik Murali, Arjun Narayanan, Avik Sarkar, Aviral Singh, Akshay Soni, Mark Benton, Prasanth Muralidharan, Johnell Brooks, Paul Venhovens, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the sixth generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development and implementation of a dual-purpose powertrain system enabling vehicle propulsion as well as stationary activities of the Deep Orange 6 vehicle concept. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish vehicle target and subsystem requirement, which formed the foundation of the Unique Selling Points (USPs) of the concept.
2016-04-05
Technical Paper
2016-01-1257
Sam Yacinthe, Arjun Khanna, Jason Ward, M.J. Yatsko, Shawn Midlam-Mohler
The design of a performance hybrid electric vehicle includes a wide range of architecture possibilities. A large part of the design process is identifying reasonable vehicle architectures and vehicle performance capabilities. The Ohio State University EcoCAR 3 team designed a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed with a 44-mile all-electric range. It also features an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak electric machine. This report details the design and modeling process followed by the Ohio State team during Year 1 of the competition. The process included researching the customer needs of the vehicle, determining team design goals, initial modeling, and selecting a vehicle architecture.
2016-04-05
Technical Paper
2016-01-1255
David Mackanic, Eduardo D. Marquez, James Dennington, Jacob McClean, Kaitlyn Wheeler, Douglas Nelson
Abstract The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is currently going through several modeling and testing stages to develop models that represent the P3 PHEV powertrain the team is building as part the EcoCAR 3 competition. The model development process consists of several major steps. First, Model-in-the-Loop (MIL) testing is conducted to validate a conventional vehicle model, down-select a desired powertrain configuration, and generate initial vehicle technical specifications. HEVT is pursuing a performance powertrain that balances high performance with minimal energy consumption. Initial MIL modeling results yield an IVM-60 mph time of 4.9 seconds and an overall UF-weighted 4-cycle energy consumption of 560 Wh/km. MIL modeling provides an initial reference to compare subsequent vehicle modeling.
2016-04-05
Technical Paper
2016-01-1256
Miriam Di Russo, Zhuoran Zhang, Hao Wu, Kathryn della Porta, Jerry C. Ku
Abstract This paper details the first year of modeling and simulation, and powertrain control development for the Wayne State University EcoCAR 3 vehicle. Included in this paper are the processes for developing simulation platforms, plant models and electronic control units to support the supervisory control system development. The EcoCAR 3 competition challenges sixteen North American universities to re-engineer the 2016 Chevrolet Camaro to reduce its environmental impact without compromising its performance and consumer acceptability. The team is in the final stages of competition Year One, which, as the “non-vehicle year,” focuses on the preliminary design, simulation, and hybrid modes selection for the team’s selected vehicle architecture.
2016-04-05
Technical Paper
2016-01-1253
Patrick Ellsworth, Roydon Fraser, Michael Fowler, Daniel VanLanen, Ben Gaffney, Caixia Wang, Trong Shen, Wenhao Wu, Paul McInnis
Abstract The drive to improve and optimize hybrid vehicle performance is increasing with the growth of the market. With this market growth, the automotive industry has recognized a need to train and educate the next generation of engineers in hybrid vehicle design. The University of Waterloo Alternative Fuels Team (UWAFT), as part of the EcoCAR 3 competition, has developed a control strategy for a novel parallel-split hybrid architecture. This architecture features an engine, transmission and two electric motors; one pre-transmission motor and one post-transmission motor. The control strategy operates these powertrain components in a series, parallel, and all electric power flow, switching between these strategies to optimize the energy efficiency of the vehicle. Control strategies for these three power flows are compared through optimization of efficiencies within the powertrain.
2016-04-05
Technical Paper
2016-01-1254
Eric Jambor, Thomas Bradley
Abstract EcoCAR 3 is a university based competition with the goal of hybridizing a 2016 Chevrolet Camaro to increase fuel economy, decrease environmental impact, and maintain user acceptability. To achieve this goal, university teams across North America must design, test, and implement automotive systems. The Colorado State University (CSU) team has designed a parallel pretransmission plug in hybrid electric design. This design will add torque from the engine and motor onto a single shaft to drive the vehicle. Since both the torque generating devices are pre-transmission the torque will be multiplied by both the transmission and final drive. To handle the large amount of torque generated by the entire powertrain system the vehicle's rear half-shafts require a more robust design. Taking advantage of this, the CSU team has decided to pursue the use of composites to increase the shaft's robustness while decreasing component weight.
2016-04-05
Technical Paper
2016-01-1248
Brian Magnuson, Michael Ryan Mallory, Brian Fabien, Ajay Gowda
Abstract This study investigates using driver prediction to anticipate energy usage over a 160-meter look-ahead distance for a series, plug-in, hybrid-electric vehicle to improve conventional thermostatic powertrain control. Driver prediction algorithms utilize a hidden Markov model to predict route and a regression tree to predict speed over the route. Anticipated energy consumption is calculated by integrating force vectors over the look-ahead distance using the predicted incline slope and vehicle speed. Thermostatic powertrain control is improved by supplementing energy produced by the series generator with regenerative braking during events where anticipated energy consumption is negative, typically associated with declines or decelerations.
2016-04-05
Technical Paper
2016-01-1245
Jonathan D. Cox, Michael Leamy
Abstract The Georgia Tech EcoCAR 3 team’s selection of a parallel hybrid electric vehicle (HEV) architecture for the EcoCAR 3 competition is presented in detail, with a focus on the team’s modeling and simulation efforts and how they informed the team’s architecture selection and subsequent component decisions. EcoCAR 3, sponsored by the United States Department of Energy and General Motors, is the latest in a series of Advanced Vehicle Technology Competitions (AVTCs) and features 16 universities from the United States and Canada competing to transform the 2016 Chevrolet Camaro into a hybrid electric American performance vehicle. Team vehicles will be scored on performance, emissions, fuel economy, consumer acceptability, and more over the course of the four-year competition. During the first year, the Georgia Tech team considered numerous component combinations and HEV architectures, including series RWD and AWD, parallel, and power-split.
2016-04-05
Technical Paper
2016-01-1247
Kevin L. Snyder, Jerry Ku
Abstract The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
2016-04-05
Technical Paper
2016-01-1285
Xiang Cheng, Han Hao, Zongwei Liu, Fuquan Zhao
Abstract Compared with conventional vehicles, electric vehicles (EVs) offer the benefits of replacing petroleum consumption and reducing air pollutions. However, there have been controversies over greenhouse gas (GHG) emissions of EVs from the life-cycle perspective in China’s coal-dominated power generation context. Besides, it is in doubt whether the cost-effectiveness of EVs in China exceeds other fuel-efficient vehicles considering the high prices. In this study, we compared the life-cycle GHG emissions of existing vehicle models in the market. Afterwards, a cost model is established to compare the total costs of vehicles. Finally, the cost-effectiveness of different vehicle types are compared. It is concluded that the GHG emission intensity of EVs is lower than reference and hybrid vehicles currently and is expected to decrease with the improvement of the power grid.
2016-04-05
Journal Article
2016-01-1334
Christopher Flegel, Parth Bhivate, Liang Li, Yash Mathur, Sanket Phalgaonkar, Mark Benton, Prasanth Muralidharan, Johnell Brooks, Srikanth Pilla, Paul Venhovens, David Lewis, Garrett DeBry, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development of a multimaterial lightweight Body-in-White (BiW) structure to support an all-electric powertrain combined with an interior package that maximizes volume to enable a variety of interior configurations and activities for Generation Z users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics.
2016-04-05
Technical Paper
2016-01-1333
Edward C. Fontana
Abstract Individuals in the United States consume twice as much energy as those in any other region. Solitary workday commutes in light vehicles are the leading reason for this difference. An electric vehicle design is proposed to help catalyze more social, higher occupancy, commuting habits - through application of existing technology. Performance criteria are: 1) attract passengers to the suburban front yard at 6:30 AM, 2) match market leading crash test performance, cargo capability, and sense of freedom, and 3) deliver easier parking, better acoustics and better passenger mile efficiency. A vehicle as a rolling event venue determines a large windscreen, side-by-side upright seating arrangements, and acoustic excellence -an experience where there are only good seats. These requirements force a decision to close the wake along a vertical line to form a narrow wake. The chassis is platform batteries with dual motor electric rear drive and undetermined front drive.
2016-04-05
Technical Paper
2016-01-1371
Satish Jaju, Pritesh Jain, Gopal Musale
Abstract The unit analysis methodology can be used for designing component or product in a product development process. This method may be used for designing the crush can, bumper beam, crush can long member, B-frame or A-pillar in frontal impact analysis. Unit assembly model technique can be effectively used in many CAE load cases to evaluate CAE simulations such as pedestrian impact analysis (ECE R78 / ENCAP), interior trim related head impact simulations (FMVSS201U), under run protection simulation for commercial vehicles (Front Underrun Protection Device ECE R93, Rear Underrun Protection Device ECE R58, Side Underrun Protection Device ECE R73), airbag deployment optimization etc. These CAE analyses correlate better with actual test. This paper gives idea about how the cost of product design can be reduced by using unit analysis. To reduce time of vehicle development such as cost of prototype, testing cost, optimization cost unit analysis is more economical.
2016-04-05
Technical Paper
2016-01-1365
Siddharth Bhupendra Unadkat, Suhas Kangde, Mahalingesh Burkul, Mahesh Badireddy
Abstract The overall automotive industry is moving toward first time right test which in turn needs first time right analysis. This is due to the enormous pressure of cost, mass, time to market and availability of prototype vehicles for testing. Use of finite element methods enables to upfront predict the system behavior in operating conditions and evaluation of structural strength. In vehicle product development process, hood slam durability evaluation is one of the important tests for body closure structure. Current work showcases an effort made for developing virtual hood slam test. The virtual model consists of BIW, hood, hinge joint, interface like CRFM (cooling-radiator-fan module) and latch mechanism with spring preload. Analysis performed with LSDyna solver. An impact loading is applied by converting potential energy to kinetic energy, mimicking the hood dropping from a specified height on the hood latch.
2016-04-05
Technical Paper
2016-01-1207
Hiroki Nagai, Masahiro Morita, Koichi Satoh
Abstract Toyota introduced the first generation Prius in 1997. The vehicle was conceived, designed and launched as a dedicated, mass-produced global hybrid vehicle platform, the first of its kind. The introduction of the 2nd and 3rd generation Prius (2003, 2009) saw vehicles with significantly improved performance, including fuel efficiency. The Prius Alpha (Japan/EU), launched in 2011, represented Toyota first foray with Li-ion battery in a strong hybrid configuration. For the Prius Alpha, the adoption of a compact Li-ion battery resulted in sufficient cabin space to allow a 3rd row of seats while maintaining high fuel efficiency. Before and after the launch of the Prius Alpha, an extensive list of tests was performed on the Li-ion battery pack, including electrical, electrochemical, mechanical, and safety. The evaluations were performed in the lab, in the field (demonstration fleets) and by acquiring vehicles used by customers.
2016-04-05
Journal Article
2016-01-0693
Daishi Takahashi, Koichi Nakata, Yasushi Yoshihara, Tetsuo Omura
Abstract Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society, and an effective way of accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid vehicles and conventional vehicles in recent years. Cooled EGR has the potential to achieve further lower fuel consumption if the EGR ratio can be increased. Fast combustion is an important and effective way for expanding the EGR ratio. The engine combustion enhancement can be categorized into measures to improve ignition characteristics and methods to promote flame propagation.
2016-04-05
Technical Paper
2016-01-0028
Ali Shahrokni, Peter Gergely, Jan Söderberg, Patrizio Pelliccione
Abstract In areas such as Active Safety, new technologies, designs (e.g. AUTOSAR) and methods are introduced at a rapid pace. To address the new demands, and also requirements on Functional Safety imposed by ISO 26262, the support for engineering methods, including tools and data management, needs to evolve as well. Generic and file-based data management tools, like spreadsheet tools, are popular in the industry due to their flexibility and legacy in the industry but provide poor control and traceability, while rigid and special-purpose tools provide structure and control of data but with limited evolvability. As organizations become agile, the need for flexible data management increases. Since products become more complex and developed in larger and distributed teams, the need for more unified, controlled, and consistent data increases.
2016-04-05
Technical Paper
2016-01-0016
Jörg Schäuffele
Abstract The functions provided by the E/E system of modern vehicles can be assigned to the classical domains of powertrain, chassis, body and multimedia. Upcoming functions are forming new domains for advanced driver assistance and cloud integration. Therefore networking of functions is not limited to the vehicle but includes also the cloud. These trends imply major changes like the introduction of Ethernet as onboard networking technology or increasing safety and security needs. To design the best E/E architecture three groups of optimization targets are most relevant: Global vehicle targets, E/E targets derived from the implemented vehicle functions and product line targets for an E/E architecture. The PREEvision approach for E/E architecture design and optimization is a model based approach - inspired by the relevant and widely accepted automotive standards. Import and export filters allow the easy integration with PREEvision and complementation of existing tool chains.
2016-04-05
Technical Paper
2016-01-0046
Markus Ernst, Mario Hirz, Jurgen Fabian
Abstract A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
2016-04-05
Technical Paper
2016-01-0040
Ming Meng, Wilson Khoo
The modern vehicle development is highly dependent on software. The software development plays an extremely important role in vehicle safety and security. In order to ensure software high quality and safety standards, we have investigated the secure software development process and analyzed the works in this area. Based on our analysis, we have identified the similarities and differences between the secure software development process and the existing vehicle development process. We then made suggestions on how to adopt the secure software development process in the overall vehicle development process.
2016-04-05
Journal Article
2016-01-0032
Siddartha Khastgir, Gunwant Dhadyalla, Paul Jennings
Abstract The introduction of ISO 26262 concepts has brought important changes in the software development process for automotive software. While making the process more robust by introducing various additional methods of verification and validation, there has been a substantial increase in the development time. Thus, test automation and front loading approaches have become important to meet product timelines and quality. This paper proposes automated testing methods using formal analysis tools like Simulink Design Verifier™ (SLDV) for boundary value testing and interface testing to address the demands of ISO 26262 concepts at unit and component level. In addition, the method of automated boundary value testing proposed differs from the traditional methods and the authors offer an argument as to why the traditional boundary value testing is not required at unit (function) level.
2016-04-05
Technical Paper
2016-01-0904
Michael Martin, Arno Eichberger, Eranda Dragoti-Cela
Abstract A worldwide decrease of legal limits for CO2 emissions and fuel economy led to stronger efforts for achieving the required reductions. The task is to evaluate technologies for CO2 reduction and to define a combination of such measures to ensure the targets. The challenge therefor is to find the optimal combination with respect to minimal costs. Individual vehicles as well as the whole fleet have to be considered in the cost analysis - which raises the complexity. Hereby, the focus of this work is the consideration and improvement of a new model series against the background of a fleet and the selection of measures. The ratio between the costs and the effect of the measures can be different for the each vehicle configuration. Also, the determination of targets depends whether a fleet or an individual vehicle is selected and has impact on the selection and optimization process of those measures.
2016-04-05
Technical Paper
2016-01-0880
Carlos Alberto Romero, Ricardo Acosta, Juan Lopez
Abstract It is the aim of the present paper to communicate some preliminary results of the research in progress related to the introduction of LPG as a supplementing fuel for the Colombian power grid supply. Most of the power units operating in Colombian oil wells are running on Diesel fuel and natural gas. Other fuels like LPG, heavy and dual fuel have received attention in recent years, due partially to the necessity to relieve the national overall petroleum dependency problem, and also because of the availability of a sizable amount of LPG derived from natural gas purification. In an effort to assess the use of LPG as a fuel alternative to Diesel and natural gas in oil wells, a field study has been carried out.
2016-04-05
Technical Paper
2016-01-0883
Walter Mirabella, Francesco Avella, Marco Di Girolamo, Tim Abbott, Oliver Busch
Abstract A thorough bibliographic survey was carried out to collect literature-available information about blending octane numbers (BONs) of most widely used ethers by the refining industry (mainly MTBE and ETBE). The intention was to review the publicly reported BONs values, to suggest the most appropriate figures for future reference, while also understanding the causes of the differences. Summary tables feature all BON values, either explicitly reported in literature or calculated based on experimental results. Due to synergistic intermolecular interactions with hydrocarbons, BONs typically depend on base stock composition. The octane gain tends to grow as the paraffin content in the base stock increases. Moreover BONs tend to decrease as the octane numbers (ON) of the base stock increase.
Viewing 271 to 300 of 10339