Criteria

Display:

Results

Viewing 271 to 300 of 10348
2016-04-05
Technical Paper
2016-01-0904
Michael Martin, Arno Eichberger, Eranda Dragoti-Cela
Abstract A worldwide decrease of legal limits for CO2 emissions and fuel economy led to stronger efforts for achieving the required reductions. The task is to evaluate technologies for CO2 reduction and to define a combination of such measures to ensure the targets. The challenge therefor is to find the optimal combination with respect to minimal costs. Individual vehicles as well as the whole fleet have to be considered in the cost analysis - which raises the complexity. Hereby, the focus of this work is the consideration and improvement of a new model series against the background of a fleet and the selection of measures. The ratio between the costs and the effect of the measures can be different for the each vehicle configuration. Also, the determination of targets depends whether a fleet or an individual vehicle is selected and has impact on the selection and optimization process of those measures.
2016-04-05
Technical Paper
2016-01-0880
Carlos Alberto Romero, Ricardo Acosta, Juan Lopez
Abstract It is the aim of the present paper to communicate some preliminary results of the research in progress related to the introduction of LPG as a supplementing fuel for the Colombian power grid supply. Most of the power units operating in Colombian oil wells are running on Diesel fuel and natural gas. Other fuels like LPG, heavy and dual fuel have received attention in recent years, due partially to the necessity to relieve the national overall petroleum dependency problem, and also because of the availability of a sizable amount of LPG derived from natural gas purification. In an effort to assess the use of LPG as a fuel alternative to Diesel and natural gas in oil wells, a field study has been carried out.
2016-04-05
Technical Paper
2016-01-0883
Walter Mirabella, Francesco Avella, Marco Di Girolamo, Tim Abbott, Oliver Busch
Abstract A thorough bibliographic survey was carried out to collect literature-available information about blending octane numbers (BONs) of most widely used ethers by the refining industry (mainly MTBE and ETBE). The intention was to review the publicly reported BONs values, to suggest the most appropriate figures for future reference, while also understanding the causes of the differences. Summary tables feature all BON values, either explicitly reported in literature or calculated based on experimental results. Due to synergistic intermolecular interactions with hydrocarbons, BONs typically depend on base stock composition. The octane gain tends to grow as the paraffin content in the base stock increases. Moreover BONs tend to decrease as the octane numbers (ON) of the base stock increase.
2016-04-05
Journal Article
2016-01-0075
Steven Holland, Tim Felke, Luis Hernandez, Robab Safa-Bakhsh, Matthew A. Wuensch
Abstract Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
2016-04-05
Journal Article
2016-01-0309
Matthew Reed, Sheila Ebert-Hamilton
Abstract This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
2016-04-05
Technical Paper
2016-01-1252
Arjun Khanna, Sam Yacinthe, Jason Ward, M.J. Yatsko, Shawn Midlam-Mohler
The Ohio State University EcoCAR 3 team is designing a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed to have a 44-mile all-electric range. The vehicle is to consist of an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak-power electric machine. This report details the model and controls development process followed by the Ohio State team during Year 1 of the EcoCAR 3 competition. The focus of the paper will be on overall development of a vehicle model, initial simulation results, and supervisory controls development. Finally, initial energy consumption results from the model and future improvements will be discussed.
2016-04-05
Technical Paper
2016-01-0174
Jun Ni, Jibin Hu, Xueyuan Li, Bin Xu, Junjie Zhou
Abstract In order to discuss the limit handling performance of a FSAE race car, a method to generate the G-G diagram was proposed based on phase plane concept. The simulated G-G diagram was validated by experiments with an electric FSAE race car. In section 1, a nonlinear 7 DOFs dynamic model of a certain electric FSAE race car was built. The tire mechanical properties were described by Magic Formula, and the tire test data was provided by FSAE TTC. In section 2, firstly the steady-state yaw rate response was discussed in different vehicle speed and lateral acceleration based on the simulations. Then the method to generate the G-G diagram based on phase plane concept was proposed, and the simulated G-G diagram of a certain FSAE race car was obtained. In section 3, the testbed FSAE race car was described, including the important apparatuses used in the experiments. Based on the race track experiment, the G-G diagram of the race car was obtained.
2016-04-05
Journal Article
2016-01-0687
Weiyong Tang, Bob Chen, Kevin Hallstrom, Ansgar Wille
Nowadays the Chinese legislative development and the implementation of advanced technologies to curb HDD emissions have been a subject of worldwide attention. Currently China is warping its efforts to deploy and enforce the launch of nationwide Stage IV and is also preparing for the setup and implementation of future regulation standards. Focus discussion here is on the aftertreatment pathways to meet China current and future emissions standards, based on market uniqueness. This paper seeks to provide retrospectives of the adoption of V-SCR on China stage IV HDD vehicles, through presenting findings from two separate postmortem analyses of field returned catalyst parts and also through comparative study with local catalyst products. The paper also discusses the challenges and possible solutions meeting the WHTC requirement for Stage IV and V city vehicles.
2016-04-05
Technical Paper
2016-01-0621
James Kapinski, Xiaoqing Jin, Jyotirmoy Deshmukh, Alexandre Donze, Tomoya Yamaguchi, Hisahiro Ito, Tomoyuki Kaga, Shunsuke Kobuna, Sanjit Seshia
Abstract Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
2016-04-05
Technical Paper
2016-01-1020
Yusuke Wada, Koji Nakano, Kei Mochizuki, Ryuichi Hata
Abstract A 1.5 L downsizing turbocharged engine was developed to achieve both driving and environmental performance. The engine is intended to replace 1.8 - 2.4 L class NA engines. In downsizing turbocharged engines, mixture homogeneity is important for suppressing knocking and emission reduction. Particularly under high load, creating rapid combustion and a homogeneous mixture are key technologies. The authors used a long-stroke direct injection engine, which has outstanding rapid combustion and thermal efficiency, as a base engine meeting these requirements. They combined this with a high-tumble port and shallow-dish piston intended to support tumble flow. The combination enhanced flow within the cylinder. The combustion system was built to include a sodium-filled exhaust valve to reduce knocking and a multi-hole injector (six holes) for mixture homogeneity and to reduce the fuel wall wetting.
2016-04-05
Technical Paper
2016-01-1012
Seiji Furumata, Takashi Kakinuma, Hirokazu Tochiki
Abstract This paper introduces the newly developed super sports car engine mounted in the new model NSX. A super sports car engine was newly developed to satisfy the high power performance required by the body package. Higher power and compactness were simultaneously achieved by selecting an engine displacement of 3.5 L and by using a V6 layout and a turbocharger. This enabled to mount a power train that combines a hybrid motor with a newly developed transmission in the rear of the body. The lubrication system uses a dry sump system capable of maintaining reliable lubrication in all possible super sports car driving scenarios. The combustion system uses high tumble-flow ports, a direct injection and a port injection system that increase power performance and thermal efficiency, emission reduction. To support the increased heat load due to higher power, a 3-piece water jacket is used around the combustion chamber and the exhaust ports.
2016-04-05
Journal Article
2016-01-0961
Satish Narayanan Ramachandran, Gillis Hommen, Paul Mentink, Xander Seykens, Frank Willems, Frank Kupper
Abstract Heavy-duty diesel engines are used in a wide range of applications. For varying operating environments, the engine and aftertreatment system must comply with the real-world emission legislation limits. Simultaneously, minimal fuel consumption and good drivability are crucial for economic competitiveness and usability. Meeting these requirements takes substantial development and calibration effort, and complying with regulations results in a trade-off between emissions and fuel consumption. TNO's Integrated Emission Management (IEM) strategy finds online, the cost-optimal point in this trade-off and is able to deal with variations in operating conditions, while complying with legislation limits. Based on the actual state of the engine and aftertreatment system, an optimal engine operating point is computed using a model-based optimal-control algorithm.
2016-04-05
Journal Article
2016-01-1164
Oguz H. Dagci, Huei Peng
Abstract The goal of this paper is to explore the complete set of single mode hybrid electric powertrain designs that can be generated with one and two planetary gearsets (PGs). Contrary to an automated design exploration approach, an analytically-based manual method is developed to identify all unique design modes for each hybrid electric powertrain architecture (parallel, series, power-split) that can be created with two planetary gearsets, one engine, one vehicle output shaft, two electric machines, and at most two brake clutches. Feasible design modes are generated according to a procedure that provably covers the entire design space.
2016-04-05
Technical Paper
2016-01-1160
Jonathan Hall, Michael Bassett, Stephen Borman, Tom Lucas, Andrew Whitehead
Abstract Present automobile development is keenly focused on measures to reduce the CO2 output of vehicles. Plug-in hybrid electric vehicles (PHEVs) enable grid electricity, which is clean in tail-pipe emissions terms, to be utilised whilst the on-board electrical storage has sufficient charge. MAHLE Powertrain and Protean have jointly developed a plug-in hybrid demonstrator vehicle based on a C-segment passenger car. The vehicle features Protean’s compact direct drive in-wheel motors with integrated inverters on the rear axle and retains the standard gasoline engine, and manual transmission, on the front axle. To support this one-off prototype, a flexible vehicle control unit has been developed, which is easily re-configurable and adaptable to any hybrid vehicle architecture.
2016-04-05
Technical Paper
2016-01-0003
Alberto Taraborrelli, Francesco Braghin
Abstract This paper reports the studies, design and developments of an electronic electro-actuated gearshifter installed on the DP7, which is Politecnico di Milano car that took part at Formula SAE 2015 competitions in Hockenheim and Varano dè Melegari. The original idea was born to replace the hydraulic gearshift system used until 2011 because of its high weight and cost. After many evaluations about the kind of technology to use, made by previous team members in the electronic department, the final project was a fully electric shifter. This system has proven its qualities among which are lightness and low cost.
2016-04-05
Technical Paper
2016-01-0138
Bernard Dion
Abstract Automotive manufacturers and their suppliers increasingly need to follow the objectives of ISO 26262 as it is now state-of-the art and as it is the case that an ever increasing number of active and passive safety systems are developed within cars. This has increased the need to define a safe system development process. This paper proposes a model-based approach including automatic and certified code generation to efficiently implement the embedded software that controls these systems while meeting the needed safety requirements and obeying the rules of ISO 26262.
2016-04-05
Technical Paper
2016-01-0164
Jamy Li, Xuan Zhao, Mu-Jung Cho, Wendy Ju, Bertram F. Malle
Abstract Autonomous vehicles represent a new class of transportation that may be qualitatively different from existing cars. Two online experiments assessed lay perceptions of moral norms and responsibility for traffic accidents involving autonomous vehicles. In Experiment 1, 120 US adults read a narrative describing a traffic incident between a pedestrian and a motorist. In different experimental conditions, the pedestrian, the motorist, or both parties were at fault. Participants assigned less responsibility to a self-driving car that was at fault than to a human driver who was at fault. Participants confronted with a self-driving car at fault allocated greater responsibility to the manufacturer and the government than participants who were confronted with a human driver at fault did.
2016-04-05
Journal Article
2016-01-1169
Brendan Conlon, Mindy Barth, Charles Hua, Clifford Lyons, Dan Nguy, Margaret Palardy
Abstract GM has developed an all-new gasoline-electric hybrid powertrain for the model year 2016 Chevrolet Malibu Hybrid vehicle, which was designed to achieve excellent fuel economy, performance, and drive quality. The powertrain shares the transmission architecture with the 2016 Chevrolet Volt extended range electric vehicle, but includes changes to optimize the system for engine driven charge sustaining operation in the range of conditions represented by the US EPA 5 cycle fuel economy tests. In this paper, we describe the Malibu Hybrid propulsion system features and components, including the battery pack, transaxle, electric motors and power electronics, engine, and thermal system. The modifications between the Volt and Malibu Hybrid propulsion systems are discussed and explained as resulting from the differences between the primarily electric and gasoline powered applications.
2016-04-05
Technical Paper
2016-01-1171
Shota Hirose, Akemi Okawa, Kenji Ishida, Takahiro Misu, Takeshi Tojo
Abstract Electrification of the powertrain to improve vehicle fuel economy is a key technology to achieve strict fuel economy legislation. However, only limited numbers of small class vehicles such as a B segment adopt electric powertrain. This is presumed that cost effectiveness for fuel economy is small and mounting space for additional powertrain is limited. In this paper, the optimum solution of a strong hybrid system suitable for the small vehicles was studied. First, from the viewpoint of maximization of energy efficiency, we compared contributions of engine efficiency and transmission efficiency during mode cycle driving and selected automated manual transmission as a suitable transmission for small vehicles. In comparing the hybrid system function, we determined a motor generator connecting shaft and a necessary motor generator output power for attaining both fuel economy and drivability.
2016-04-05
Technical Paper
2016-01-0667
Kookjin Hwang, Iljoong Hwang, Hwangbok Lee, Hyunil Park, Hoyeon Choi, Kwanwoo Lee, Wootae Kim, Heungchul Kim, Bonghoon Han, Jongsub Lee, Bosung Shin, Dongsuk Chae
Abstract Hyundai/Kia Motor Company will introduce new Kappa 1.6L GDI engine dedicated for hybrid vehicles, starting production for Korean market in the early 2016. It has achieved the challenging level of 40% maximum thermal efficiency as a gasoline engine. Even though it has the highest fuel efficiency, it can generate sufficient power to provide vehicle's dynamic driving performance. The new Kappa 1.6L GDI engine has been developed focusing on the fuel efficiency. To maximize fuel efficiency, compact combustion chamber is designed with 1.35 stroke-bore ratio. And other key technologies such as Atkinson cycle with high compression ratio, cooled EGR system with high energy ignition coil and high tumble intake ports are applied. The knock has been suppressed significantly to improve fuel efficiency by split cooling system with two thermostats and block insert, the piston cooling jet and the sodium-filled exhaust valve.
2016-04-05
Technical Paper
2016-01-1180
Trevor Crain, Thomas Gorgia, R. Jesse Alley
Abstract EcoCAR is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The EcoCAR Advanced Vehicle Technology Competition series is organized by Argonne National Laboratory, headline sponsored by the U.S. Department of Energy and General Motors, and sponsored by more than 30 industry and government leaders. In the last competition series, EcoCAR 2, fifteen university teams from across North America were challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. This paper examines the results of the EcoCAR 2 competition’s emissions and energy consumption (E&EC) on-road test results for several prototype plug-in hybrid electric vehicles (PHEVs). The official results for each vehicle are presented along with brief descriptions of the hybrid architectures.
2016-04-05
Technical Paper
2016-01-1182
Andrej Ivanco, Balan Mariappan Selvaraj, Kawshik Murali, Arjun Narayanan, Avik Sarkar, Aviral Singh, Akshay Soni, Mark Benton, Prasanth Muralidharan, Johnell Brooks, Paul Venhovens, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the sixth generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development and implementation of a dual-purpose powertrain system enabling vehicle propulsion as well as stationary activities of the Deep Orange 6 vehicle concept. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish vehicle target and subsystem requirement, which formed the foundation of the Unique Selling Points (USPs) of the concept.
2016-04-05
Technical Paper
2016-01-1017
Mitsutaka Jono, Masayuki Taguchi, Toshimitsu Shonohara, Shigeru Narihiro
Abstract It is important to take action regarding environmental issues on a global scale, and automakers are adding downsized turbocharged engines to their line-ups as a means of reducing CO2 emissions, particularly in Europe. Honda has recently announced a next-generation powertrain series that realizes a good balance between environmental performance and driving pleasure. As part of this series, the company has developed a downsized and turbocharged 2.0L gasoline direct injection engine. This is a high-powered sports car engine positioned in the European “hot hatch” category. The development balanced engine power with good environmental performance.
2016-04-05
Technical Paper
2016-01-1475
Toby Terpstra, Tilo Voitel, Alireza Hashemian
Abstract Video and photo based photogrammetry software has many applications in the accident reconstruction community including documentation of vehicles and scene evidence. Photogrammetry software has developed in its ease of use, cost, and effectiveness in determining three dimensional data points from two dimensional photographs. Contemporary photogrammetry software packages offer an automated solution capable of generating dense point clouds with millions of 3D data points from multiple images. While alternative modern documentation methods exist, including LiDAR technologies such as 3D scanning, which provide the ability to collect millions of highly accurate points in just a few minutes, the appeal of automated photogrammetry software as a tool for collecting dimensional data is the minimal equipment, equipment costs and ease of use.
2016-04-05
Technical Paper
2016-01-1371
Satish Jaju, Pritesh Jain, Gopal Musale
Abstract The unit analysis methodology can be used for designing component or product in a product development process. This method may be used for designing the crush can, bumper beam, crush can long member, B-frame or A-pillar in frontal impact analysis. Unit assembly model technique can be effectively used in many CAE load cases to evaluate CAE simulations such as pedestrian impact analysis (ECE R78 / ENCAP), interior trim related head impact simulations (FMVSS201U), under run protection simulation for commercial vehicles (Front Underrun Protection Device ECE R93, Rear Underrun Protection Device ECE R58, Side Underrun Protection Device ECE R73), airbag deployment optimization etc. These CAE analyses correlate better with actual test. This paper gives idea about how the cost of product design can be reduced by using unit analysis. To reduce time of vehicle development such as cost of prototype, testing cost, optimization cost unit analysis is more economical.
2016-04-05
Technical Paper
2016-01-1365
Siddharth Bhupendra Unadkat, Suhas Kangde, Mahalingesh Burkul, Mahesh Badireddy
Abstract The overall automotive industry is moving toward first time right test which in turn needs first time right analysis. This is due to the enormous pressure of cost, mass, time to market and availability of prototype vehicles for testing. Use of finite element methods enables to upfront predict the system behavior in operating conditions and evaluation of structural strength. In vehicle product development process, hood slam durability evaluation is one of the important tests for body closure structure. Current work showcases an effort made for developing virtual hood slam test. The virtual model consists of BIW, hood, hinge joint, interface like CRFM (cooling-radiator-fan module) and latch mechanism with spring preload. Analysis performed with LSDyna solver. An impact loading is applied by converting potential energy to kinetic energy, mimicking the hood dropping from a specified height on the hood latch.
2016-04-05
Technical Paper
2016-01-1584
Kenichi Ando, Naoshi Kuratani, Hideo Fukuda
Abstract An aerodynamic styling evaluation system employed at an early automotive development stage was constructed. The system based on CFD consists of exterior model morphing, computational mesh generation, flow calculation and result analysis, and the process is automatically and successively executed by process automation software. Response surfaces and a parallel coordinates chart output by the system allow users to find a well-balanced exterior form, in terms of aerodynamics and exterior styling, in a wide design space which are often arduous to be obtained by a conventional CAE manner and scale model wind tunnel testing. The system was designed so that 5-parameter study is completed within approximately two days, and consequently, has been widely applied to actual exterior styling development. An application for a hatchback vehicle is also introduced as an actual example.
2016-04-05
Journal Article
2016-01-0002
Scott Eisele, Masahiro Yamaura, Nikos Arechiga, Shinichi Shiraishi, Joseph Hite, Jason Scott, Sandeep Neema, Theodore Bapty
Abstract Complex systems, such as modern advanced driver assistance systems (ADAS), consist of many interacting components. The number of options promises considerable flexibility for configuring systems with many cost-performance-value tradeoffs; however the potential unique configurations are exponentially many prohibiting a build-test-fix approach. Instead, engineering analysis tools for rapid design-space navigation and analysis can be applied to find feasible options and evaluate their potential for correct system behavior and performance subject to functional requirements. The OpenMETA toolchain is a component-based, design space creation and analysis tool for rapidly defining and analyzing systems with large variability and cross-domain requirements. The tool supports the creation of compositional, multi-domain components, based on a user-defined ontology, which captures the behavior and structure of components and the allowable interfaces.
2016-04-05
Technical Paper
2016-01-0379
Gilles Robert, Olivier Moulinjeune, Benoit Bidaine
Abstract Short glass fiber reinforced polyamides (SFRPs) are a choice material for automotive industry, especially for in the engine compartment. To develop their application field to more and more complex hydrothermal and mechanical environments, reliable or even predictive simulation technologies are necessary. Integrative simulation takes into account the forming process during final Finite Elements Analysis (FEA). For SFRPs, injection molding is taken into account by computing glass fibers orientation. It is further used to compute a specific anisotropic constitutive model on each integration point of FEA model. A wide variety of models is now available. Integrative simulation using Digimat has been proved very efficient for static and dynamic loadings.
2016-04-05
Technical Paper
2016-01-0161
Valentin Soloiu, Imani Augusma, Deon Lucien, Mary Thomas, Roccio Alba-Flores
Abstract This study presents the design and development of a vehicle platform with intelligent sensors that has the capabilities to drive independently and cooperatively on roads. An integrated active safety system has been designed to optimize the human senses using ultrasonic infrared sensors and transmitter/receiver modules, to increase the human vision, feel and communication for increased road safety, lower congestion rates, and decrease CO2 emissions. Ultrasonic sensors mounted on the platform, emitted longitudinal 40 kHz waves and received echoes of these sound waves when an object was within its direction. The duration was converted to a distance measurement to detect obstacles as well as using distance measurement threshold values to implement adaptive cruise control. Infrared sensors equipped with an IR LED and a bipolar transistor detected a change in light intensity to identify road lanes.
Viewing 271 to 300 of 10348